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The human endometrium is a remarkable tissue which may experience up to 400

cycles of hormone-driven proliferation, differentiation and breakdown during a woman’s

reproductive lifetime. During menstruation, when the luminal portion of tissue breaks

down, it resembles a bloody wound with piecemeal shedding, exposure of underlying

stroma and a strong inflammatory reaction. In the absence of pathology within a few days

the integrity of the tissue is restored without formation of a scar and the endometrium

is able to respond appropriately to subsequent endocrine signals in preparation for

establishment of pregnancy if fertilization occurs. Understanding mechanisms regulating

scarless repair of the endometrium is important both for design of therapies which can

treat conditions where this is aberrant (heavy menstrual bleeding, fibroids, endometriosis,

Asherman’s syndrome) as well as to provide new information that might allow us to

reduce fibrosis and scar formation in other tissues. Menstruation only occurs naturally

in species that exhibit spontaneous stromal cell decidualization during the fertile cycle

such as primates (including women) and the Spiny mouse. To take advantage of genetic

models and detailed time course analysis, mouse models of endometrial shedding/repair

involving hormonal manipulation, artificial induction of decidualization and hormone

withdrawal have been developed and refined. These models are useful in modeling

dynamic changes across the time course of repair and have recapitulated key features of

endometrial repair in women including local hypoxia and immune cell recruitment. In this

review we will consider the evidence that scarless repair of endometrial tissue involves

changes in stromal cell function including mesenchyme to epithelial transition, epithelial

cell proliferation and multiple populations of immune cells. Processes contributing to

endometrial fibrosis (Asherman’s syndrome) as well as scarless repair of other tissues

including skin and oral mucosa are compared to that of menstrual repair.

Keywords: hypoxia, endometrium, mesenchyme to epithelial transition (MET), inflammation, cytokine,

angiogenesis, scarless

INTRODUCTION

The endometrium is unusual amongst adult tissue in that it exhibits an unparalleled capacity for
rapid scar-free repair, which occurs at the end of each non-fertile cycle during the phase known
as menstruation. Menstruation is the culmination of vascular, cellular and inflammatory changes
which leaves the luminal surface in a “wounded” state (1). In order to limit blood loss and regain
tissue function for the subsequent cycle, rapid re-epithelialisation and structural re-organization is
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required and occurs without the accumulation of any functional
damage or fibrotic scar tissue (1–3). Although the human
endometrium is the only adult tissue that undergoes regular
and repeated cycles of destruction and repair under normal
physiological conditions (4) parallels may be drawn between
mechanisms of post menstrual endometrial repair and the wound
healing response of the oral mucosa which also heals without a
scar (5–7).

Whilst morphological and cellular changes that occur during
the various phases of the human menstrual cycle have been
well documented and extensively studied much less is known
about the temporal and spatial changes in tissue function that
occur during the menstrual phase due to the challenge of
timing collection of human tissue during this phase (8). One
of the most revealing studies to document the appearance of
the endometrium at the time of menses used a combination of
a hysteroscopic, histological and scanning electron microscopy.
Examination of the surface of the endometrium during initial
phases of menses revealed that tissue shedding and repair was
not uniform but rather a “piecemeal process” which occurred
simultaneously in regions throughout the uterine cavity with
the authors suggesting the stromal compartment played an
important role (9). One of the most well established mechanisms
triggering tissue breakdown is the rapid fall in progesterone
which occurs with involution of the corpus luteum in a
non-fertile cycle (8). Progesterone also plays a pivotal role
in stimulating changes in gene expression and cell function
resulting in transformation of the stromal cells so that they
secrete factors essential for successful implantation–a process
collectively known as decidualization (10). During the normal
cycle decidualization is limited to the luminal (functional) layer
of the endometrium and this is also the region of tissue shed
at menstruation. The occurrence of menstruation is associated
with spontaneous decidualization, as opposed to decidualization
induced by a fertilization event, and is limited to the higher-order
primates including humans, four species of bat, the elephant
shrew (11) and a Spiny mouse species (Acomys cahirinus (12, 13).

Studies in animal models have included those in primates that
spontaneously menstruate such as the baboon (14) as well as
species such as the macaque where menstruation can be induced
by hormonal manipulation (15, 16). These models have been a
valuable complement to studies on human tissue providing an
opportunity to harvest samples that include the full thickness
of the endometrium at defined timepoints during progesterone
withdrawal to explore differences between gene expression in
basal and functional zones (17). The classic studies undertaken
by Markee (18) used rhesus tissue grafted into the ocular cavity
allowing for direct observation of vasoconstriction in the spiral
arteries. Notable results from primate studies have included time-
dependent expression of metalloproteinases in endometrium
(15) (14) and endometrial grafts (19), studies on hypoxia and
expression of angiogenic factors such as VEGF (20, 21). Other
models have included transplantation of human endometrial
tissue into immunocompromised mice and in vitro culture of
human tissue explants (16).

