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Mdm2 is frequently overexpressed in sarcoma cells and may contribute to drug resistance by increasing p53 degradation. We
investigated the induction of apoptosis in sarcoma cells via adenovirus-mediated gene transfer of wild-type p53 and two modified
p53 genes, p53 14/19 and p53 22/23, whose protein products are resistant to Mdm2-mediated degradation. We found that
adenovirus-wt p53 (Ad-wt p53) induces significant apoptosis in HT1080 fibrosarcoma cells expressing low levels of Mdm2, but fails
to induce apoptosis in SJSA osteosarcoma cells expressing high levels of Mdm2. In contrast, Ad-p53 14/19 induces significant
apoptosis in both cell lines. Interestingly, Ad-p53 22/23, a vector encoding a transcription-defective p53 mutant, causes limited
apoptosis in both cell lines. We demonstrate that doxorubicin induces phosphorylation of both wt p53 and p53 14/19 protein at
multiple sites. We tested the efficacy of doxorubicin and cisplatin with either Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19. SJSA cells,
although harbouring endogenous wt p53, did not undergo significant apoptosis following doxorubicin or cisplatin exposure alone or
combined with Ad-wt p53. In contrast, doxorubicin or cisplatin plus Ad-p53 14/19 induced significant apoptosis. Gene transfer of p53
14/19 in combination with the administration of doxorubicin or cisplatin is a potential therapeutic approach for cancers expressing
high levels of Mdm2.
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Sarcomas are uncommon malignancies generally arising from
connective tissue or bone. Although these neoplasms are rare,
important insights have been gained from studying their biology, and
have led to new therapeutic approaches (Joensuu et al, 2001). One
such discovery is the fundamental role of the p53/Mdm2 pathway.

The p53 tumour suppressor gene encodes a transcription factor
that plays a critical role in regulating the cell cycle and maintaining
genomic integrity by inducing growth arrest, DNA repair and
apoptosis in response to a variety of stresses (Vogelstein and Kinzler,
1992; Donehower and Bradley, 1993; Prives and Hall, 1999).
Functional inactivation of p53 is a common event in the development
of human cancer (Levine et al, 1991; Vogelstein et al, 2000), and p53
inactivation is typically caused by p53 mutations, Mdm2 over-
expression and other mechanisms. It is well known that more than
50% of all human cancers contain p53 mutations. To target the p53
mutations in human cancers, ONYX-015 (dl1520), which selectively
replicates in and kills p53-deficient cells, is being explored as an anti-
tumour agent in clinical trials (Hann and Balmain, 2003).

Mdm2, a major negative regulator of p53, inactivates p53
protein by binding its transcriptional activation domain, inhibiting
p53’s regulation of target genes and its antiproliferative effects

(Chen et al, 1996; Haupt et al, 1997a; Kubbutat et al, 1997, 1998).
Mdm2 is the major p53 E3 ubiquitin ligase that governs
ubiquitination and degradation of p53 (Haupt et al, 1997a; Honda
et al, 1997; Kubbutat et al, 1997). mdm2 amplification is common
in sarcomas, and most of these tumours retain wt p53 (Leach et al,
1993; Keleti et al, 1996), suggesting that tumours with Mdm2
overexpression bypass the need to mutate p53.

Loss of p53 function contributes not only to tumour progression
but also to resistance of tumours to chemotherapy or radiation
therapy (Lowe et al, 1993). Overexpression of Mdm2 can confer
resistance to cytotoxic drugs (Kondo et al, 1995, 1996; Suzuki et al,
1998). Mdm2 has also been shown to induce expression of the
multidrug resistance 1 (mdr1) gene and its main product P-
glycoprotein (P-gp) (Kondo et al, 1996), which has been implicated
in chemoresistance in human sarcomas (Chan et al, 1990; Hoffman
et al, 1999; Jiminez et al, 1999). Wild-type p53 can sensitise
sarcoma cells harbouring p53 mutations to doxorubicin by
downregulating MDR-1 and P-gp expression (Zhan et al, 2001).

Restoration of normal p53 function has been evaluated as a
strategy for cancer therapy (Beaudry et al, 1996). The most direct
approach involves transfer of wt p53 gene to cancer cells that lack
endogenous p53 function (Yang et al, 1995; Zhang et al, 1995; Ko
et al, 1996). However, since many sarcomas overexpress Mdm2,
and high levels of Mdm2 inactivate and cause degradation of
p53 (Haupt et al, 1997a; Momand et al, 1992; Oliner et al,
1992, 1993; Nakayama et al, 1995; Momand et al, 1998; Vogelstein
et al, 2000), wt p53 transfer into sarcoma cells that overexpress
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Mdm2 is unlikely to be efficacious (Chen et al, 1996; Meng
et al, 1998).

To overcome the inhibition of p53 by Mdm2, two modified p53
genes were constructed, p53 14/19 and p53 22/23, which contain
double substitutions at residues Leu-14; Phe-19, and Leu-22; Trp-
23 (Lin et al, 1994, 2000). As p53 14/19 and p53 22/23 proteins are
defective in the ability to bind Mdm2, they are completely resistant
to Mdm2-mediated degradation (Chen et al, 1995, 1996; Haupt
et al, 1997a). In this study, we evaluate induction of apoptosis by
adenovirus-p53 14/19 (Ad-p53 14/19) and adenovirus-p53 22/23
(Ad-p53 22/23) in low and high Mdm2 sarcoma cell lines. The
previous study indicated that high levels of Mdm2 might confer
multidrug resistance (Cocker et al, 2001). Therefore, we also
investigated the synergistic effect on apoptosis between Ad-wt p53
or Ad-p53 14/19 and doxorubicin or cisplatin. We further
examined the difference in transactivation function between Ad-
p53 14/19 and Ad-wt p53 when combined with doxorubicin in an
Mdm2 overexpressing sarcoma cell line.

