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A B S T R A C T   

Background: Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, 
with high morbidity and mortality. The commonly used tumor-node-metastasis (TNM) staging 
and some common biomarkers have a certain value in predicting the prognosis of GC patients, but 
they gradually fail to meet the clinical demands. Therefore, we aim to construct a prognostic 
prediction model for GC patients. 
Methods: A total of 350 cases were included in the STAD (Stomach adenocarcinoma) entire cohort 
of TCGA (The Cancer Genome Atlas), including the STAD training cohort of TCGA (n = 176) and 
the STAD testing cohort of TCGA (n = 174). GSE15459 (n = 191), and GSE62254 (n = 300) were 
for external validation. 
Results: Through differential expression analysis and univariate Cox regression analysis in the 
STAD training cohort of TCGA, we screened out five genes among 600 genes related to lactate 
metabolism for the construction of our prognostic prediction model. The internal and external 
validations showed the same result, that is, patients with higher risk score were associated with 
poor prognosis (all p < 0.05), and our model works well without regard of patients’ age, gender, 
tumor grade, clinical stage or TNM stage, which supports the availability, validity and stability of 
our model. Gene function analysis, tumor-infiltrating immune cells analysis, tumor microenvi-
ronment analysis and clinical treatment exploration were performed to improve the practicability 
of the model, and hope to provide a new basis for more in-depth study of the molecular mech-
anism for GC and for clinicians to formulate more reasonable and individualized treatment plans. 
Conclusions: We screened out and used five genes related to lactate metabolism to develop a 
prognostic prediction model for GC patients. The prediction performance of the model is 
confirmed by a series of bioinformatics and statistical analysis.   

1. Introduction 

As a serious global health problem, the global morbidity of gastric cancer (GC) ranks fifth and it is the fourth leading cause of 
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cancer-related death [1], with more than one million people newly diagnosed with it worldwide [2]. The majority of cases of gastric 
cancer are usually not diagnosed until an advanced stage, usually leading to a poor prognosis [3,4]. Although overall survival (OS) for 
GC patients has improved greatly due to combined treatment [4,5], it is still difficult to evaluate the prognosis of GC patients due to the 
great differences in individual prognosis [6]. 

At present, tumor-node-metastasis (TNM) staging system has been generally applied to predicting the prognosis of GC and more 
and more prognostic prediction models have also been constructed based on the general data (such as gender and age) and clinico-
pathological data of GC patients [7]. However, there is a certain lag in time of these data, resulting in its less accuracy. 

In addition, a series of traditional biomarkers (such as CEA, CA 12-5, CA 19-9 and CA 72-4) and novel biomarkers (such as 
microRNAs, long non-coding RNAs and circular RNAs) have been exploited to assist in the diagnosis and prognostic prediction of GC 
and achieve good clinical effects [8]. Unfortunately, most of novel biomarkers show shortcomings due to limitation by 
high-throughput technology and some of them are still at the organ level [9]. Some researchers have found several sorts of genes 
related to GC and explored their prognostic value, but the prognostic value of an individual gene is still not ideal and perfect [10,11]. 
With the rapid development of precision medicine and gene sequencing technology, multiple genes signature is more and more applied 
to the construction of prognostic prediction models to achieve more prospective, accurate and individualized prediction performance 
[12]. Perhaps it will be a promising direction to build related prediction models with the help of this kind of multiple genes signature, 
as energy metabolism is closely related to tumor cells. 

Reprogramming of energy metabolism and evading immune are two emerging hallmarks of cancers [13], and the former is a 
common feature of most tumor cells [14]. Tumor cells were found to upmake a large amount of glucose and metabolize into lactate 
under oxygen-rich conditions, known as “Warburg effect” [15]. The same phenomenon was also found in GC cells [16]. Lactate, as a 
signaling molecule, is discovered to play important roles in the regulation of the metabolic pathways and the immune response within 
the tumor microenvironment [17], which is closely related to the occurrence, invasion, metastasis, drug resistance and poor prognosis 
of GC [16]. Sonveaux found that lactate promotes endothelial cell division, thus promoting angiogenesis [18]. Some researchers have 
successfully constructed corresponding metabolism-related gene signatures for prognostic prediction of gliomas [19,20], GC [21] and 
lung adenocarcinomas (LUAD) [22]. All the above indicates the availability and feasibility of applying lactate metabolic genes to 
predicting the prognosis of GC, which is theoretical basis for us to construct a prognostic prediction model for GC patients. 