In addition to the clear intrinsic benefits of improved
understanding of the mechanisms that regulate endometrial

shedding and repair, this understanding is the basis for
development of improved therapies for disorders such as heavy
menstrual bleeding and endometriosis (1, 22). The endometrium
may also serve as an exemplar of scarless repair with the potential
to inform comparative studies and improve our understanding of
chronic disease processes such as fibrosis.

WHAT ARE THE ADVANTAGES AND
BARRIERS TO USING MICE FOR STUDIES
ON ENDOMETRIAL REPAIR?

Whilst the uterus of rodents and women share a common
architecture (luminal and glandular epithelial layers, complex
stroma, myometrial muscle layers) the common, inbred species
of laboratory mice and rats have relatively short “oestrus”
cycles with four phases (proestrus, oestrus, met-oetrus,
dioestrus) without spontaneous decidualization or cyclical
tissue breakdown.

One of the incentives to develop and use mice in studies
on endometrial function is the availability of a wide range of
genetically modified animals including those using fluorescent
protein to identify active promoters, to identify specific cell
populations, and targeted deletion of genes either ubiquitously,
in a cell-specific manner or following timed induction (23, 24).
For example, in Pdgfrb-BAC-eGFP mice GFP is expressed under
the control of the PDGFRbeta promoter (25) and a recent study
has shown that the GFP is expressed in the cells of mesenchymal
origin in themouse endometriummirroring the expression of the
endogenous protein (26). Single cell gene expression analysis of
GFP+ cells recovered from cycling endometrium of Pdgfrb-BAC-
eGFP mice has identified five different populations of cells in the
stroma including three transcriptionally distinct populations of
fibroblast (26). Targeted deletion of the estrogen receptor alpha
gene (Esr1) has been a powerful technique which when applied to
studies on the mouse endometrium has provided novel insights
into the importance of the stromal compartment in estrogen
receptor dependent control of epithelial cell proliferation (27).
Likewise our understanding of the pivotal role of progesterone
in decidualization, fertility and regulation of downstream genes
including those of the Wnt pathway has been illuminated
by genetic manipulations involving the progesterone receptor
gene (28).

DEVELOPMENT AND REFINEMENT OF
MOUSE MODELS OF ENDOMETRIAL
REPAIR (MENSTRUATION)

To overcome the critical limitation that mice lack a spontaneous
decidualization response and provide a platform for improved
understanding of the mechanisms regulating human
menstruation mouse models based on hormonal manipulation
have been developed: the most widely used involves ovariectomy
of mice and was first reported by Finn and Pope in the 1980’s
(29), the second relies on induction of pseudopregnancy (30).
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Ovariectomy Model of Endometrial Repair
Briefly, adult female mice are ovariectomised, allowed to
recover for 7 days to deplete endogenous hormones, primed
with a hormone schedule to mimic the fluctuating hormones
experienced by women during the menstrual cycle (estrogen
priming and progesterone administration) and the endometrium
artificially stimulated to induce decidualization, a process
normally initiated following the arrival of a blastocyst in this
species. A number of variations on this model have been reported
but in all cases tissue breakdown was, as in women, triggered by
cessation of progesterone stimulation (simulating CL demise).

In the original model reported in the 1980s 7 days after
ovariectomy mice received daily injections of oestradiol (E2, 100
ng/100 µl, 2 days); 3 days of rest, 3 days of injections of E2 (20
ng/100 µl) and progesterone (1 mg/100 µl) followed 4–6 h later
by exposure of the uterus and intraluminal injection of peanut
oil (29, 31). One problem with this model was variation in the
extent of decidualization, however when it did occur removal
of progesterone resulted in tissue breakdown accompanied by
tissue necrosis, inflammation and luminal shedding (29). Notably
the authors recorded changes in the stromal compartment which
started with the congestion of dilated blood vessels followed by
breakdown of the vessel walls and extravasation of blood. The
basal area (outer ring) of the stroma proximal to themyometrium
did not take part in the degenerative process but a central core
of blood cells and degenerating decidual cells became detached
and was shed into the lumen (29). Animals treated in exactly
the same way but with the omission of the decidual stimulus did
not show such changes in the stroma consistent with data from
menstruating species which highlight the importance of stromal
cell differentiation as a pre-requisite for the process of menstrual
shedding (10).

The model was updated by the Salamonsen Group who
modified the protocol to use inbred mice and to include a
silastic progesterone-secreting pellet to replace progesterone
injections thus ensuring a steadily increasing concentration of
circulating progesterone, considered to be more comparable to
what happens in women (32). Using this model decidualization
was successfully induced in the uterine horns and endometrial
breakdown was initiated 12–16 h following progesterone
withdrawal. The entire decidua was detached and shed at
24 h and re-epithelialisation of the luminal surface was almost
complete by 36 h. Notably this study was the first to define the
endometrial breakdown and repair phase as being complete 48 h
following withdrawal of progesterone (32). Wang and colleagues
(33) investigated the critical time window for progesterone
withdrawal using the Salmonsen group model with induction
of decidualization by injection of acarchis oil into the lumen
of one uterine horn on day 9 and removal of the pellet 49 h
later. They reported that replacement of progesterone at 8 and
12 h after pellet removal blocked menstrual-like bleeding while
replacement at 16–24 h had no effect and tissue shedding still
occurred (33).

