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Abstract

CD36 is recognized as a lipid and fatty acid receptor and plays an important role in the metabolic syndrome and associated
cardiac events. The pleiotropic activity and the multiple molecular associations of this scavenger receptor with membrane
associated molecules in different cells and tissues have however questioned its potential as a therapeutic target. The
present study shows that it is possible to identify low molecular weight chemicals that can block the CD36 binding and
uptake functions. These inhibitors were able to reduce arterial lipid deposition, fatty acid intestinal transit, plasma
concentration of triglycerides and glucose, to improve insulin sensitivity, glucose tolerance and to reduce the plasma
concentration of HbAc1 in different and independent rodent models. Correlation between the anti-CD36 activity of these
inhibitors and the known pathophysiological activity of this scavenger receptor in the development of atherosclerosis and
diabetes were observed at pharmacological doses. Thus, CD36 might represent an attractive therapeutic target.
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Introduction

CD36 is a member of the scavenger receptor family with a

broad cell type expression. The specificity of this receptor for

oxidized lipoproteins (ox-LDL) is extensively documented [1–4].

This receptor is up regulated by ox-LDL in macrophages and

contributes to the formation and accumulation of foam cells at

sites of arterial lesions during early and late atherosclerosis. This

concept was validated by the finding that mice with double CD36

and ApoE deficiency exhibited a greater than 77% decrease in

aorta lesions and 50% decrease in aortic sinus lesions despite the

induction of a very high atherogenic milieu [5]. This phenomenon

was explained by the fact that recruitment and accumulation of

foam cells at sites of lesions were considerably reduced in animals

lacking CD36 [6,7]. Such a conclusion was however challenged by

the observation that combined deficiencies in scavenger A and

CD36 functions did not ameliorate atherosclerosis in hyperlipid-

emic mice [8].

The role of CD36 in the binding and transport of long chain

fatty acid (LCFA) in enterocytes and adipocytes is also well

documented [9–12]. The protein is involved in the control of the

intestinal transit of cholesterol, triglycerides (TG) and fatty acids

(FA) [13–15]. CD36 deficiency can also rescue lipotoxic cardio-

myopathy [16] and control hepatic triglycerides storage and

secretion [17]. Lipid binding to CD36, at the early stage of

intestinal lipid absorption, stimulates and controls chylomicron

secretion [14,15]. Thus, CD36 has a broad implication in FA

membrane transport and may possibly be involved in the

metabolic aspects of dyslipidaemia [17]. Observation that CD36

may regulate downstream signalling in enterocytes and stimulate

chylomicron synthesis supports this hypothesis [18]. This concept

is however questioned by the consistent observation that CD36

gene deletion does not affect plasma TG concentration, LCFA

uptake and TG re-esterification in mouse proximal intestine and

that postprandial plasma TG concentration is increased in CD36

deficient humans [18,19]. Therefore, the direct role of CD36 in

the intestinal absorption of FA and its pathological hyperlipemia

consequence remains an open question.

In addition to its potential implication in atherosclerosis and

dyslipidaemia, independent studies have suggested that CD36 may

also be directly or indirectly involved in diabetes [20,21]. CD36

deficient humans were reported to have insulin resistance [19,22].

CD36 gene knock out, however, did not induce insulin resistance

in mice [5]. Rather, insulin sensitivity was increased in CD362/2

skeletal muscle [23]. Furthermore, defective insulin signalling was

shown to be associated with increased CD36 expression in

macrophages [24]. In addition, ox-LDL produced a dramatic

reduction of Glyceraldehyde-3-phosphate deshydrogenase in

smooth muscle cells resulting in a marked reduction of glucose

usage [25]. Together, these observations suggest that CD36 is

inversely correlated with insulin sensitivity and plasma lipopro-

teins. In contrast, animals over expressing CD36 in muscle

exhibited decreased plasma concentrations of triglycerides and

increased plasma insulin and glucose concentrations [26] and
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CD36 deficiency induced insulin resistance in the liver of these

animals [23]. Therefore, opinions concerning a direct or indirect

role of CD36 in insulin resistance and the development of type II

diabetes are diverging.

In summary, the preponderance of evidence suggests that CD36

is a central receptor for the detection, accumulation and

metabolism of lipids and fatty acids in different cells and tissues.