As lactate metabolism is a complex biological process involving multiple genes, the predictive value of those models based on 
multiple metabolism related genes will be better than those based on a single gene. Therefore, we aim and manage to construct a 
prognostic prediction model by screening a series of genes related to lactate metabolism to better predict the prognosis of GC patients. 

2. Methods 

2.1. Acquisition of genes related to lactate metabolism 

Genes related to lactate metabolism, known as LM (lactate metabolism) genes, were collected in GeneCards database (https:// 
www.genecards.org/), which provides a wide range of information about human genes. The term “lactate metabolism” was used as 
a keyword for the search, and sorted by relevance scores, the top 600 genes were considered to be LM genes. 

2.2. Collection of datasets 

The RNA-seq data and clinical characteristics of TCGA cohorts (ACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carci-
noma; BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: Chol-
angiocarcinoma; COAD: Colon adenocarcinoma; DLBC: Lymphoid neoplasm diffuse large B-cell lymphoma; ESCA: Esophageal 
carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and neck squamous cell carcinoma; KICH: Kidney chromophobe; KIRC: 
Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute myeloid leukemia; LGG: Brain lower 
grade glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: 
Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and para-
ganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin cutaneous melanoma; 
STAD: Stomach adenocarcinoma; TGCT: Testicular germ cell tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine 
corpus endometrial carcinoma; UCS: Uterine carcinosarcoma; UVM: Uveal melanoma) were downloaded from Xena website (https:// 
xenabrowser.net/datapages/). At the same time, we also downloaded the TCGA Pan-Cancer Datasets of Immune Subtype, Immune 
Signature Scores (Denise Wolf et al.), Stemness Score (DNA methylation based) and Stemness Score (RNA based) from Xena website. 
The gene-expression profile matrices of the STAD cohort GEO (Gene Expression Omnibus): GSE15459 and GSE62254 were collected 
from GEO database (https://www.ncbi.nlm.nih.gov/geo/) for external validation. The “limma” package was used to do the 
normalization for the expression profiles. The average expression level was retained for repeated genes. 

2.3. Differential expression genes analysis and gene function analysis 

By using the “limma” package, those LM genes mentioned above were investigated with differential expression analysis in the STAD 
cohort of TCGA and visualized as heatmap plots. |Fold change (FC)| more than 0 and p-value (adj. p) less than 0.05 were considered to 
be statistically apparent for distinguishing the differential expression genes. We selected the intersection of the differential expression 
genes and LM genes, known as differential expression LM genes, for further analysis. 
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The analysis of gene function is an important procedure in translating molecular findings from high-throughput data into biological 
significance. By using the “clusterProfiler” package in R, we perform statistical analysis and visualize functional profiles of LM genes, 
including Genetic Ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway 
analysis. A p-value less than 0.05 was considered to be statistically significant. 

2.4. The construction of prognostic gene signature 

By performing the univariate Cox proportional hazards regression analysis [23] on each differential expression LM gene, we 
selected genes evidently associated with OS in the STAD training cohort of TCGA. Then, to confirm independence of prognostic factors, 
a p-value less than 0.05 was considered to be statistically significant. Multivariate Cox regression was then conducted to develop the 
LM-associated predictive model. Utilizing these remaining genes as variables, from these independent prognostic genes and their 
corresponding coefficients, a signature was established as follow: 

Risk score=
∑q

i=1
(βi ×Zi

)

β: coefficients; Z: gene expression level; q: number of genes with nonzero coefficients used in our prediction model. 
The “surv_cutpoint” function in the “survminer” package was used to obtain the best cut-off value according to the risk score to 

divide the STAD cohort of TCGA into high- and low-risk groups. The identical formula and identical cut-off value were selected to two 
GEO datasets and our own sequencing data for validation. 