A further refinement to this model was reported by
researchers in Edinburgh (Figure 1): specific changes included
induction of decidualization by transvaginal injection of
sesame oil directly into the uterine cavity thereby avoiding

an additional abdominal surgery as well as an increase
in the duration of progesterone administration (pellet in
place) from 2 to 4 days after oil exposure ensuring a
more robust and reproducible decidualization response (3,
34). In common with other reports shedding was maximal
at 24 h after progesterone withdrawal, the luminal epithelial
layer was typically intact at 48 h and tissue architecture
resembled control intact mice by 72 h. Overt vaginal bleeding
was recorded.

Menning and colleagues also reported overt bleeding
following induction of decidualization by injection of sesame oil
into the uterus followed by removal of a P4 implant 4 days later
(35): they recorded time dependent bleeding which was maximal
at 24 h and used a tampon collection system to quantify the
amount of blood providing a platform for testing drugs including
those that modulate angiogenesis (35).

Peterse et al. (36) conducted a study to see if they could
maximize the amount of decidual tissue that could be generated
for use in a syngenetic model of endometriosis (37) they
compared the response when the intrauterine oil stimulus was
delivered via the vagina or via surgical laparotomy with the
idea that the latter might be more “traumatic” to the tissue
and therefore potentially elicit a more robust response (36).
Decidualization was achieved in more than 83% of mice with
significantly higher rates of bicornate decidualization in the
laparotomic group (89%) compared with vaginal administration
(38%) suggesting the former was useful if the priority of the
study was to maximize decidual material but at the cost of extra
surgical intervention.

Pseudopregnancy Model
Pseudopregnancy can be achieved by mating intact female mice
to vasectomised males combined with artificial induction of
decidualization. For example, Fan et al. mated adult female
CD-1 mice with vasectomized males of the same strain
combined with direct injection of 20 µl sesame oil into each
uterine lumen on day 4 of pseudopregnancy. On day 6 (2
days after oil injection), bilateral ovariectomy was performed
to remove steroids and induce endometrial breakdown (30).
When this pseudopregnancy model was used in combination
with inhibition of Wnt7a endometrial repair was not normal
with a failure of re-epithelialisation and degradation of
the basal gland noted (38). In a modified version of the
pseudopregnancy mouse model Rudolph et al administered the
potent progesterone receptor antagonist mifepristone 2 days after
induced decidualization instead of performing ovariectomy. This
blockade mimicked progesterone withdrawal and stimulated
decidual tissue breakdown. Bleeding was evaluated by vaginal
lavage and was also visible at the opening of the vagina
(39). Recently Wang et al used a pseudopregnancy model to
investigate the impact of stress signals on menstrual breakdown
(40) reporting that acute stress resulted in an increase in
corticosterone contributing to more rapid breakdown and
shedding of the endometrium.

In general the ovariectomy model is more widely used as it is
very well established and usually considered to provide a more
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FIGURE 1 | Edinburgh Mouse model of menstruation. This model is based on the pioneering work of Finn and Pope (29) with several refinements including the use of

a progesterone pellet (32) and induction of decidualization via a trans-vaginal [t.v.; (3)] route. Samples are recovered on day of pellet removal (time 0, full

decidualization) and at times thereafter between 4 and 72 h. Twenty four hours after pellet withdrawal has been characterized as a time of maximal tissue breakdown

but by 48 h the epithelial layer surrounding the uterine lumen is typically fully restored.

reliable and reproducible timeframe for endometrial breakdown
and repair.

MECHANISMS IMPLICATED IN
ENDOMETRIAL REPAIR IDENTIFIED IN
MOUSE MODELS

Hormonal Regulation
In women the menstrual phase of the cycle is characterized by
low circulating concentrations of ovarian derived oestrogens and
progesterone suggesting that endometrial repair processes are
steroid independent. This question has also been addressed in
the mouse models of menstruation. The standard ovx+ mouse
model of menstruation (Figure 1) is characterized by depletion
of ovarian hormones with both shedding and repair occurring
in the absence of endogenous oestrogens (3, 8). Kaitu’u-Lino
and colleagues argued that other sources of oestrogens, including
phytoestrogens in the diet and local metabolism in fat, might
be available and the model could not be considered completely
steroid-depleted (41). They therefore conducted the model
using mice maintained on a soya-free diet and complementing
this with administration of aromatase inhibitor letrozole (41).
Importantly, no significant difference in the rate of endometrial
repair was observed in the complete absence of estrogen,
suggesting that this steroid was not essential for complete
endometrial restoration in their model.