CD36 could then function as a molecular bridge between the

development of dyslipidaemia and insulin resistance [21]. If so, it

may represent an interesting therapeutic target for the treatment

of atherosclerosis, type II diabetes and obesity and their associated

cardiovascular diseases. In support with that hypothesis, we show

that small molecules with anti-CD36 activity can reduce

postprandial hyperlipidaemia and protect against type II diabetes

and atherosclerosis.

Materials and Methods

Cell Culture
HEK 293 cells (ATCC) were transfected with a full length

human CD36 cDNA to obtain a permanent CD36 expressing cell

line. Expression of a functional CD36 at the surface of the cells was

characterized by flow cytometry using monoclonal anti-CD36

antibody (FA6.152, Abcam). Human THP-1 cells (ECCAC) were

cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum (FBS), 200 mmol/L L-Glutamine, 100 Unit/mL

penicillin and 100 mg/mL streptomycin. HEK 293 wt and

HEK293-CD36 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% FBS, 1 mmol/L

Sodium Pyruvate, 0.1 mmol/L non essential amino acids,

200 mmol/L L-Glutamine, 100 Unit/mL penicillin and 100 mg/

mL streptomycin. CD36 expressing cells were all time cultured in

presence of 300 mg/mL selection antibiotic G418 (sigma). For

THP1 experiments, cells were differentiated into macrophages in

RPMI-1640 medium supplemented with 5% FBS and 1027 mol/

L of PMA for 24 hours at 37uC, 5% CO2. For experiments with

HEK293 and CD36 expressing HEK293, cells were plated in 96-

black plate coated with poly-D-lysine for 48 hours at 37uC, 5%

CO2 in DMEM containing 10% FBS.

Lipoproteins Preparation
LDL were prepared by discontinuous density gradient ultra-

centrifugation from normal human plasma provided by Etablisse-

ment Français du Sang. LDL were oxidized with 5 mmol/L

CuSO4 for 15 hours at 37uC. Oxidation was stopped by addition

of 40 mmol/L butylated hydroxitoluene (BHT) and 100 mmol/L

diethylene triamine penta acetic acid (DTPA), then extensively

dialyzed against phosphate buffered saline containing 100 mmol/L

DTPA. Oxidized-LDL were labeled with cyanine3 Mono NHS

ester. Oxidation was controlled by electrophoretic mobility and

the measurement of optical density at 234 nm corresponding to

the formation of conjugated dienes.

LCFA Preparation and Endocytosis Experiments
Fat-free BSA, Bodipy fl C16 (Molecular probes), palmitate and

Phloretin were purchased from commercial sources. Both the

albumin and palmitate concentration were 173 mmol/L.

23 mmol/L of the palmitate component were bodipy fl C16 and

150 mmol/L were non-fluorescent palmitate. Briefly, HEK293

and HEK293/CD36 cells were preincubated for 30 minutes at

37uC in serum free DMEM containing 0.1% dimethylsulfoxide

(DMSO) or molecules. Following preincubation, the culture

medium were replaced with phosphate buffer saline containing

BSA/palmitate/bodipy fl C16 complex in presence of 0.1%

DMSO or molecules. The uptake was stopped by removal of the

solution followed by addition of 100 mL of an ice-cold stop solution

containing 0.5% of free fatty acid albumin and 0.2 mmol/L of

Phloretin. The stop solution was discharged after 2 minutes and

the culture dishes were washed by deeping them three times in ice-

cold incubation buffer.

The cells were fixed in 4% paraformaldehyde during 30

minutes at 4uC and nucleus were stained by incubation in buffer

saline containing 1 mg/mL of Hoechst 33342 during 20 minutes at

room temperature. Then, cells were washed twice in phosphate

buffer saline. The Leica DMIRB microscope system was used for

staining visualization. 16 images by well of cells staining with

Bodipy fl C16 and Hoechst 33342 were automatically captured

using a fluorescence microscope controlled by MetaMorph

Software (Universal Imaging) and coupled with a CCD camera.

After images analysis, results were expressed as the sum of bodipy

intensity per cells number.

Ox-LDL Binding and Endocytosis Experiments
All binding experiments were performed at 4uC. HEK wt and

HEK-CD36 at 80% of confluence in 96-well plates were

incubated with the appropriate medium containing 1 mg/mL of

Hoechst 33342 for 20 minutes at 4uC. After washing twice, cells

were incubated in medium supplemented with 0.5% FBS and

cyanine 3-oxidized-LDL (20 or 35 mg/mL), in the absence or the

presence of increasing concentration of the compound for 4 hours

at 4uC. Cells were fixed with 4% paraformaldehyde for 15 minutes

at 4uC and then washed with phosphate buffered saline before

fluorescence microscopy analysis.