Performing univariate and multivariate Cox proportional hazards regression analyses to investigate whether the differential 
expression LM genes-based prognostic model was an independent prognostic factor. To assess the survival differences between two 
groups, we constructed the Kaplan-Meier (KM) survival curve and used the log-rank test. At the same time, to examine the specificity 
and sensitivity of the prognostic performance, we explored the receiver operating characteristic (ROC) curve analysis. The area under 
curve (AUC) values indicated discrimination. 

2.5. Gene set enrichment analysis (GSEA) 

To find the possible pathways and molecular mechanisms in the high- and low-risk groups in the STAD cohorts of TCGA, we use the 
analysis of GSEA (https://www.gsea-msigdb.org/gsea/index.jsp). Gene sets were considered significantly enriched with the p-value 
less than 0.05 after 1000 permutation. 

2.6. Investigation of tumor-infiltrating immune cells 

To explore the relationship between the immune-cell characteristics and the model and genes, we considered the CIBERSORT 
method to calculate the immune infiltration statues in the samples from the datasets of the STAD cohorts of TCGA. By using the 
Wilcoxon signed-rank test, we explored the differences in immune infiltrating cell content between high- and low-risk groups of the 
constructed model. 

2.7. Tumor microenvironment analysis 

To explore the immune microenvironment of GC patients, we applied the ESTIMATE algorithm in “estimate” and “limma” package 
of R Software to calculate the Immune Score and Stromal Score. The Estimate Score was used to describe tumor purity. This analysis 
was based on the gene expression data retrieved from the datasets of the STAD cohorts of TCGA. 

2.8. Exploration of the significance of the model in clinical treatment 

To explore the model for gastric cancer treatment in the clinic, we calculated the IC50 of common approved chemotherapeutic drugs 
from the datasets of the STAD cohorts of TCGA by using “pRRophetic” package of R Software. The difference between the high- and 
low-risk groups in the IC50 was compared by using Wilcoxon signed-rank test. 

2.9. NCI-60 analysis 

We downloaded the drug-related data from the NCI-60 database (NCI: National Cancer Institute), which contains data on 60 
different cancer cell lines in nine different types of cancer. F5, MTTP, SERPINE1, CYP19A1 and SLC52A3 mRNA expression levels and z 
scores for cell sensitivity data (GI50) were collected from 59 cell lines and were used to explore the relationship between gene 
expression and drug sensitivity by using Pearson correlation. In the correlation analysis, we analyzed the drug response of 262 drugs 
approved by FDA (Food and Drug Administration) or on clinical trials. 
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2.10. Statistical analysis 

All statistical analyses were done with R software (version 4.0.3) (https://www.r-project.org/). In our study, the endpoint used in 
all survival analysis was overall survival (OS). KM estimates for survival functions and log-rank test were used to compare the survival 
differences between the two groups. The survival curves were drawn by the “survminer” package of R [24]. The Cox proportional 
hazard model was used to evaluate the association between risk scores and OS [23]. Hazard ratios (HR) and 95% confidence intervals 
(CI) were evaluated by univariate and multivariate Cox regression models. We used the default Wilcoxon’s test when comparing 
numeric variables in terms of differences between the two groups. The correlation was calculated with Spearman’s rank correlation in 
gene expression levels (F5, MTTP, SERPINE1, CYP19A1 and SLC52A3), immune related index (PD1, PDL1, immune score, etc.) and 
IC50. And a p-value less than 0.05 was considered to be statistically significant. The R packages used in our study included “tidyverse” 
[25], “clusterprofiler” [26,27], “limma” [28], “pheatmap” [29], “glmnet” [30], “survival” [31], “timeROC” [32] and “pRRophetic” 
[33]. 

3. Result 

3.1. Calculation of the risk score and construction of the prognostic prediction model 

A total of 350 cases in the STAD cohort of TCGA were downloaded from Xena as the entire cohort, which were further randomly 
divided into the STAD training cohort of TCGA (n = 176) and the STAD testing cohort of TCGA (n = 174). The former was for the 
construction of our prognostic prediction model and the latter was for internal validation (Fig. 1). The details for “Data availability” 
and “Data split” were provided in the Supplementary Materials. 