The presence of abundant androgen receptors in the
stromal cells of the basal compartment, which remains intact
during menses (42), and evidence for intracrine generation
of bioactive androgens within endometrial tissue in response
to decidualization (43) led Cousins et al to hypothesize that
androgens could modulate the repair process even if the
concentrations in blood were low (44). They administered
a single injection of the potent bioactive, non-aromatizable
androgen, dihydrotestosterone, in parallel with removal of the
progesterone pellet. They reported that this treatment increased
the duration of vaginal bleeding and delayed restoration of the
luminal epithelium with striking spatial and temporal impacts
on immunoexpression of MMPs 3 and 9 (44). These results may

partially explain why women who have high androgen levels as
a result of polycystic ovarian disease sometimes report heavy
or extended bleeding during menses (45). Further investigation
is required to pin down the precise role of androgens in the
endometrial repair process.

Hypoxia and Angiogensis
Studies on human tissues and in primates have highlighted a role
for hypoxia in regulation of endometrial repair processes and
angiogenesis (46, 47). Withdrawal of progesterone is associated
with an a marked increase in the synthesis of prostaglandins,
increased arteriole vasoconstriction and a reduction in oxygen
tension within the tissue (47). A key factor in sensing of oxygen
tension in tissue is the transcription factor HIF1a (hypoxia
inducible factor one alpha) (48, 49). Stabilization of HIF1α in
human endometrial tissue has been detected during the secretory
and menstrual phase and implicated in regulation of expression
of genes involved in angiogenesis including IL8 (46, 50). In
an in vitro model using human endometrial biopsies it has
been shown that P4 withdrawal increased IL8 secretion but
only in the presence of hypoxia (50). Coudyzer et al. published
contrasting data from a xenograft model where fragments
of human endometrium were engrafted to ovariectomised
immunodeficient mice: in this model they could not detect
evidence for increased HIF1α and concluded that hypoxia is not
required to trigger menstrual-like tissue breakdown or repair in
human endometrium (51).

The results from studies in the mouse models of menstruation
have demonstrated that hypoxia occurs following progesterone
withdrawal and that this is also associated with levels of
HIF1a and changes in expression of angiogenic genes. For
example, Cousins et al. used hypoxyprobeTM to detect low
oxygen levels and demonstrated dynamic changes in staining
that were consistent with a striking increase in hypoxic
conditions during the repair phase and time dependent changes
in expression of angiogenesis-associated mRNAs encoded by
Vegfa, Cxcl12, Flt1, and Kdr (34). These results have been
complemented by investigations into the role of HIF which
can have a dramatic impact on gene expression in low oxygen
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tissue environments (52). Notably using genetic targeting of
Hif and pharmacological intervention in combination with
the Edinburgh mouse model of endometrial repair Maybin
and collaborators were able to manipulate the duration of
endometrial shedding simulating heavy menstrual bleeding in
women (52) with data supporting manipulation of HIF as a
therapeutic target for this prevalent disorder.

The importance of angiogenesis was also confirmed by
Menning et al (35) who administered Cediranib, a potent VEGF
receptor signaling inhibitor, to mice on days 8 to 15 of their
protocol (from day of decidualization to pellet removal) showing
a drastic 85% reduction in menstrual like bleeding in treated
animals compared with controls.

Inflammation
The human endometrium hosts a diverse population of immune
cells, the abundance and composition of which changes
throughout the menstrual cycle. Menstruation has been classified
as an inflammatory event because the mechanisms and cellular
changes involved are similar to those observed during other
physiological inflammatory responses including the increase in
the expression of prostaglandins, cytokines and chemokines
which are secreted by the decidual cells in response to
progesterone withdrawal (50, 53–55). The production of these
factors is believed to stimulate the influx of inflammatory cells
such as neutrophils and macrophage/monocyte populations (56,
57). Notably induction of excess inflammation in model systems
has been shown to be associated with dysregulated repair and
fibrosis (58) and may underlie some endometrial pathologies
including heavy menstrual bleeding (8). Studies using the mouse
models of menstruation have facilitated detailed time-dependent
and spatial analysis of the inflammatory process and how it
relates to both initiation and resolution of the endometrial
menstrual “wound” with some of them highlighted below. In
the 1980’s Finn and Pope reported that one of the first changes
in the decidualized mouse endometrium following cessation of
progesterone was infiltration of leukocytes into the stroma (31).
Subsequent studies have used a wide variety of methods to study
the inflammatory response including immunohistochemistry
and flow cytometry (3, 35, 56), GFP-labeling of monocyte
lineages (23) as well as antibody-dependent cell depletion (59).
For example, in their 2003 paper Brasted et al (32) used an
antibody directed against CD45 (leukocyte common antigen) to
interrogate uterine tissue recovered 0, 12, 16, 20, 24, 36 and 48 h
after removal of the progesterone pellet (P withdrawal). Their
analysis identified leukocytes in decidualized tissue often in close
association with the luminal epithelium, throughout the basal
zone and close to the newly regenerated epithelium at later time
points. Notably they identified some of these cells asmacrophages
based on their morphology (32). Manning and colleagues used
flow cytometry to analyse tissue digests recovered at 0, 24 and
72 h time points. They reported a massive increase in of CD45+
cells so that they comprised ∼10% of the decidua at time
zero (mostly NK cells, macrophages and granulocytes) with a
striking increase in granulocytes (Gr1+/F480) making up 90% of
immune cells during maximal tissue shedding (24 h). Armstrong
et al compared tissue sections from human and mouse stained