For endocytosis experiments, the cells, at 80% confluence, in 96

well plates, were incubated with the appropriate concentration of

the compound for required time at 37uC. Cells were fixed with 4%

paraformaldehyde for 20 minutes at room temperature. After

washing, the nucleus was labeled with 1 mg/mL of Hoechst 33342

for 20 minutes at room temperature.

Each stimulation condition for binding and endocytosis was

performed at 0.1% DMSO in quadruplicate. 16 images by well of

cells staining with Cyanine-3 and Hoechst 33342 were automat-

ically captured using a fluorescence microscope controlled by

MetaMorph Software (Universal Imaging) and coupled with a

CCD camera. After images analysis, results were expressed as the

sum of cyanine-3 intensity per cell number.

Animals and Experimental Protocols
All experiments were carried out according to the guidelines

laid down by the French Ministère de l’Agriculture and E.U.

Council Directive for the Care and Use of Laboratory Animals (Nu
02889). Experimental procedures in animals were performed in

accordance with protocols approved by the Institutional Animal

Care and Research Advisory Committee of KU Leuven

(LA1210544) and Comité d’Expérimentation Animale of Univer-

sity Claude Bernard, Lyon1 (BH 2012–23).

Rodent Models
Atherosclerosis mouse model. Homozygous LDL-receptor

deficient (LDL-R2/2) mice, heterozygous leptin deficient mice

(ob/+) and C57BL/6 mice were purchased from Jackson

Laboratories. Double knockout mice (DKO) characterized by

both leptin deficiency (ob/ob) and LDL-R deficiency were

obtained by crossing as previously described [26]. The phenotypic

attributes of these DKO mice have been previously characterized

in details [26]. All mice were maintained in controlled conditions

(22uC with a fixed 12/12 hour light/dark cycle) and fed standard

chow containing 4% fat (Pavan Service). Mice were daily treated

CD36 Inhibitors
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for 12 weeks with intraperitoneal (IP) injection of AP5055 at

1 mg/kg supplemented with 1% methyl cellulose or vehicle (10%

DMSO).

Diabetic rat model. Male Wistar Han rats (250–260 g,

Elevage Janvier, Le Genest St Isle, France) were used. The

fructose diet-inducing diabetic model was previously well de-

scribed. Briefly, adult rats were fed with a standard chow (A04,

UAR, Villemoisson, France) and given ad libidum 10% fructose

solution for 21 days. After a 3-week diet, diabetic rats were daily

treated by IP administration of different doses of the compound,

mixed with 2% DMSO or PEG 300 for 21 days. Plasma samples

were obtained in the fed state via the tail and prepared for

concentration measurements of TG levels.

Prediabetic ZDF rat model. Male Zucker diabetic fatty

rats (ZDF-Lepr fa/Crl) (5 weeks old) (Charles River, France)

were fed maintenance rodent diet 2016 C (Harlan France).

These rats become diabetic between 7 and 10 weeks. After an

adaptation period of 2 weeks, vehicle, being either PEG 300, or

CD36 inhibitor (50 mg/kg) were administrated, during the rise of

plasma glucose. Blood samples were obtained from tail vein and

plasma glucose and HbA1c were determined throughout the 3

week treatment. Glycated hemoglobin was measured using the

direct Enzymatic HbA1c AssayTM (Diazime laboratories, CA,

US). A second experiment was carried out on older Zucker rats

(18 weeks), in which rats received IP injections of AP5258. Oral

glucose tolerance and insulin tolerance test were performed at

the end of the treatment period. Blood samples were obtained

from tail vein and concentrations of plasma glucose and

triglycerides were determined during the time course of the

treatment.

Postprandial analysis in Sprague Dawley (SD)

rats. Sprague-Dawley rats (SD, 225–250 g) (Charles River,

France) were fed a rodent maintenance global diet (2016C, Harlan

France). Postprandial plasma TG concentrations were determined

during 6 hours after an olive oil test. Briefly, the animals were

fasted overnight for 16 hr and then forced fed with 1 mL of olive

oil. Blood samples were collected every hour through the tail vein.

Rats received either vehicle or active compound (50 mg/kg) in

Figure 1. Chemical structures and activities of the CD36 inhibitors AP 5055, AP 5258 and the negative analog AP5156. Dose
dependent inhibition of ox-LDL uptake and accumulation by THP1 cells at 37uC. Uptake was measured as the cyanin3 labeled ox-LDL uptake at
constant cell number.
doi:10.1371/journal.pone.0037633.g001

CD36 Inhibitors

PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e37633



PEG 300. Plasma TG were measured with a commercial kit (TG

PAP 150, Biomérieux, France.

