
Optic neuropathy, a common visual impairment, can be 
caused by genetic defects, toxic factors, and ocular or brain 
diseases [1-3]. Genetic defects may occur in nuclear genome 
or mitochondrial DNA (mtDNA) [4-6]. Mutations in mtDNA 
are known to cause Leber hereditary optic neuropathy 
(LHON, MIM 535000) [7]. At least eight loci (OPA1 to 
OPA8) have been mapped to the nuclear genome in associa-
tion with optic atrophy, in which three causative genes have 
been identified, including the optic atrophy 1 (OPA1, OMIM 
605290) gene, the optic atrophy 3 (OPA3, OMIM 606580) 
gene, and the transmembrane protein 126A (TMEM126A, 
OMIM 612988) gene [1].

Dominant optic atrophy (DOA, MIM 165500) is the most 
common form of hereditary optic neuropathy resulting from 
mutations in nuclear genome, with a prevalence of 1 in 50,000 
overall [8] and as high as 1 in 35,000 in the north of England 
[9], similar to the frequency of LHON (1 in 25,000 to 1 in 
50,000) as reported in Caucasians [1,10]. DOA typically pres-
ents as painless and slowly progressive visual loss, occurring 

insidiously with a mean age of onset at 6–10 years of age 
[1,11]. DOA exhibits marked inter- and intrafamilial variable 
phenotypes [9,12,13]; for instance, about 25% of patients 
were found to have optic atrophy with fundus examination 
but without a complaint of visual deterioration [11,14].

Of the three nuclear genes known to cause optic neurop-
athy when mutated, mutations in OPA3 and TMEM126A 
are extremely rare. OPA3 mutations result in optic atrophy 
associated with cataract [15,16], while TMEM126A muta-
tions are responsible for an autosomal recessive form of optic 
atrophy [17,18]. Mutations in OPA1 account for the majority 
(60%–70%) of patients with DOA [19]. Thus far, at least 230 
pathogenic mutations have been identified in OPA1 [20]. 
However, extremely variable phenotypes of DOA hindered the 
diagnosis and, therefore, the clinical test of OPA1 mutational 
screening. Until now, the genotype-phenotype correlations 
of OPA1 mutations with DOA were elusive [21,22]. Recently, 
analysis of OPA1 in some large case series of hereditary optic 
neuropathy in Caucasians suggested that scanning the most 
frequently mutated exons might be a good strategy for iden-
tifying OPA1 mutations [21,23]. Although exon 27, exon 8, 
and exon 15 may be mutational hot spots in Caucasians [21], 
the frequency of OPA1 mutation in Chinese patients has not 
been evaluated. Only a few Chinese families with DOA have 
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been reported to be associated with OPA1 mutations [24-27], 
not to mention the mutational hot spots. In this study, Sanger 
sequencing was used to detect the mutation of OPA1 in 193 
Chinese families with suspected hereditary optic neuropathy, 
in which the three common LHON-associated primary muta-
tions of mtDNA had been excluded with prior screening.

METHODS

Patients: Probands with suspected hereditary optic neurop-
athy from 193 unrelated families were examined at the Pedi-
atric and Genetic Clinic in Zhongshan Ophthalmic Center. 
The criteria for participating in this study were as follows: (1) 
reduced visual acuity not related to refractive error or ocular 
media; (2) optic atrophy revealed with fundus examination; (3) 
exclusion of optic atrophy with known causes; and (4) absence 
of the three common primary LHON-associated mutations in 
mtDNA, which was confirmed based on methods described 
in our previous study [28]. All probands were assessed by 
experienced ophthalmologists or neuro-ophthalmologists. 
Informed consent conforming to the tenets of the Declara-
tion of Helsinki and the Guidance of Sample Collection of 
Human Genetic Diseases (863-Plan) by the Ministry of Public 
Health of China was obtained from the participants or their 
guardians before the study. For the probands from the 193 
families, 155 were sporadic cases, and 38 had a family history 
of hereditary optic neuropathy; 132 were male, and 61 were 
female.