FIGURE 2 | Immune cells of the monocyte/macrophage lineage increase in

the mouse endometrium during tissue breakdown. Figure shows endometrium

from a Macgreen mouse 24 h after progesterone withdrawal with immune cells

identified by immunostaining of GFP (brown, fluorescent images of similar

tissues are shown in (23)). Note that there are abundant GFP+ cells in the

stromal compartment with many adjacent to the newly intact luminal

epithelium.

with antibodies directed against neutrophil elastase or GR1
respectively to focus on the neutrophil subtype of granulocytes
demonstrating they increased at 8 hours after progesterone
withdrawal and at 24 h (56) mimicking results in women and in
agreement with other data from ovx models (23, 35, 56). Cousins
et al used transgenic “Macgreen” mice in which enhanced
green fluorescent protein (EGFP) is expressed under the control
of the c-fms promoter (encodes CSF-1R) expressed in the
monocyte phagocytic lineage in the mouse (60) as well as some
neutrophilic granulocytes (60). Using this lineage marker they
were able to shed new light on the dynamic changes in monocyte
derived immune cells over the course of tissue breakdown and
repair [Figure 2 (23)]. One of the main findings from their
study was that distinct populations of “classical” monocytes
(GFP+F4/80–), monocyte-derivedmacrophages (GFP+F4/80+)
and a population of putative tissue-resident macrophages (GFP–
F4/80+) that became localized to different regions within the
tissue during breakdown, repair and remodeling suggesting cells
of the monocyte lineage may play distinct roles in these processes
(23). The recent application of single cell sequencing analysis of
human endometrial tissue is likely to complement these findings
by identifying immune cell subpopulations although datasets
have not had sufficient depth of read to enable this (61).

The role(s) of immune cell populations have also been
investigated using antibody depletion. For example, using the
anti-mouse GR-1 antibodyMenning and colleagues reported that
cells positive for this marker (assumed to be neutrophils) played
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a role in regulating the expression of matrix modifying enzymes
such as MMP3, 9 and 10 and their depletion impaired tissue
repair (35). In another study cells were depleted using the anti-
GR1 (clone RB6-8C5) antibody and a delay in endometrial repair
reported that was concluded to be a consequence of neutrophil
depletion (59). The anti-GR1 (clone RB6-8C5) antibody binds to
both Ly6G expressed solely on neutrophils and Ly6C expressed
on neutrophils, monocytes and subsets of CD8T cells (62) and
therefore cannot be considered to be specific to one of these cell
types. Notably Cousins et al (23) used the same RB6-8C5 clone
in their studies and reported that many of the GFP+(Ly6G-)
monocytes they detected were also GR1+ hence depletion with
this antibody is likely to target cells in addition to neutrophils
and the immunostaining performed by Armstrong may need to
be reevaluated (56).

In women there are well-documented increases in
inflammatory chemokines and cytokines that coincide with
the withdrawal of progesterone including CCL2 (MCP-1),
CXCL8 (IL-8), IL-6, TNF, and COX-2 all showing increased
expression in the late secretory and menstrual phases of the
menstrual cycle (reviewed in (8)). Complementary studies in
the mouse models have extended these findings. For example,
Menning et al highlighted the very rapid and transient increase
in expression of Cxcl2, Ccl3, Tnf, Il6 and Ccl2 (35). Other studies
reported similar findings for Ccl2, Il6 and Cxcl8 (56).

Increased prostaglandin biosynthesis is also an important
regulator of inflammatory processes duringmenstruation (8) that
has been explored in the mouse “menstrual” models. In mice
as in women induction of a menstrual like event is associated
with increased expression of COX-2, an inducible enzyme that
acts as a key regulator of the biosynthesis of prostaglandins from
arachidonic acid (35, 63). Xu and colleagues used the mouse ovx
model to demonstrate that administration of either a nonspecific
COX inhibitor (indomethacin) or the COX-2 selective inhibitor
DuP-697 led to less influx of leukocytes and inhibition of the
menstrual-like process (63).

Tissue Breakdown
Studies in human tissue have highlighted a critical role for
enzymes including matrix metalloproteinases in the destruction
of the extracellular matrix (ECM) which is an essential step in
tissue breakdown and shedding (64, 65). Historically, elegant
studies in rhesus monkeys demonstrated a rapid rise in
MMPs (stromelysins/matrilysin; MMP7, MMP3, MMP10) in the
luminal portion of the endometrium in response to progesterone
withdrawal (19).