Quantification of Atherosclerotic Plaque Lesions
After 12 weeks treatment with AP5055, the extent of

atherosclerosis was evaluated by serial cross sections from aortic

root. Immunohistochemical and morphometric analysis were

performed on 7-mm cryosections. Lipid staining with oil red O,

with mAb4E6, smooth muscle cells with an a-actin specific

antibody (Dako) and macrophages with an antibody against mouse

Mac-3 antigen (Pharmingen) were performed. Immunostained

sections were blindly analyzed with Quantimet 600 image

analyzer (Leika).

Oral Glucose Tolerance Test (OGTT)
Rats were fasted for 16 h before glucose solution (2 g/kg body

weight) was administered orally. Blood was drawn from a tail vein

at 10, 20, 30, 60, 90 and 120 min after the administration of

glucose. Plasma glucose concentration was measured with a

commercial glucometer (Accu-Chek, Roche, France).

Statistical Analysis
All data are reported as mean 6 standard error of the mean.

Plasma concentration assays were performed on 8 to 12 animals

per group. Statistical significance between control treated animals

was determined by analysis of variance (ANOVA). The Fisher

protected least significant difference, post hoc test was used for

group comparisons. Statistical significance was set at p,0.05.

Results

Identification and Characterization of Anti CD36
Inhibitors

To identify chemical compounds with anti-CD36 function, a

CD36-expressing HEK-293 cell line was established for high

throughput screening of large chemical libraries. One series of

pharmacophore was identified and optimized for their capacity to

inhibit binding, uptake and accumulation of ox-LDL by THP1

cells. Two members of this series, named AP5055 and AP5258

produced a significant inhibition of foam cells formation with IC50

of 100 nM and 500 nM respectively and were selected for further

studies. This inhibition was observed at constant nucleus number

Figure 2. Anti-CD36 activity of AP5055 (dark) and AP5258 (grey) on CD36-HEK cells. Non transfected cells (wt), were used as control: A:
ox-LDL uptake at 37uC, B: Palmitate uptake at 37uC, C: typical inhibition of ox-LDL binding at 4uC, D: dose dependent inhibition of AP 5055 and
AP5258 on ox-LDL binding, AP5156 used as negative control had no effect (hatched bar), E: Comparative inhibition of ox-LDL binding by AP5055 and
AP5258 at different ox-LDL concentrations.
doi:10.1371/journal.pone.0037633.g002
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(Figure 1). One analog of the same series, AP5156, with similar

chemical structure was inactive indicating the presence of a

structure-function relationship within this chemical series.

HEK-CD36 cells interacted with both LCFA and oxidized

lipoprotein particles, stored these particles and accumulated lipid

rich vesicles in a CD36-dependent way. This cell line was further

utilized to explore the anti-CD36 activity of these chemical

entities. When performed at 37uC, lipid vesicles accumulation by

these cells was significantly inhibited by both AP5055 and AP5258

with IC50 similar to that observed with THP1 cells (Figure 2A).

Similarly, both AP5055 and AP5258 inhibited palmitate cellular

transfer to a level comparable to that observed with non-

transfected wild type cells (Figure 2B). Both inhibitors produced

a dose dependent inhibition of CD36-dependent binding to the

membrane of these cells with IC50 of 160.1 mM and 561 mM

respectively (Figure 2C and 2D). The analog AP5156 used as a

negative control, had no effect on this binding, up to a

concentration of 1024 M (Figure 2D).

The compounds AP5055 and AP5258 were then utilized to

further explore the receptor inhibitor activity of this chemical

series. Different experiments indicated that these inhibitors are

receptor rather than oxLDL directed. First, the compounds did

not affect the electrophoretic mobility of the complex at any

concentration tested as illustrated in Figure 3A. Second, both

AP5055 and AP5258 had no effect on the CD36-independent

binding as observed with wild type HEK cells. This level of CD36-

independent binding never exceeded 15% on the wt HEK cells.