Mutation screening: Genomic DNA from the proband of 
each family was prepared from peripheral blood leuko-
cytes as previously described [23]. All the coding exons 
and exon-intron junctions of OPA1 (references from NCBI: 
NC_000003.11 for gDNA, NM_015560.1 for mRNA, and 
NP_056375.2 for protein) were amplified with PCR using 
30 primer sets (Table 1). The primer pairs were designed to 
cover at least 80 bp of each exon-intron junction, aiming to 
detect most of the known intronic mutations. PCR reaction 
was performed in 20 μl volumes containing 80 ng genomic 
DNA. Touchdown PCR was performed, which consisted 
of a denaturizing step at 95 °C for 5 min and annealing 
temperature decreased by 2 °C after the first 5 cycles and 
the second 5 cycles, and then down to the optimal annealing 
temperature (listed in Table 1), and a final extension at 72 °C 
for 5 min. Sequences of the amplicons were determined with 
BigDye Terminator cycle sequencing kit v3.1 and an ABI3130 
Genetic Analyzer (Applied Biosystems, Foster City, CA). 
Sequences from patients and the OPA1 reference sequence 
(NM_015560.1) were compared using SeqMan II software 
(Lasergene 8.0, DNASTAR, Madison, WI). All variations 
were confirmed with bidirectional sequencing, and novel 

mutations were then evaluated in 384 chromosomes of 192 
normal individuals. The effect of a novel missense mutation 
on the encoded protein was predicted with the Blosum62 
Table [29] as well as PolyPhen-2 [30] and the SIFT online tool 
[31]. Splice site mutations were predicted with the Splice Site 
Prediction by Neural Network [32]. In addition, the degree 
of evolutionary conservation at amino acid positions altered 
by novel OPA1 mutations was analyzed using the MegAlign 
program of the Lasergene package. Segregation analyses of 
mutations were performed on patients with available family 
members.

RESULTS

Optic atrophy 1 mutations: Upon complete sequencing 
analysis of OPA1 coding exons and adjacent intronic regions, 
11 heterozygous mutations in OPA1 (Table 2, Figure 1) were 
detected in 12 of 193 (6.2%) families, among which eight 
were novel and three were known. These mutations consisted 
of three nonsense mutations, two splice site mutations, three 
deletions, two missense mutations, and one small insertion. 
The c.2708_2711del mutation in exon 27 was present in three 
of the 12 probands (25%). In addition, three mutations were 
found in a fragment less than 10 bp around the 5′ end of exon 
10. Of the 12 cases, nine were sporadic cases (9/155, 5.8%), 
and three had a family history (3/38, 8.0%). The eight novel 
mutations were predicted to be pathogenic and not detected in 
384 control chromosomes. Polymorphisms detected in OPA1 
are listed in Table 3.

Optic atrophy 1 compound heterozygous mutations: A 
4-year-old boy harbored two OPA1 mutations, c.190_194del 
(p.S64fs) and c.1129G>A (p.V377I). Segregation analysis 
demonstrated that the deletion was inherited from his father 
and the missense mutation from his mother (Figure 2), 
indicating compound heterozygosity. The boy was observed 
suffering from poor vision as early as 2 years of age. Fundus 
examination revealed temporal disc pallor in both eyes when 
he was 4 years old. Retinal nerve fiber layer (RNFL) thin-
ning was confirmed with optical coherence tomography 
(OCT). Pattern visual-evoked potential (PVEP) showed 
prolonged latencies and diminished amplitudes in both eyes. 
In contrast, his father presented a much milder phenotype: 
His best-corrected visual acuity was 20/30 (Snellen) for both 
eyes, and his refraction was −1.50 sph for the right eye and 
−3.50 sph for the left eye. Fundus examination of the father 
showed bilateral disc pallor similar to his son while OCT 
and PVEP tests revealed milder abnormalities compared 
with the son. The mother had normal visual acuity of 20/20 
(Snellen) for both eyes without any detectable abnormalities 
on fundus observation, OCT scan, and PVEP recordings. No 

http://www.molvis.org/molvis/v19/292
http://www.ncbi.nlm.nih.gov/nuccore/NC_000003.11
http://www.ncbi.nlm.nih.gov/nuccore/NM_015560.1
http://www.ncbi.nlm.nih.gov/nuccore/NP_056375.2
http://www.ncbi.nlm.nih.gov/nuccore/NM_015560.1
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.fruitfly.org/seq_tools/splice.html
http://www.fruitfly.org/seq_tools/splice.html


Molecular Vision 2013; 19:292-303 <http://www.molvis.org/molvis/v19/292> © 2013 Molecular Vision 

294

Ta
b

l
e
 1

. P
r

im
e

r
s u

se
d

 t
o

 a
m

pl
if

y
 t

h
e
 g

e
n

o
m

ic
 f

r
a

g
m

e
n

t
s o

f 
O

PA
1.