Using their mouse model Kaitu’u-Lino et al examined the
distribution of MMPs revealing an important role for MMP7
and MMP9 during endometrial tissue breakdown, and MMP3
and MMP7 during re-epithelialisation (66). However treatment
of mice with the MMP inhibitors doxycycline and batimistat,
both of which effectively reduced MMP activity, did not
appear to have significant effects on endometrial breakdown
or repair (66). The mouse model has been further used to
demonstrate dynamic expression and functional importance of
ECM interactions (67) and the expression of activin A in specific
epithelial and stromal cell populations which may have a role in

regulating re-epithelialisation (68). In their 2012 paper Menning
et al documented dynamic time-dependent changes in mRNAs
encoding Mmp1, 2, 3, 7, 9, 10, and 11. Cousins et al identified
changes in the spatial and temporal expression of both MMP9
and MMP3 during the breakdown and repair phases (3, 12)
which appeared consistent with the influx of immune cells known
to produce MMPs highlighting the ability of the models to
recapitulate changes seen in human tissue.

Epithelial Migration and Proliferation
Kaitu’u-Lino et al also used the mouse model to explore
the role(s) of epithelial proliferation and progenitor cells in
endometrial repair (69, 70). In one study newborn mouse pups
were pulse-labeled with bromodeoxyuridine (BrdU) and chased
for 5 week before decidualization, endometrial breakdown, and
repair were induced (70). In the second study adult mice were
also pulse labeled with BrdU immediately after induction of
the same model. They reported that very rapid dilution of
bromodeoxyuridine label was observed in the luminal epithelium
consistent with rapid proliferation, whereas label within the
glandular epithelium remained constant. In contrast during the
later repair phase glandular epithelial cells had a decrease in
detectable BrdU. The authors concluded that a population of
epithelial progenitor cells may reside in the basal glands and
contribute to postmenstrual repair (69).

In the studies by Cousins et al. they also reported rapid
proliferation of epithelial cells including those remaining at the
un-denuded surface of the luminal epithelium as well as some
stromal cells and epithelial cells surrounding glands (3). In the
conclusion of their paper they suggested that re-epithelialisation
involves epithelial cell proliferation, epithelial cell migration and
transformation of a subpopulation of stromal cells into those
with epithelial characteristics in areas where the surface was
denuded of epithelial cells (3). These studies provide new ideas
about the mechanisms that might operate in parallel to ensure
rapid repair of the luminal epithelial cell layer but require further
interrogation and testing.

Mesenchyme to Epithelial Transition (MET)
One of the most striking features of endometrial shedding
in women is the piecemeal loss of epithelium resulting in
areas of denuded stroma (9). In mice the shedding of the
decidual mass is not as piecemeal but it does result in areas of
denuded stroma and it was in this region of the endometrium
that Cousins and colleagues detected stromal cells which co-
expressed vimentin and cytokeratin during the most active phase
of endometrial repair (24 h after progesterone withdrawal) (3).
These authors also analyzed the expression of genes implicated
in mesenchymal-to-epithelial transition across the time course
of the repair process with evidence of changes in expression of
regulatory genes including Wt1 and members of the snail/slug
family that are known to play a role in regulation of MET (3).
Whether this is a transient change in the stromal population
or is part of their differentiation into a functioning epithelium
required further investigation.

Studies on postpartum endometrial repair have also provided
evidence that MET occurs (71, 72). Specifically, the authors used
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FIGURE 3 | Wound healing continuum with inclusion of putative location of endometrial tissue based on data from the mouse models. The figure has been adapted

from that published in (100). The rectangular box added to the figure represents the characteristics of endometrial wound repair based on the interrogation of the

mouse models described in this review.

genetic manipulation to allow for fate mapping of uterine cells
expressing Amhr2 using beta-galactosidase (71) or EGFP (72). In
both studies positive signal (blue/EGFP) was restricted to stromal
cells and myometrium in normal cycling mice but following
parturition when there is extensive damage to the endometrial
tissue, some of the labeled cells transformed into cells with
epithelial characteristics, including expression of cytokeratin, and
became incorporated into the luminal and glandular epithelial
cell layers (71). In their 2013 study Patterson et al also used
the mice in combination with the pseudopregnancy menses
model described above and reported co-localization of vimentin
(stromal marker) and cytokeratin (epithelial marker) in cells

within the basal zone close to the myometrial border that peaked
at 48 h post-ovx (72). Despite the location of these putative

MET cells being different to that reported by Cousins (3) likely
reflecting differences between the two models, these data further

support a role for MET in post-menstrual repair.
A recent paper by Ghosh et al. (73) challenged the idea

that MET was involved in maintenance and regeneration of the
epithelium of the endometrium and oviduct. Specifically, they

conducted a comprehensive examination of embryonic and adult

reproductive tracts using LacZ reporter lines driven by promoters
for Amhr2, Sm22, Cspg4, Thy1, and Pdgfrß to explore whether

epithelial cells expressing reporter protein arose in adulthood

from MET or had an embryonic origin because they were
induced at a time when cells had meso-epithelial characteristics.