Third, when bound biotynilated-oxLDL was affinity cross-linked

to the HEK-CD36 membrane, then immunoprecipitated with an

anti-biotin monoclonal antibody, and analyzed by western blotting

with an anti-CD36 monoclonal antibody, after reduction to

quantify bound receptors, the compound produced a significant

inhibition of the oxLDL-CD36 complex cross-linking. Figure 3B

exemplifies the results obtained with AP5055. AP5258 had a

similar effect. Non transfected wt HEK cells did not crosslink

oxLDL. Finally, compound-induced inhibition was dependent

upon the concentration of the ligand, with an increased inhibitory

capacity at greater ox-LDL concentration suggesting that AP5055

and AP5258 are noncompetitive CD36 inhibitors (Figure 2 E).

Altogether, these experiments demonstrated that both molecules

were inhibitors of the oxLDL and LCFA receptor functions of

CD36 with AP5055 being slightly more potent than AP5258.

Protection Against Atherosclerosis
CD36 deficient mice are protected against atherosclerosis.

Therefore, the in vivo efficacy of the compound to protect against

atherosclerosis was first examined in double LDL-R and leptin

deficient mice (DKO). Figure 4 illustrates the results and

exemplifies the activity obtained when AP5055 was administrated

to these mice. Typical oil red O-staining of the lesions in the aortic

root of treated free fed mice (24 weeks old) was compared to non-

treated animals. Consistent with previously published observations

Figure 3. Anti-CD36 activity. Effect of AP5055 on the molecular interaction between CD36 and ox-LDL using CD36-HEK and wild type (wt) cells at
4uC. A: effect on the electrophoretic mobility of ox-LDL, B: Affinity crosslinking of ox-LDL to membrane expressed CD36, biotinylated ox-LDL were
cross linked at 4uC, the ox-LDL complex was immunoprecipitated with an anti ox-LDL antibody and complex-associated CD36 was detected on
immunoblot, using an anti CD36 antibody.
doi:10.1371/journal.pone.0037633.g003
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[26], non-treated mice developed small fatty streaks with plaque

volumes at 0.08460.034 mm3 (n = 19). Daily IP injection of the

compound at 1 mg/kg for a period of 12 weeks produced a

significant reduction of lipid deposition as illustrated by the

reduction of oil red O staining. Plaque volume was reduced to

0.04560.032 mm3 (n = 12) corresponding to a 46% reduction.

Concomitant with the reduction of lipid deposition, a significant

decrease of plasma TG was observed (Figure 4B). TG did not

change in placebo treated mice while AP5055 produced a greater

than 50% reduction. Thus, anti-CD36 compounds are able to

protect against the growth of atherosclerotic plaque at an in vivo

concentration compatible with the in vitro activity of this molecule

(,1025 M). Reduction of the plasma level of TG was however

unexpected because CD36-deficient mice were reported to have

increased levels of plasma TG (Figure 4C).

To verify that this result was not model specific and was not due

to the double knock-out of both the LDL-R and leptin genes in the

DKO mouse model, the effect of anti-CD36 molecule on plasma

TG concentration was examined in an independent diabetic

fructose fed rat model. Results that summarize these experiments

are illustrated in Figure 5. When administrated (IP) at concentra-

tion ranging from 0.1 to 10 mg/kg AP5055 was able to produce a

similar dose dependent reduction of the plasma TG within weeks

of treatment. When using the ZDF rat model, AP5258 produced a

significant reduction of the TG plasma concentration (Figure 5).

The inactive analog AP5156 had no effect (result not shown).

Therefore, the decrease in plasma TG correlated with the cellular

Figure 4. Protection against atherosclerosis. Effect of AP 5055 on the development of atherosclerosis in double LDL-R and Leptin deficient mice
(DKO). A: lipid deposition in the aorta, B: plaque volume, C: plasma TG concentration.
doi:10.1371/journal.pone.0037633.g004
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activity of the compounds and was not model or analog

dependent. Differences in the potency of these molecules in the

different models were however observed. This may be explained

by the relative stringency of the different models in terms of

metabolic syndrome, the ZDF rat being less sensitive to the

treatment than the mouse or the fructose fed rat model.

Alternatively, the two compounds may have different metabolism.

Protection Against Insulin Resistance
When administrated to the DKO mice at 1 mg/kg, AP5055

produced a significant reduction of the plasma glucose and

improved glucose tolerance (Figure 6A).