 

Fr
ag

m
en

t
Fo

rw
ar

d 
pr

im
er

 (5
′-3

′)
R

ev
er

se
 p

ri
m

er
 (5

′-3
′)

Pr
od

uc
t 

le
ng

th
 

(b
p)

A
nn

ea
lin

g 
te

m
pe

ra
tu

re

Ex
on

 1
C

C
TC

G
G

C
C

G
C

G
G

C
TC

TG
TG

C
G

G
G

C
TC

C
TG

TC
A

TT
C

TG
G

G
TC

C
TC

A
A

G
32

7
65

 °C
Ex

on
 2

TT
TG

CA
C

CA
CA

TT
TT

C
C

TC
A

TC
T

G
G

CA
TC

TT
C

C
TA

TT
A

G
CA

TC
A

TT
A

74
3

60
 °C

Ex
on

 3
G

G
G

CA
A

A
A

TT
A

TG
A

A
A

C
C

T
TA

A
A

A
TT

A
TG

G
G

C
TA

C
TG

G
52

3
57

 °C
Ex

on
 4

A
C

TG
C

C
TG

G
G

C
TG

G
A

A
C

G
G

A
A

C
TG

TC
A

TT
TT

A
C

TG
G

G
C

50
7

65
 °C

Ex
on

 4
b

G
C

C
C

TA
TC

G
TA

A
TA

TG
A

A
A

TC
TG

A
G

G
CA

TA
A

G
CA

G
CA

TT
A

TA
A

A
TT

TG
G

25
7

60
 °C

Ex
on

 5
A

G
G

C
G

A
TT

TG
A

TT
C

TT
TG

A
A

C
TT

G
G

A
TG

TT
TT

TG
TA

TT
TG

32
0

55
 °C

Ex
on

 5
b

A
A

C
CA

TC
C

C
TC

C
C

TA
G

C
TT

A
CA

TC
T

G
G

C
TT

TA
C

C
TA

TA
C

TA
C

C
CA

C
TC

CA
G

39
6

65
 °C

Ex
on

 6
C

TT
TC

A
TA

A
G

A
A

A
TG

A
C

TA
G

A
A

TA
G

CA
A

CA
TG

G
G

CA
TA

A
G

A
TT

CA
C

TC
A

A
A

A
TA

G
G

56
0

57
 °C

Ex
on

 7
A

TG
TG

A
G

TA
G

CA
A

G
G

A
A

TT
TT

C
CA

A
G

TG
C

C
TC

CA
A

G
CA

CA
TT

A
G

G
TT

A
G

A
A

A
G

A
A

A
48

4
65

 °C
Ex

on
 8

C
TA

A
A

TA
A

A
C

TG
A

A
TG

A
G

A
A

A
TG

G
A

C
A

CA
TT

A
C

TT
G

G
A

A
CA

TG
TA

A
G

A
TT

A
C

44
6

60
 °C

Ex
on

 9
G

TT
TT

G
C

TG
TT

C
C

TA
TT

TT
CA

A
TG

TG
CA

G
C

C
TC

C
TG

G
C

TG
TG

C
C

TT
C

TA
C

TG
A

TT
T

46
4

65
 °C

Ex
on

 1
0–

11
C

C
CA

G
CA

G
TA

G
TG

TG
A

A
G

G
G

A
A

A
A

CA
A

TG
C

TA
A

A
G

TT
TG

G
G

G
71

6
60

 °C
Ex

on
 1

2–
13

TG
TG

A
G

C
G

TC
TT

A
TC

TG
A

A
TG

G
A

A
A

TG
A

A
TA

C
G

A
A

G
A

G
A

A
G

G
CA

A
A

A
A

50
6

60
 °C

Ex
on

 1
4

TT
G

C
TA

TA
A

TG
TA

G
A

CA
CA

G
G

G
G

C
CA

TG
TA

C
CA

TT
TC

C
TT

TT
G

TG
39

5
60

 °C