In all cases they attributed epithelial expression of the reporter
protein in adulthood to activation of the promoters during
embryonic life ruling out MET in adult cycling mice (73).

Some of the findings summarized above are consistent with
endometrial stromal cells having an inherent “plasticity” to
change their phenotype from that of mesenchyme to one more
consistent with epithelium. In addition to the studies on the
menstrual models it is notable that decidualization might be
considered as a form of hormone-inducedMETwith endometrial
stromal fibroblasts acquiring epithelioid characteristics, such
as expanded cytoplasm, rough endoplasmic reticulum, and a
reorganized actin cytoskeleton (30). We postulate that this
feature of endometrial mesenchymal cells may be an important
contributor to the resilience of the endometrium to acute insults
such as the breakdown and shedding of endometrium at the end
of each menstrual cycle but further studies including those using
lineage tracing are required to confirm this.

Progenitor/Stem Cells
Cells with stem cell-like properties, such as high proliferative
potential, multilineage differentiation ability in vitro (adipo-,
osteo- and myo-genic), and expression of stem cell-associated
markers, have been identified in the human endometrium
[basal compartment, perivascular location, PDGFRβ+CD146+,
SUSD2+; (74, 75)], but the precise contribution of these
cells to cyclical endometrial repair mechanisms remains the
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subject of intense investigation. Recent progress has included
use of specific surface markers for isolation of progenitor/stem
populations from tissue samples and menstrual effluent with
novel applications proposed for regenerative medicine and tissue
repair (76, 77). The role of stem/progenitor cells has also been
investigated in the mouse model of menstruation although this
has been challenging due to the lack of a specific lineage marker.
A study by Kaitu’u-Lino et al using the LRC technique reported
results suggesting that a population of epithelial progenitor cells
might reside in the basal glands and that stromal LRC, located
in a perivascular location could have an active role to play
in endometrial repair (70). Despite evidence for the presence
of multiple lineage-restricted stem/progenitor cell populations
within the human/mouse uterus, the exact contribution to
endometrial tissue repair remains elusive in part due to a lack of
definitive markers. A recent study by Kirkwood et al identified an
equivalent population of perivascular PDGFRβ+CD146+ cells in
the mouse endometrium and demonstrated exclusive expression
of NG2 (Cspg4) (26). The emergence of such novel identification
markers will allow for their specific role in endometrial repair and
regeneration to be interrogated.

CAN WE TRANSLATE KNOWLEDGE
GAINED FROM STUDIES ON
ENDOMETRIAL REPAIR TO TREAT
ENDOMETRIAL FIBROSIS?

Endometrium repair is not always scar-free and intrauterine
adhesions can occur as a result of a fibrotic response within
the basal layer and is associated with poor pregnancy outcomes
(78). The existence of these intrauterine adhesions is usually
referred to as “Asherman’s syndrome” (AS) with risk reported
to be increased by repeated miscarriage, cesarean section and
surgical removal of uterine contents [curatage; (79)]. Mouse
models of AS have been developed by inducing a fibrotic
response within the uterus by repeated “wounding” with a
needle (80, 81). These models have been used to the test the
ability of cell-based therapies to improve fertility, the rationale
being that stem/progenitor cells may be involved in endometrial
regeneration (82) and have been successfully applied for tissue
repair in models of prolapse (77). One paper reported the use of
human perivascular stem cells (hPVSCs) from umbilical cords
was able to rescue the poor pregnancy outcome in AS mice
via HIF1-dependent angiogenesis (83). Other studies have used
mesenchyme cells derived from cultured human pluripotent
stem cells (81) or from bone-marrow derived stem cells also
with some promising results (84). A recent review considered
a wider range of different sources of mesenchyme stem/stromal
cells including menstrual blood [as discussed above, (76)] as
well as evidence that extracellular vesicles secreted by these cells
might also be considered as a cell free therapy for AS (85)
which, given the logistical challenges of cell therapy, deserves
further investigation.

Recently the importance of inflammatory pathways in the
etiology of AS has gained more prominence (86) and this
would be in agreement with their central role in endometrial

repair (discussed above) as well as in the development of
fibrosis in other tissues such as the liver (87). In a recent study
immunostaining of endometrial tissue from 10 patients with
AS identified not only increased amounts of fibrosis within the
stromal compartment (collagen fibers and smooth muscle actin)
but also alterations in macrophage phenotype (88). Changes in
macrophage phenotype and pro-fibrotic cell changes are have
also been identified in a mouse model of endometriosis (89),
and in both disorders there appears to be potential for targeting
macrophage phenotype/function as a novel therapy. Further
insights from themousemodels of menstruation and comparison
to those of AS may help refine the type(s) of immune and cell
based therapies that can treat patients and improve their fertility.