After search and screening on GeneCards database, we collected 600 LM genes. Among them, 376 differential expression LM genes 
were screened out after differential expression analysis between cancer and normal tissues in the STAD training cohort of TCGA. The 
gene-expression profiles of the top 60 of them are displayed in Fig. 2A. After univariate Cox regression analysis, finally, we obtained 
five genes (F5, MTTP, SERPINE1, CYP19A1 and SLC52A3) with nonzero coefficients. The expressions of the five genes were all 
significantly different between GC and normal tissues in the STAD training cohort of TCGA (all p < 0.01, Fig. 2B–F), verifying the 
rationality and feasibility of using these five genes to develop our prediction model:  

Risk score = 0.1496 × F5 + 0.1838 × MTTP + 0.1581 × SERPINE1 + 0.4849 × CYP19A1 + (− 0.3032) × SLC52                               A3 

The risk scores of each patient were calculated separately using the above formula, and all these patients were divided into high- 

Fig. 1. Overview of the whole study. First, all the data needed was downloaded. Second, the five LM genes for our model were selected. Third, 
internal validation and external validation were performed. Finally, potential application and clinical significance of our model were analyzed. 
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and low-risk group according to the optimal cut-off value we calculated. 

3.2. Evaluation and internal validation of the prognostic prediction model 

In training cohort, KM estimates for survival functions revealed that patients of high-risk group obviously had worse prognosis 
compared to those of low-risk group, with significant difference (p < 0.001, Fig. 3A). And the corresponding receiver operating 
characteristic (ROC) curve of 5-year survival was shown in Fig. 3D, with the AUC of 0.763. Univariate and multivariate Cox regression 
analyses in the STAD training cohort of TCGA showed that the risk score was confirmed to be an independent prognostic factor for 
patients’ survival (both p < 0.05, Fig. 4A,D), with the same results in the testing cohort (both p < 0.05, Fig. 4B,E) and the entire cohort 
(both p < 0.05, Fig. 4C,F). 

For internal validation, the patients in the STAD testing cohort of TCGA were also divided into high- and low-risk group according 
to the same cut-off value, showing significant difference in KM estimates for survival functions (p < 0.001, Fig. 3B) and with 5-year 
AUC of 0.781 (Fig. 3E). In entire cohort, our prognostic prediction model also had a good performance (Fig. 3C,F). The distributions of 
the expressions of the five LM genes (F5, MTTP, SERPINE1, CYP19A1 and SLC52A3) in the training cohort, the testing cohort and the 
entire cohort were shown in Fig. 3G–I, respectively. 

Fig. 2. Screening of the five LM genes. (A) The gene-expression profiles of the top 60 differential expression genes. Red indicates genes with higher 
expression and blue indicates genes with lower expression. (B–F) Gene expressions of F5, MTTP, SERPINE1, CYP19A1 and SLC52A3 between GC and 
normal tissues, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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3.3. Performance of the prognostic prediction model on different subgroups 

All the patients in the STAD entire cohort of TCGA were further divided into two subgroups according to their age (>65 or ≤65 
years old), gender (male or female), tumor grade (G1-2 or G3), clinical stage (stage I-II or stage III-IV), T stage (T1-2 or T3-4), N stage 
(N0 or N1-3) and M stage (M0 or M1). All the corresponding KM curves were shown in Fig. 5A1-G2. It should be specially explained 
that between high- and low-risk patients with M1, the result of log-rank test did not reach the level of statistical significance (p =
0.056), but with obviously separated survival curve. We think it might be caused by lack of numbers of cases. While in other subgroups, 
there were all significant differences between high- and low-risk groups (all p < 0.05), revealing that our prognostic prediction model 
works well without regard of patients’ age, gender, tumor grade, clinical stage or TNM stage, that is, the patients in the high-risk group 
were usually associated with a poor prognosis. 