Ex

on
 1

5–
16

TC
A

TT
C

C
G

G
G

TT
TT

C
G

A
TA

C
A

A
A

C
TG

C
TC

TC
A

A
TT

C
TG

C
C

66
2

65
 °C

Ex
on

 1
7

G
C

TA
C

C
G

TA
TT

G
G

A
A

TG
TT

TT
C

C
TC

C
TC

A
A

A
TG

TT
C

TC
A

TC
TG

TT
TG

A
A

C
TC

TG
CA

52
5

65
 °C

Ex
on

 1
8

G
G

G
TC

A
TA

G
G

C
G

CA
C

TC
TC

TC
TC

A
G

A
A

A
A

CA
C

TT
TC

A
A

CA
C

TT
G

42
5

57
 °C

Ex
on

 1
9

C
C

CA
A

A
TT

CA
G

C
C

TA
G

TC
A

A
A

A
A

G
A

G
C

CA
A

G
G

CA
A

CA
A

TA
A

A
TC

A
C

29
3

65
 °C

Ex
on

 2
0

G
C

TG
G

A
G

TG
G

A
A

G
A

A
CA

A
A

G
A

CA
A

A
C

C
CA

A
A

A
CA

G
A

G
A

TG
A

G
G

A
A

TA
A

A
G

A
A

61
6

65
 °C

Ex
on

 2
1

C
CA

TA
TC

TG
TC

C
C

CA
G

CA
A

C
G

CA
A

CA
G

G
TG

A
TT

TT
A

G
A

A
G

G
G

54
1

65
 °C

Ex
on

 2
2

TA
A

CA
A

A
TA

A
G

CA
G

G
CA

A
G

TA
A

A
A

G
A

A
G

CA
TT

G
G

TT
TT

A
G

TA
G

TT
A

CA
A

A
G

CA
G

TT
46

4
60

 °C
Ex

on
 2

3
A

TG
TG

G
G

TT
TT

TT
C

C
TT

TA
G

CA
TG

TT
TC

A
TC

TC
TT

G
TC

44
8

57
 °C

Ex
on

 2
4

TG
A

TT
A

A
G

C
TT

G
TG

TT
A

TC
TT

TT
A

TG
C

C
G

TG
A

CA
A

A
A

G
TC

A
A

A
TT

A
A

G
CA

C
37

2
60

 °C
Ex

on
 2

5
C

C
TA

C
C

C
TG

TC
TA

C
TC

CA
CA

A
G

TT
TC

C
C

CA
G

A
TG

A
TC

A
A

A
G

G
52

3
60

 °C
Ex

on
 2

6
TT

A
A

G
C

TT
A

G
G

A
CA

TA
TC

TA
C

TG
G

TT
C

TG
G

G
A

A
G

TA
TT

TT
G

G
CA

TC
C

29
1

60
 °C

Ex
on

 2
7

TT
TT

G
G

G
A

A
A

TC
TG

CA
C

TT
C

TC
TG

A
C

C
TT

G
TT

TT
C

CA
C

C
C

53
3

60
 °C

Ex
on

 2
8

TT
G

G
G

TA
A

A
A

G
G

TG
G

TA
TG

G
TG

A
G

CA
A

G
CA

G
G

A
TG

TA
A

A
TG

A
A

G
CA

G
A

A
30

9
65

 °C

http://www.molvis.org/molvis/v19/292


Molecular Vision 2013; 19:292-303 <http://www.molvis.org/molvis/v19/292> © 2013 Molecular Vision 

295

Ta
b

l
e
 2

. O
PA

1 
m

u
ta

t
io

n
s i

d
e

n
t

if
ie

d
 in

 t
h

e
 1

2 
C

h
in

e
se

 fa
m

il
ie

s w
it

h
 o

pt
ic

 a
t

r
o

ph
y
. 