To verify that this effect was not model dependent, AP5055 and

AP5258 were administrated to the ZDF rat model to measure

changes in fasting and non fasting plasma glucose. Typical results

are illustrated in the figure 6B and 6C. Both molecules were able

to reduce fasting and dietary plasma glucose levels after 3 w of

treatment at 40 mg/kg. Greater than 50% inhibition of plasma

glucose was obtained with AP5055 (434611 vs 196642 mg/dL),

whereas AP5258 produced a 20% inhibition at the same dose

(517623 vs 41367 mg/dL). AP5258 produced a similar correc-

tion on the oral glucose tolerance test. In addition to the induction

of a better glucose tolerance, sensitivity to insulin was also

improved. Typical results obtained for AP5258 are illustrated in

Figures 7A and 7B.

Therefore anti-CD36 inhibitors were able to improve glucose

tolerance in rodent animals with typical metabolic syndrome. The

effect on glucose tolerance was objectivized by the decrease of

HbAc1 observed on Zucker rat model (Figures 7C and 7D).

Reduction of Post Prandial Hyperlipidemia
The time course of the plasma TG response to a gastric olive oil

challenge is shown in Figure 8. After overnight fasting the plasma

TG concentrations were similar at time 0 in the control and

treated animals at an average level of 1.1660.35 mM. The

postprandial lipemia started to increase at 4 h in the non-treated

animals and reached a maximum value at 6 h. When the animals

were treated with AP5258 at 50 mg/kg the postprandial increase

of plasma triglycerides was inhibited. This total inhibition of the

intestinal transit was dose dependent since at a dose of 10 mg/kg

an intermediate effect was observed (Figure 8B).

These results were consistently reproduced in different and

independent series of animals. When taken at 4 hours, on a larger

number of animals (n = 8), 50 mg/kg produced a greater than

40% inhibition (Table 1).

Discussion

In the present study, correlation between the anti-CD36

inhibitor activity of small molecular weight chemicals and the

known pathophysiological activity of this scavenger receptor were

established. Although different mechanisms may be involved in the

oral versus IP activity of these inhibitors, both administrations

were able to improve the metabolic profile of defined and

independent rodent models. A significant reduction of the plasma

concentration of triglycerides and a better glucose usage were

observed at pharmacological doses with a concomitant reduction

of the atherosclerotic and diabetic consequences of these

attributes.

CD36 is a well characterized FA translocase and an oxidized

LDL receptor expressed in many cell types including macrophag-

es, adipocytes, endothelial cells and enterocytes [3,9,10,14,27,28–

30]. Expression of this gene is ligand-binding dependent and can

either be up or down regulated. For instance, ox-LDL-CD36

interaction up regulates a PPARc-dependent CD36 gene expres-

sion in monocytes-macrophages [31] whereas interaction with FA

down regulates gene expression and protein synthesis in

enterocytes [18], but can up regulate the gene in adipocytes

[28]. In addition, CD36 may or may not be associated with

companion molecules. The Vitronectin receptor VNR [32–33],

caveolin-1 [34], the Intestinal alkaline phosphatase IAP [35], the

Figure 5. Reduction of plasma triglycerides. Comparative effect of CD36 inhibitors on the plasma concentrations of TG in different rat models,
A: Dose dependent reduction in a fructose fed rat, AP5055 was administrated at different doses for 3 w (n = 12), B: AP5258 was administrated to
diabetic ZDF rats (C = Control, T = Treated) for a period of 2w at 10 mg/kg (n = 8).
doi:10.1371/journal.pone.0037633.g005
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CD9 tetraspanin [36,37] and the Toll-receptor complex [38] show

molecular and functional associations with CD36 at the surface of

cells. Therefore, genetic expression and molecular functions of

CD36 are complex and controlled by membrane and tissue

specific molecular associations and different cellular specific

signaling pathways. This pleiotropic effect may reasonably well

question the clinical relevance and safety of CD36.

While the cellular functions of CD36 are recognized, its

importance in the physiopathology is less well understood and

often controversial. The role of CD36 in the formation of foam

cells and the growth of atherosclerotic plaques is well documented.

Yet the role of CD36 as a target to combat atherosclerosis was

criticized [8]. Similarly, evidences supporting a role of CD36 in

intestinal fat absorption are accumulated, but contradictory

observations have also been reported concerning its direct

implication in intestinal lipid trafficking and the control of

postprandial hypertriglyceridemia. For instance, CD36 is ex-

pressed all through the intestinal tract and is important for the

metabolism and the secretion of chylomicron into the lymph [15].