3.4. External validation of the prognostic prediction model 

According to the same cut-off value in the STAD training cohort of TCGA, we did KM estimates for survival functions on two in-
dependent datasets: GSE15459 (n = 191), and GSE62254 (n = 300). The results showed that the patients in the high-risk group were 
significantly associated with lower OS (all p < 0.05, Fig. 6A and B), which was consistent with findings in the STAD training cohort of 
TCGA. 

To evaluate the sensitivity and specificity of the prognostic prediction model, external validation in the independent dataset of 32 
types of TCGA tumors were performed. According to the results of KM estimates for survival functions, it was found that our signature 
could significantly distinguish high- and low-risk patients with one of the following 20 types of TCGA tumors respectively: adreno-
cortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), 
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), lower grade 
glioma (LGG), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), pancreatic 

Fig. 3. Kaplan-Meier (KM) estimates for survival functions, receiver operating characteristic (ROC) analysis and heatmaps of prognostic prediction 
model in (A, D) training cohort, (B, E) testing cohort and (C, F) entire cohort, respectively. The distributions of the expressions of the five LM genes 
(F5, MTTP, SERPINE1, CYP19A1 and SLC52A3) in (G) training cohort, (H) testing cohort and (I) entire cohort, respectively. 
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Fig. 4. Univariate and multivariate Cox regression analyses in training, testing and entire cohorts. (A) Training cohort (univariate); (B) Testing cohort (univariate); (C) Entire cohort (univariate); (D) 
Training cohort (multivariate); (E) Testing cohort (multivariate); (F) Entire cohort (multivariate). 
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Fig. 5. Kaplan-Meier (KM) estimates for survival functions in different subgroups. (A1, A2) Patients with age >65 or ≤65 years old. (B1, B2) Male or female patients. (C1, C2) Patients with tumor grade 
of G1-2 or G3. (D1, D2) Patients with stage I-II or stage III-IV. (E1, E2) Patients with T1-2 or T3-4. (F1, F2) Patients or N0 and N1-3. (G1, G2) Patients or M0 and M1. 
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adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), sarcoma (SARC), skin cutaneous melanoma (SKCM), 
stomach adenocarcinoma (STAD), thyroid carcinoma (THCA), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC) and 
uveal melanoma (UVM) (all p < 0.05; Fig. S1A-T). Interestingly, the high-risk group has a better prognosis than the low-risk group in 
some specific types of TCGA tumors. There may be some unknown factors, and further researchers may be needed if necessary. 

3.5. Gene function analysis and gene set enrichment analysis (GSEA) 

To further explore the potential biological functions of the differential expression LM genes, we performed GO annotation analysis 
and KEGG enrichment pathway analysis to visualize their functional profiles. The GO analysis showed that the top five enriched terms 
in BP (biological process) group were “energy derivation by oxidation of organic compounds”, “small molecule catabolic process”, 
“ATP metabolic process”, “cellular respiration” and “electron transport chain”; the top three enriched terms in CC group were 
“mitochondrial matrix”, “mitochondrial inner membrane” and “mitochondrial protein complex”; the top two enriched terms in MF 
(molecular function) group were “electron transfer activity” and “tetrapyrrole binding” (Fig. 7A and B). Meanwhile, KEGG analysis 
showed that the differential expression LM genes were mainly enriched in “thermogenesis”, “carbon metabolism” and “oxidative 
phosphorylation” (Fig. 7D and E). The above 13 enriched terms are all associated with cellular energy metabolism. 

Furthermore, the transcript message of patients stratified by risk score into high- and low-risk groups were analyzed by GSEA 
(Fig. 7C,F). “Collagen containing extracellular matrix”, “extracellular matrix structural constituent”, “calcium signaling pathway”, 
“focal adhesion” and “neuroactive ligand receptor interaction” were more enriched in the high-risk group, while “mitochondrial 
membrane organization”, “mitochondrial protein complex”, “mitochondrial respiratory chain complex assembly” and “mitochondrial 
transport” were more enriched in the low-risk group, suggesting that mitochondrial function of GC cells in the high-risk group was 
inhibited to a certain extent. 