O
PA

1
Pa

tie
nt

 I
D

N
uc

le
ot

id
e 

ch
an

ge
A

m
in

o 
 

ac
id

  
ch

an
ge

St
at

us
C

on
se

r 
va

tio
n

C
om

pu
ta

tio
na

l p
re

di
ct

io
n

A
lle

le
 fr

eq
ue

nc
y 

in

R
ep

or
te

d
B

lo
su

m
62

Po
ly

Ph
en

 
or

 S
pl

ic
e 

si
te

SI
FT

ca
se

s
co

nt
ro

ls

ex
on

 2
le

16
08

c.
49

_5
0i

ns
G

G
p.

L1
7f

s
H

et
er

o
-

-
-

-
1/

38
6

0/
38

4
Th

is
 st

ud
y

ex
on

 2
le

20
28

c.1
90

_1
94

de
l

p.
S6

4f
s

H
et

er
o

-
-

-
-

1/
38

6
0/

38
4

Th
is

 st
ud

y
in

tro
n 

9
le

21
46

c.
98

5–
1G

>A
Sp

lic
in

g 
de

fe
ct

H
et

er
o

-
-

-
-

1/
38

6
N

A
D

el
et

tre
 e

t a
l. 

[4
0]

ex
on

 1
0

le
15

24
c.

98
9C

>G
p.

T3
30

S
H

et
er

o
Ye

s
5>

1
Pr

D
D

1/
38

6
0/

38
4

Th
is

 st
ud

y
ex

on
 1

0
le

16
56

c.
99

1_
99

2d
el

p.
L3

31
fs

H
et

er
o

-
-

-
-

1/
38

6
0/

38
4

Th
is

 st
ud

y
ex

on
 1

1
le

20
28

c.1
12

9G
>A

p.V
37

7I
H

et
er

o
Ye

s
4>

3
Pr

D
T

1/
38

6
0/

38
4

Th
is

 st
ud

y
ex

on
 2

1
le

15
99

c.
21

19
G

>T
p.

E7
07

*
H

et
er

o
-

-
-

-
1/

38
6

0/
38

4
Th

is
 st

ud
y

ex
on

 2
4

le
14

32
c.

23
89

A
>T

p.
K

79
7*

H
et

er
o

-
-

-
-

1/
38

6
0/

38
4

Th
is

 st
ud

y
ex

on
 2

4
le

16
01

c.
24

70
C

>T
p.

R
82

4*
H

et
er

o
-

-
-

-
1/

38
6

N
A

Fe
rr

e 
et

 a
l. 

[2
1]

in
tro

n 
25

le
15

74
c.

26
14

–2
A

>G
Sp

lic
in

g 
de

fe
ct

H
et

er
o

-
-

SS
A

-
1/

38
6

0/
38

4
Th

is
 st

ud
y

ex
on

 2
7

le
14

11
, 

le
14

34
, 

le
20

62

c.
27

08
_2

71
1d

el
p.V

90
3f

s
H

et
er

o
-

-
-

-
3/

38
6

N
A

Fe
rr

e 
et

 a
l. 

[2
1]

Th
e 

pr
ob

an
d 

le
20

28
 is

 c
om

po
un

d 
he

te
ro

zy
go

us
 fo

r t
w

o 
O

PA
1 

m
ut

at
io

ns
, a

 fr
am

es
hi

ft 
de

le
tio

n 
an

d 
a 

m
is

se
ns

e 
m

ut
at

io
n 

(F
ig

ur
e 

2)
. A

bb
re

vi
at

io
ns

: H
et

er
o,

 H
et

er
oz

yg
ou

s;
 P

rD
, 

pr
ob

ab
ly

 d
am

ag
in

g;
 S

SA
, s

pl
ic

in
g 

si
te

 a
bo

lis
he

d;
 D

, d
am

ag
in

g;
 T

, t
ol

er
at

ed
; N

A
, n

ot
 a

na
ly

ze
d.

http://www.molvis.org/molvis/v19/292


Molecular Vision 2013; 19:292-303 <http://www.molvis.org/molvis/v19/292> © 2013 Molecular Vision 

296

Figure 1. Sequence chromatograms. 
The 11 sequence changes detected 
in the probands with dominant optic 
atrophy are shown (left column) 
compared with corresponding 
normal sequences (right column). 
The mutational sites are indicated 
with an arrow, and the amino acid 
codes are depicted with a line.
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extraocular neurologic sign presented in the proband and his 
parents (Table 4).