The molecule is required for efficient intestinal absorption of

LCFA and VLCFA [13–15]. Yet, CD36 deficient mice exhibit a

normal level of FA absorption [15] and gene deletion does not

affect LCFA uptake and TG re-esterification in mouse jejunum

[18]. Therefore the potential of CD36 as a therapeutic target is

debated. In the present paper we have identified small chemical

molecules which have the capacity to inhibit the FA and ox-LDL

receptor function of CD36. These inhibitors were able to rescue

well characterized animal models from postprandial hypertriglyc-

eridemia and atherosclerosis with a concomitant improvement of

insulin resistance and glucose tolerance.

The CD36-inhibitor activity of this new chemical series was

established on the following criteria. First, the molecules were

Figure 6. Effect of CD36 inhibitors on insulin resistance. A: Effect of AP5055 (1 mg/kg), on the glucose level and the glucose tolerance in the
DKO mice, B: effect of AP5055 and AP 5258 on the plasma glucose in a ZDF rat (40 mg/kg, 3 w, n = 8).
doi:10.1371/journal.pone.0037633.g006
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selected for their capacity to inhibit ox-LDL binding, uptake and

accumulation in THP1 cells. Furthermore, using CD36-transfect-

ed HEK cells the specificity of this inhibition for CD36 was

demonstrated. Active members of this series were able to

completely inhibit binding and uptake to levels that were similar

to the non-specific binding and uptake observed with wt cells.

Figure 7. Effect of CD36 inhibitor on the metabolic syndrome parameters. A: effect of AP5258 on OGT, B: Effect of 5258 on insulin
sensitivity, C: Effect of AP5055 on plasma glucose, D: Effect of 5055 on the plasma concentration of HbAc1.
doi:10.1371/journal.pone.0037633.g007

Figure 8. Reduction of FA intestinal transit. Oral administration of anti-CD36 inhibitor reduces post prandial HTTG following a gastric olive oil
challenge. A: kinetics of the TG intestinal transit in the plasma in control animals or treated animals (AP5258, 50 mg/kg n = 12), B: Dose dependent
effect on Plasma TG (n = 3).
doi:10.1371/journal.pone.0037633.g008
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Second, consistent with the dual function of CD36 as a receptor

for two different ligands, and the non-competitive agonist activity

of these inhibitors, a similar activity on LCFA binding and uptake

on both THP1 and HEK-CD36 cells was measured. These results

support a receptor rather than a ligand-driven inhibition. Third,

analogs of the same series with close chemical structure had no

effect on these cellular functions, suggesting the existence of a

structure-function relationship within the members of the series.

Finally, cross-linking affinity was used to demonstrate the effect of

the compounds on the molecular interaction between ox-LDL and

CD36. In aggregate, these new molecules were able to inhibit the

CD36 receptor function both at the cellular and the molecular

levels.

The first CD36 in vivo activity to be examined was its implication

in the development of atherosclerosis using a well characterized

animal model. A DKO mouse combining LDL-R and leptin

deficiencies was used. This model exhibits high blood pressure

together with increased plasma TG concentration, insulin and

glucose. It develops atherosclerosis and represents a good model to

study the physiopathology of the metabolic syndrome [26]. The

CD36-antagonists used in the present study were able to reduce

the growth of atherosclerotic plaques at plasma concentrations

compatible with the cellular activity of these molecules. This is in

agreement with the fact that CD36 depleted mice are protected

against atherosclerosis [5]. Unexpectedly, a significant reduction of

the plasma TG was also observed. Increased plasma TG

concentration is an important factor for the development of

atherosclerosis. The DKO mouse, the ZDF rat, and the fructose

rat model exhibited a significant increase of the plasma TG

concentration and in these animals, the compounds were able to

reduce plasma TG, indicating that this reduction was not model

dependent. These observations do not agree with previously

published observations showing that CD36 deletion in mice

impairs lipoprotein lipase-mediated TG clearance [39] and results

in increased levels of plasma triglycerides. The present study

demonstrates that an anti-CD36-ox-LDL and Fatty Acid binding

activity has the capacity to reduce plasma triglycerides in rodent

species. This reduction was in good agreement with the observed

reduction of lipoprotein deposition in the aortic tree and the

plaque growth. CD36 is implicated in lipid metabolism but has not

yet been implicated in lipogenesis. Therefore it is unlikely that an

inhibitor of CD36-binding may directly influence TG synthesis per

se. While a pleiotropic activity of these new chemicals cannot be

entirely excluded at the present time, the reason for this

discrepancy could be multiple. In the present study, the mouse

model was on a diet program for 12 week whereas in Febbraio’s

studies, the CD36 null mice were fasted for 24 hour. Other

differences may include gender and strain origin and differences in

lipid metabolism. For instance, in the double CD36-ApoE knock-

out mice, plasma TG were significantly different in male and

female mice, depending on the diet [5]. In the present study we

show that TG reduction was not affected by gender and genetic

deletion. Alternatively, differences between a total disruption of

the gene and a partial inhibition of the CD36 function with an IP

administration of an inhibitor can be expected. For instance,

CD36 expression in mice liver is low but the partial inhibitory

activity of an administrated antagonist may be sufficient to reduce

hepatic TG secretion [17]. The published observation that

heterozygotes with partial CD36 deficiency have reduced plasma

TG is in agreement with our findings and supports this possibility

[40].