3.6. Analysis of the five LM genes 

To evaluate the impact of the five LM genes on patients’ OS individually, the optimal cut-off values of the expression levels of the 
five LM genes were calculated according to their expression levels separately, and patients in the STAD entire cohort of TCGA were 
divided into high- and low-expression groups to explore the impact of the five LM genes on patients’ survival. The results of KM es-
timates for survival functions showed that all these five LM genes exerted significant effects on patients’ survival individually (all p <
0.05, Fig. 8A–E). High expressions of F5, MTTP, SERPINE1 and CYP19A1 may be risk factors for GC, while high expression of SLC52A3 
may be a protective factor, which were consistent with our risk score formula. 

3.7. Investigation of tumor-infiltrating immune cells 

We also analyzed immune infiltration levels of several specific types of immune cells. Macrophages M1, NK cells activated, T cells 
CD8 and T cells follicular helper were more enriched in the low-risk group, while Mast cells activated and NK cells resting were more 
enriched in the high-risk group (all p < 0.05, Fig. 9A–F). The KM estimates for survival functions showed that high level of Mast cells 
activated was associated with a poor prognosis, and the high levels of NK cells activated, T cells CD8 and T cells follicular helper were 
associated with a better prognosis (both p < 0.05, Fig. 9G–J). Unfortunately, Macrophages M2 was also analyzed, but resulted in no 
significantly difference. 

Fig. 6. Kaplan-Meier (KM) estimates for survival functions in independent datasets: (A) GSE15459, n = 191; (B) GSE62254, n = 300.  
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Fig. 7. Gene function analysis and gene set enrichment analysis. (A, B) GO annotation analysis and (D, E) KEGG enrichment pathway analysis of the differential expression LM genes. (C, F) GSEA 
analysis between high- and low-risk groups. GO: Gene Ontology; KEGG: Kyoto encyclopedia of genes and genomes; GSEA: gene set enrichment analysis; BP: biological process; CC: cellular component; 
MF: molecular function. 
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Fig. 8. Impact of the five LM genes on patients’ OS. (A–E) Kaplan-Meier estimates for survival functions of F5, MTTP, SERPINE1, CYP19A1 and SLC52A3, respectively.  
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3.8. Tumor microenvironment analysis 

To further explore the association of the five LM genes’ expressions with immune microenvironment, we further compared their 
expressions among the five immune subtypes in the STAD entire cohort of TCGA. As shown in Fig. 10A, high expressions of F5, 
SERPINE1 and CYP19A1 were associated with Immune C6 (TGF-β dominant), and high expression of MTTP was associated with 

Fig. 9. Investigation of tumor-infiltrating immune cells. (A–F) Immune infiltration levels of Macrophages M1, Mast cells activated, NK cells acti-
vated, NK cells resting, T cells CD8 and T cells follicular helper between high and risk groups, respectively. (G–J) Correlation between patients’ OS 
and the levels of Mast cells activated, NK cells activated, T cells CD8 and T cells follicular helper, respectively. 
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Immune C3 (Inflammatory). However, high expression of SLC52A3 was usually associated with Immune C2 (IFN-γ dominant). 
The Estimate Score and Stromal Score calculated by “estimate” package showed the patients in the high-risk group were associated 

with significantly higher Estimate Score and Stromal Score, indicating their poor prognosis (both p < 0.001, Fig. 10B1 and B2). The 
results of the correlation between the expressions of the five LM genes and RNAss, DNAss, Stromal Score, Immune Score or Estimate 
Score in the STAD cohort of TCGA showed that higher expression of SLC52A3 was associated with lower Estimate Score (p < 0.001), 
indicating SLC52A3 correlated with reduced risk of GC (Fig. 10C). 

We also analyzed the correlation between the expressions of the five LM genes and immune checkpoint molecules among TCGA 
pan-cancer, as shown in the scatter plots of Fig. 10D. The results showed that the higher expression of SERPINE1 was associated with 
higher levels of immune checkpoint molecules (PD-1, PD-L1 and CTLA4), indicating that SERPINE1 might promote tumor development 
by down-regulating immune response (p < 0.01). 