COMPARISONS BETWEEN MECHANISMS
OF TISSUE REPAIR IN THE
ENDOMETRIUM, FETAL SKIN AND ORAL
MUCOSA

Unchecked inflammation, fibrosis and scaring in response to
tissue injury can result in significant tissue damage and associated
morbidity (90). A number of studies have contributed to a greater
understanding of the plasticity and heterogeneity of fibroblasts
and their role in fibrosis (90). Whilst to date there has been little
cross-over between studies using single cell analysis methods
to explore fibroblast heterogeneity in fibrosis-prone tissues (90)
and those using similar methods to interrogate endometrium in
human (91) or mouse (26) this is clearly a topic that could be
explored using existing data and bioinformatics to see if any of
the endometrial cell subtypes have unique gene signatures. As the
new single cell datasets have only recently been generated to date
most attention has been paid to considering mechanisms that
might explain scar-free healing of skin in the fetus and (92, 93)
and lining of the mouth (94, 95) with a strong focus on exploring
mechanisms that might be manipulated therapeutically in other
sites (96).

A recent review summarized information obtained from
studies using mice which have identified significant differences
between gene expression in fibroblasts, deposition of extracellular
matrix, the numbers of immune cells, expression of inflammatory
regulators (IL33, prostaglandins) and metalloproteinases
(MMPs) in fetuses where skin repair is rapid and scar-free (E15)
and when scars are formed (E18/19) (93). In a detailed study
using single cell fate mapping and 3D confocal imaging Jiang
and colleagues identified two different fibroblast lineages that are
responsible for the transition from scarless to skin scaring, again
highlighting the importance of this cell type (92). Consistent
with the results reported in fetuses repair of the oral mucosa also
heals more rapidly than adult skin. In a recent study using nude
mice, fibroblasts from the oral mucosa were shown to improve
healing rates of adult skin wounds (97).

The inflammatory component of wound healing in the oral
mucosa is associated with lower numbers of immune cells
including macrophages, when compared to wounds of equivalent
size in the adult skin, as well as decreased expression of the pro-
inflammatory cytokines IL-6 and TGFβ1 (98). An animal model
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that can augment our understanding of skin repair is the African
Spiny mice (Acomys) where cutaneous repair in adults closely
resembles that of fetal stages of laboratory mice. Notably in
this species skin repair is also associated with less inflammation,
reduced collagen secretion and reduced numbers of macrophages
mirroring findings in fetal mice (99). These results appear
at odds with the wound response of the endometrium in
which progesterone withdrawal triggers increased expression
of inflammatory cytokines as well as a rapid increase in the
numbers of immune cells including macrophages (8) but this
may reflect the difference in the time scale and tissue response
involved with endometrium breaking down and shedding over
days whereas studies on skin wounding have focused on acute,
usually incisional insults. Further comparisons between the
inflammatory responses in skin and endometrium will be useful
in finding both similarities and differences.

In summary, endometrium, fetal skin and oral mucosa all
heal more rapidly than adult skin. Fibroblasts play a key role
in regulating the efficiency of the repair processes in all these
tissues. If we represent wounding of the skin as a continuum from
scar-free in the fetus to the non-resolving wounds associated
with aging (100) the endometrium would appear to most closely
align with that of oral mucosa with rapid repair but potential for
fibrosis (Figure 3).

SUMMARY AND CONCLUSIONS

The endometrium is a remarkable tissue which may experience
400 cycles of repeated breakdown, shedding and repair during a
woman’s lifetime with restoration of tissue architecture so that it
is able regenerate and transform into a receptive state to receive
the blastocyst during the next menstrual cycle. Endometrial
repair is tightly regulated both temporally and spatially and mal-
adaptations to the mechanisms responsible result in disorders
including heavy menstrual bleeding (inefficient repair?) and

Asherman’s syndrome (intrauterine fibrosis/excess repair?) (1, 8).

Whilst the common laboratory species of mouse do not naturally
experience menstrual cycles protocols based on manipulation of
hormones, artificial induction of stromal cell decidualization, and
acute withdrawal of progesterone have led to the development of
robust and reproducible induction of a “menses-like” event in the
mouse endometrium. Comparison with human tissue samples
shows that these models recapitulate the key physiological
changes associated with menstruation. Specifically local/focal
hypoxia, spatial and temporal expression of metalloproteinases,
increased expression of angiogenic factors and inflammatory
mediators, epithelial cell proliferation and the influx of large
numbers of immune cells. An intact luminal epithelial layer is
rapidly restored and the tissue appears “unwounded” within 48–
72 h of progesterone withdrawal. Studies in mice have provided
the platform for testing drugs and cell depletion to better inform
new therapeutic opportunities for women’s health disorders.

It is anticipated that further studies on the mouse models
of menstruation, including more extensive comparison to
regeneration and repair mechanisms in other tissues will
continue to inform both our understanding of the normal
physiology of menstruation but also an important platform
for development of new therapies to treat conditions
such as heavy menstrual bleeding, endometriosis and
Asherman’s syndrome.
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