Increased plasma levels of TG and atherosclerosis are generally

associated with impaired insulin action and glucose tolerance.

Epidemiologic studies have implicated insulin resistance in both

diabetes and coronary atherosclerosis [41–44]. Diabetic patients

have areas of lipid rich plaques with greater macrophage

infiltration and many of the processes that are implicated in

plaque progression are amplified by the diabetic parameters. But,

the molecular links between diabetes and atherosclerosis are still

missing. Glycaemia alone stimulates macrophage accumulation

but fails to promote macrophage proliferation at sites of lesions

[45]. Defective insulin signaling is associated with the expression of

CD36 and is enhanced via a CD36-dependent pathway [46,47].

Increased CD36 expression has been shown to contribute to

dyslipidemia and to be associated with insulin resistance and

decreased glucose tolerance, suggesting that CD36 is involved in

the physiopathology of insulin sensitivity. The present study

supports this concept and shows that administration of small

inhibitors of the CD36 functions improves insulin sensitivity and

glucose tolerance in rodent animals. This activity was not animal

model dependent and was not affected by genetic modifications.

Therefore, anti-CD36 therapy may be beneficial to both

atherogenic dyslipidemia and diabetes type2.

CD36 is expressed in both human and rat enterocytes and has

been shown to be involved in the control of intestinal cholesterol

and fatty acid uptake and secretion. CD36 is expressed in the small

intestine and plays an important role in chylomicron metabolism

and the production of large postprandial triglyceride rich particles

[14,48, and 18]. The molecule is associated with the intestinal

alkaline phosphatase in FA transport and the response to a fat diet

[48] and specific defect in FA uptake in the proximal intestine of

CD362/2 mice is associated with reduced incorporation of FA in

TG and a diminished TG secretion [14]. This concept was

however challenged. Published observations have shown that

CD36 genetic deletion does not affect intestinal lipid uptake and

the efficient participation of CD36 in LCFA intestinal uptake was

questioned [13,18]. It was suggested that CD36 functions as a FA

sensor and stimulates events that control FA metabolism rather

than being directly involved in the lipid transit. In any case, our

findings show that small inhibitors of the CD36 binding functions

can significantly reduce the postprandial hypertriglyceridemia

which follows a gastric olive challenge. Again, when compared to a

complete deletion of the gene, which favor redundant mecha-

nisms, a partial inhibition of CD36 functions may have different

consequences. Our findings demonstrate that a selective down

regulation of CD36 in the intestine reduces lipid intake and is

beneficial to postprandial hypertriglyceridemia.

In conclusion, CD36 is generally recognized as an important

lipid and FA receptor which plays a role in the metabolic

syndrome and its associated cardiac events. The pleiotropic

activity and the various molecular associations of this scavenger

in different cells and tissues have however questioned its potential

as a safe therapeutic target. Different published observations have

Table 1. Inhibition of ppTG in the plasma at four hours
following the olive oil gavage following administration of
50 mg/kg of active (AP5055, AP5258) or inactive (AP5156)
analogues.

Plasma postprandial TG (mM) at 4 h

Vehicle 2.8±0.6

AP5156 2.6±0.6

AP5055 1.7±0.8

AP5258 1.7±0.6

doi:10.1371/journal.pone.0037633.t001
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indeed suggested that CD36 down regulation might not been

beneficial due to redundant mechanisms or potential toxicity.

The present study shows that it is possible to identify small

molecules that can block the CD36 binding and uptake functions

and that such antagonism can reduce atherosclerosis, postpran-

dial hypertriglyceridemia and be beneficial for type II diabetes.

Particularly, elevated postprandial hypertriglyceridemia is a

metabolic parameter which is now recognized to be strongly

associated with cardiovascular events and is independent of

traditional cardiovascular risk factors [49]. Thus, CD36 might

represent an attractive therapeutic target.
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