3.9. Exploration of the significance of the model in clinical treatment 

We analyzed the estimated IC50 of the 9 chemotherapeutic drugs (Camptothecin, Cisplatin, Mitomycin C, Vinblastine, Docetaxel, 
Doxorubicin, Erlotinib, Paclitaxel and Sorafenib), the results showed that the patients in the high-risk group had significantly higher 
estimated IC50 levels of the 4 chemotherapeutic drugs (Camptothecin, Cisplatin, Mitomycin C and Vinblastine, all p < 0.05, 
Figs. S2A–D), revealing their lower drug sensitivity for high-risk patients. However, there were no significant declines of drug 
sensitivity among Docetaxel, Doxorubicin, Erlotinib, Paclitaxel and Sorafenib (Figs. S3A–E). 

Scatter plots were also drawn to study the correlation between the expressions of the five LM genes and drug sensitivity. We found 
that the expression of the five LM genes were related to increased or decreased drug sensitivity of a number of chemotherapeutic drugs, 
see Fig. S2E for more details. 

4. Discussion 

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. The 
commonly used TNM staging and some common biomarkers, such as CEA, CA 12-5, CA 19-9 and CA 72-4, have a certain value in 
predicting the prognosis of GC patients, but they gradually fail to meet the clinical demands at present because of their lag in time and 
there are great differences in individual prognosis. Therefore, the construction of a prospective, accurate and individualized prognostic 
prediction model for GC is one of the most urgent clinical tasks at the present stage. 

After differential expression analysis and univariate/multivariate Cox regression analysis, we screen out the five LM genes for the 
construction of our model (F5, MTTP, SERPINE1, CYP19A1 and SLC52A3). In previous studies, F5 gene was found to be significantly 
upregulated in GC tissues, and may be a potential prognostic biomarker for GC [34]. SERPINE1, as a tumor-promoting gene of gastric 
cancer [35], its high expression is significantly related to the poor prognosis of GC patients [36], which can be used as a biomarker for 
the diagnosis and prognosis of GC alone [37]. CYP19A1 was found to be correlated with the poor prognosis of lung cancer [38] and 
colon/rectal cancer [39], unfortunately there is no research on GC. 

After calculating the risk score and successfully constructing the prognostic prediction model, to ensure its effectiveness and 
stability, the study first used the STAD testing cohort of TCGA for internal verification, and used three independent datasets for 
external verification. These results all suggest that patients in the high-risk group were negatively correlated with their OS. We also 
evaluated the impact of the five LM genes on patients’ OS individually, all the results were consistent with our risk score formula. 

To study whether the differences in clinical information of patients have an impact on the predictive performance of the model, we 
further divided the STAD entire cohort of TCGA into several subgroups according to their age, gender, tumor grade, clinical stage and 
TNM stage. The results of the KM estimates of survival probabilities were all in line with the expected results, showing that our model is 
not easily disturbed by the above clinical information of patients, suggesting its wide range of clinical predictive value. 

For further analysis of the specificity and sensitivity of the model, 32 types of TCGA tumors were selected for external verification of 
the model. The results of the KM analysis showed that a higher risk score was associated with a lower OS among 22 TCGA tumors. Our 
explanation for this result is that these tumors may have similar metabolic characteristics and share some same nodes in their 
metabolic pathways. The identification of these nodes may contribute to a more in-depth study of the mechanism of these tumors and 
update the existing prognostic prediction models. 

In addition, GO analysis and KEGG analysis were performed to further explore the potential biological functions of the differential 
expression LM genes, and it was found that all these enriched terms are associated with cellular energy metabolism. For deeper study of 
the biological functions, we performed GSEA to explore the different enrichment pathways between high- and low-risk groups in the 
STAD entire cohort of TCGA. Interestingly, it was found that all the “mitochondrial-related” pathways were more enriched in the low- 
risk group, suggesting that mitochondrial function of GC cells in the high-risk group was inhibited to a certain extent, which is 
consistent with the fact that even under the condition of sufficient oxygen, GC cells still absorb a large amount of glucose and 
metabolize it into lactate [40]. 