Clinical characteristics of optic atrophy 1-positive patients: 
All probands with OPA1 mutations had clinical symptoms 
and signs of DOA (Table 4). The disease occurred insidi-
ously in most probands, with reduced visual acuity noticed 
at about 12 years old (12±9.5 years; ranging between 2 and 
35 years). The mean age for the probands’ first visit to the 
eye clinic was about 15 years (15±8.8 years; ranging from 4 
to 35 years). Interestingly, two probands (le1574 and le1601) 
experienced significant visual deterioration after taking anti-
tuberculosis medicine. Additional segregation analysis of the 

mutations was performed in two sporadic cases, i.e., le1432 
and le2062, through contact tracing of the OPA1-positive 
probands (Figure 2). The two patients had no siblings, but 
their parents were available for further analysis. All four 
parents were farmers and were visually asymptomatic by 
self-report. However, the father of le1432 and the mother of 
le2062 harbored an OPA1 mutation. Ophthalmic examination 
of the two “healthy carriers” demonstrated mild phenotype of 
optic atrophy: mild reduced visual acuity, attenuated retinal 
vessels, temporal disc pallor, and thinning RNFL on the OCT 
scan (Table 4).

Figure 2. Segregation analysis 
of Optic Atrophy 1 mutations in 
three families with dominant optic 
atrophy. Circles represent women, 
and squares represent men. Two 
circles and a square filled in black 
indicate probands with suspected 
hereditary optic atrophy. Circles 
and squares filled with lines show 
carriers with Optic Atrophy 1 
(OPA1) variants. Proband le2028 
is compound heterozygous for 
OPA1 mutations. The father has a 
c.190_194del mutation in exon 2, 
and the mother has a c.1129G>A in 
exon 11. Both mutations transmitted 
to their son. Proband le1432 inher-
ited a c.2389A>G mutation from her 
father. Proband le2062 inherited a 
c.2708_2711del mutation from her 
mother. The mutational sites are 
indicated with an asterisk, and 
amino acid codes are depicted with 
a line.
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DISCUSSION

DOA and LHON are the most common hereditary optic 
neuropathies in the general population [4,33,34], with similar 
prevalence in Caucasians [1,9]. Ferre et al. reported identi-
fication of genetic defects in 440 of 980 cases (45%) with 
suspected hereditary optic neuropathy, including OPA1 muta-
tions in 295 (30%) patients, mtDNA mutations in 131 (13%) 
patients, and OPA3 mutations in 14 (1.4%) patients [21]. These 
results suggest that OPA1 mutations are the most common 
cause for patients with suspected hereditary optic atrophy. 
However, there is no molecular epidemiological study for 
DOA in Chinese populations even though there are large case 
series of such studies for Chinese patients with LHON [28]. 
It is unclear whether DOA is rare in Chinese or may not be 
easily recognized in clinics compared to LHON. Clinically, 
it may be difficult to distinguish DOA from LHON in many 
cases, especially in the atrophic phase [35,36]. In our previous 
report of a molecular epidemiological analysis of 903 fami-
lies with optic neuropathy, the three primary mutations 
(G11778A, T14484C, and G3460A) in mtDNA were identi-
fied in 346 families (38.3%) [28]. In this study, mutations in 
OPA1 were detected in only 12 of the 193 families (6.2%). 
Since patients with one of the three primary mtDNA muta-
tions (G11778A, T14484C, and G3460A) were not included 
in the cohort, the actual detection rate of OPA1 mutations 
in Chinese patients with hereditary optic neuropathy should 
be even lower, indicating a significantly lower frequency 
of OPA1 mutations (<6.2%) and a comparatively higher 
frequency of mtDNA mutations (38%) in Chinese patients 
with suspected hereditary optic neuropathy compared with 
French Caucasians (30% for OPA1 and 13% for mtDNA) 
[21]. Lack of awareness of the mild phenotype of DOA may 
contribute to the low frequency of OPA1-related DOA in 
Chinese and relatively high frequency of OPA1 mutations in 
sporadic cases, which is implied by the segregation analysis 
of mutations in the family of le1432 and le2062. A family 
history showing autosomal dominant inheritance is a key 
indicator leading to clinical diagnosis of DOA and genetic 
analysis of OPA1. For the probands from the 12 families with 
OPA1 mutations identified in this study, however, most (9/12, 
75%) were sporadic cases (nine out of 155 sporadic cases). 
Similar frequency of OPA1 mutations in singleton cases was 
also mentioned in other studies [16,21,24,37]. Since individ-
uals who harbor OPA1 mutations may have mild phenotypes 
that the individuals are unaware of, it is important to keep 
OPA1 in mind for patients with suspected hereditary optic 
neuropathy without a family history and evaluate the family 
members of these singleton cases carefully. Moreover, such 
evaluation and genetic consultation to family members may 
be crucial since more severe phenotypes might be induced by 