Fig. 10. Tumor microenvironment analysis. (A) Association of the five LM gene expressions with immune infiltrate subtypes. (B) The Estimate Score 
and Stromal Score between high- and low-risk groups. (C) The correlation between the expressions of the five LM genes and RNAss, DNAss, Stromal 
Score, Immune Score or Estimate Score. (D) The correlation between the expressions of the five LM genes and immune checkpoint molecules (PD-1, 
PD-L1 and CTLA4). 
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Importantly, tumor-infiltrating immune cells seems to have more and more significant prognostic value of tumors [41,42], 
including GC [43]. In our study, Mast cells activated were more enriched in the high-risk group and led to poor prognosis. It is found in 
previous studies that Mast cells enriched in tumor tissue can produce a large amount of pro-angiogenic factors, which promote 
angiogenesis and lead to poor prognosis [44,45]. Sammarco found the same phenomenon in GC [46]. Macrophages M1, NK cells 
activated, T cells CD8 and T cells follicular helper were found to be more abundant in patients of low-risk group, and the latter three 
significantly affected patients’ OS. Husain found tumor-derived lactate inhibits NK cell function [47]. Fischer found tumor cells can 
increase surrounding lactate concentration and further inhibit the function of cytotoxic T cells [48]. Interestingly, M1 and M2 mac-
rophages were found to have almost opposite effects on tumor patients’ prognosis, and the former has been proved to improve patients’ 
OS [49]. 

As for tumor microenvironment analysis, Baumann found lactate induces TGF-β expression [50], and some other researchers’ 
results showed TGF-β promotes GC malignancy [51] and metastasis [52], which can be suppressed by attenuating TGF-β [53]. It is 
worth noting in our study that SERPINE1 and CYP19A1, may act as oncogenic genes, were found to associated with Immune C6 (TGF-β 
dominant), which is consistent with the above researches. SLC52A3 was found to be associated with Immune C2 (IFN-γ dominant) in 
our study. Intriguingly, IFN-γ was once recognized as a tumor-killing cytokine, but there is controversial in recent years [54] and its 
mechanism is not clear. Based on the ESTIMATE algorithm, patients in the high-risk group were associated with significantly higher 
Estimate Score and Stromal Score, indicating a correlation with poor prognosis. And higher expression of SLC52A3 was associated with 
lower Estimate Score, indicating better correlation. Part of the above results, as well as the results of immune checkpoint molecules, are 
not in line with expectations, which we think may be related to the complexity and polyvalence of metabolic pathways. On the whole, 
however, these results accord with our expectations. 

According to our drug sensitivity analysis, Camptothecin, Cisplatin, Mitomycin C and Vinblastine showed lower drug sensitivity 
among GC patients in the high-risk group compared with those of low-risk, while there are no significant reduced drug sensitivity 
among Docetaxel, Doxorubicin, Erlotinib, Paclitaxel and Sorafenib. Meanwhile, the expression of the five LM genes were found to be 
related to increased or decreased drug sensitivity of a number of chemotherapeutic drugs. These results can provide a new and fresh 
basis for clinicians to formulate individualized chemotherapy regimens for GC patients in the high-risk group based on our prognostic 
prediction model. 

However, some limitations exist in our study. Most of our data was downloaded from the public database, with the clinical in-
formation of some patients incomplete, and there is only a small number of cases from Sun Yat-sen University Cancer Center. At the 
same time, as a retrospective study, information bias is inevitable [55], so it is necessary to prove the clinical predictive value of the 
model through more convincing prospective studies in future clinical practice. 

5. Conclusion 

In this study, we excavated and screened a series of the differential expression LM genes and developed a prognostic prediction 
model for GC patients based on these genes. Through a series of bioinformatics and statistical analysis, our model has been validated to 
have a good performance to predict the prognosis of GC patients, and has a great potential to guide clinicians to provide more effective 
and individualized therapeutic schemes for GC patients. Further prospective studies and ideally laboratory experiments are needed to 
validate and determine its accuracy and practicability. 
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