toxic materials, such as alcohol, smoking, and some drugs, as 
seen in two patients who had taken medicine for tuberculosis 
in this study.

Although OPA1 mutations contribute to the most (60%–
70%) cases with DOA [19], the genetic diagnosis of DOA is 
still a challenge. OPA1 mutations are spread over 30 exons 
[21]. In addition, about a quarter of the mutations are located 
in the intronic regions adjacent to exon-intron boundaries, 
which usually affect splicing [20]. Under this circumstance, 
a cost-effective method for identifying mutations responsible 
for DOA is of great value. Screening the most frequently 
mutated exons of OPA1 initially would be a feasible strategy. 
Although exons 27, 8, and 15 were suggested to be regions 
of mutation hot spots in a previous study by Ferre et al. [21], 
we are unable to suggest ethnic-specific mutation hot spots 
based on limited number of mutations identified in our cohort 
of Chinese patients. The c.2708_2711del mutation in exon 27 
was present in approximately 27% of families in previous 
studies. The same mutation was found in three probands in 
our study, which accounts for 25% among the OPA1-positive 
cases, further confirming that it is a mutational hot spot 
[21,24,37]. Interestingly, three novel mutations, discovered 
in three unrelated patients, arose from a region less than 10 
bp around the 5′ end of exon 10, which may imply another 
mutational hot spot. Thus far, this is the largest series of 
patients screened for OPA1 in an Asian population. As our 
results provide evidence of ethnic variations in the mutation 
frequency of OPA1, analyzing causative genes and their exons 
in a systematic and population-specific fashion is necessary, 
especially in the context of genetic counseling for different 
ethnic groups.

To our knowledge, the patient with confirmed compound 
heterozygosity of OPA1 mutations in our study is the fourth 
case reported so far [38,39], which represents a rare event. All 
cases with compound heterozygous OPA1 mutations reported 
thus far had more severe phenotypes than their parents with 
a single heterozygous OPA1 mutation, which may suggest an 
additive effect [39]. Although the mother is a possible case 
of non-penetrance in optic atrophy, the c.1129G>A (p.V377I) 
mutation is still likely to be pathogenic. First, the mutation 
is rare as it is not found in 384 control chromosomes or the 
Single Nucleotide Polymorphism database. Second, the muta-
tion is located in an evolutionarily conserved region and is 
predicted to be probably damaging by PolyPhen-2. Third, the 
severity of the phenotype of the son could, at least partly, 
reflect the addictive effect of the mutation from his mother. 
However, it is not the only interpretation of this compound 
heterozygous case. A c.190_194del (p.S64fs) mutation was 
identified in the father, presumably causing premature 
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termination. However, the phenotype of the father was much 
milder than the other probands with frameshift deletions or 
nonsense mutations in our study. This may suggest the exis-
tence of modifier alleles at other loci. If the son did not inherit 
the beneficial modifier alleles from his father, this could also 
result in the severity of the son’s phenotype. The effect of 
modifier alleles may also explain the marked intrafamilial 
phenotypical heterozygosity between the probands and other 
mutation carriers, as shown in le1432 and le2062.

In summary, this study implies that the frequency of 
DOA is much lower than that of LHON in Chinese compared 
with other ethnic groups. Lack of awareness of the mild 
phenotype of DOA may contribute to the low frequency of 
OPA1-related DOA in Chinese. Further analysis of OPA1 in 
individuals with mild visual impairment and temporal disc 
pallor may be helpful in disclosing the real frequency of DOA 
in Chinese. Routine clinical test of OPA1 variations in such 
cases may also enhance the care of eyes through consultation 
and pretreatment, especially for individuals who are unaware 
of visual problems but harbor OPA1 mutations.
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