MATERIALS AND METHODS

Cell lines and cell culture

SJSA osteosarcoma cells (provided by Jiandong Chen, H Lee
Moffitt Cancer Center), HT1080 fibrosarcoma cells (American
Type Culture Collection, Manassas, VA, USA) and normal human
skin fibroblasts (NHF) that have a limited life span (provided by
Mats Ljungman, University of Michigan Cancer Center) were used.
SJSA cells exhibit amplification of mdm2 and express high levels of
Mdm2 protein (Oliner et al, 1992; Landers et al, 1997), whereas
HT1080 cells express low levels of Mdm2 (Lin et al, 2000). Both cell
lines express low levels of wt p53 (Evdokiou and Cowled, 1998).
Normal human skin fibroblasts were used as a control to assess the
safety of adenovirus-mediated transfer of p53 14/19 in vitro. Cells
were maintained in Dulbecco’s modified Eagle’s medium (DMEM,
Gibco/BRL, Grand Island, NY, USA) containing 10% foetal bovine
serum (FBS) and antibiotics (penicillin G 5000 U ml�1, streptomy-
cin 5000 mg ml�1, Gibco/BRL). Cells were grown as an attached
monolayer at 371C in a humidified atmosphere with 5% CO2.

Adenovirus p53 vector, doxorubicin and cisplatin

To generate the recombinant adenovirus-p53 vectors, as described
previously (Lin et al, 2000), cDNA for wt p53, p53 14/19 or p53 22/
23 was cloned into an adenovirus vector, pACCMVpLpA(-)loxD
(University of Michigan Vector Core). The negative control
adenovirus (referred to as NCV, pACCMVpLpA(-)loxD) contains
the same backbone as the other constructs. The human
cytomegalovirus promoter was used to drive p53 transcription
for high level, constitutive expression. Doxorubicin (Calbiochems,
CN Biosciences, San Diego, CA, USA) was dissolved in water to
produce a stock solution of 0.5 mg ml�1 and stored at 41C.
Cisplatin (American Pharmaceutical Partners, INS. Los Angeles)
was diluted 1 mg per ml with 9 mg sodium chloride per ml in
sterile water, and stored at room temperature.

Apoptosis assay

To quantify apoptosis, 5� 105 cells/10-cm dish were infected by
mock (no) infection, NCV, Ad-wt p53, Ad-p53 14/19 or Ad-p53 22/
23 at a multiplicity of infection of 100–200 plaque forming units/
cell in DMEM containing 2% FBS. The next day, the medium was
removed and cells were rinsed twice with phosphate-buffered
saline (PBS) to remove the adenovirus. Cells were then incubated
in DMEM containing 10% FBS for 48 h. To assess synergy between
Ad-wt p53 or Ad-p53 14/19 and doxorubicin or cisplatin, some
cells were also treated with 0.1 mg ml�1 doxorubicin or 5 mg ml�1

cisplatin, respectively. At 72 h after infection, both adherent and

floating cells were harvested and fixed in 70% (vol/vol) ethanol.
The cells were then stained with propidium iodide for 20 min in
the dark. At least 1� 105 stained cells were analysed for Sub-G1
profile on a FACScan Flow Cytometer (Becton Dickinson, San Jose,
CA, USA). The percentage of sub-G1 (apoptotic) cells in mock-
infected cells and infected cells was calculated. The results
presented are averages and standard deviations from three
separate experiments.

Western blot analysis

In order to compare transactivation function among Ad-p53 14/19,
Ad-p53 22/23 and Ad-wt p53, levels of p53, Mdm2, p21WAF-1 and
Bax were examined in SJSA and HT1080 cells (1.5� 106 cells/10-cm
dish) infected by NCV, Ad-wt p53, Ad-p53 14/19 and Ad-p53 22/23.
To analyse the levels of phosphorylated p53, phosphorylated
Mdm2 and Bax, SJSA and HT1080 cells were plated with
1.5� 106 cells/10-cm dish. Cells were infected with Ad-wt p53 or
Ad-p53 14/19 and treated with doxorubicin as described above.
Cells were lysed in RIPA buffer (50 mM Tris-HCl, 1% NP40, 0.25%
sodium deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM sodium
orthovanadate, 1 mM sodium fluoride). 100mg of protein from cell
lysates was separated by SDS–PAGE. Western blots were stained
with antibodies against p53, Mdm2 (both kindly provided by
Arnold Levine), phosphorylated p53 (Ser-6, -9, -15, -20, -37 and -
46, Cell Signaling Technology, Beverly, MA, USA), phosphorylated
Mdm2 (Ser-166, Cell Signaling Technology, Beverly, MA, USA) and
Bax (Transduction Laboratories, Lexington, KY, USA). In order to
observe the expression of multidrug-resistance proteins in NHF,
HT1080 and SJSA, the MDR, MRP1 and MRP4 antibodies (Santa
Cruz Biotechnology, Inc., CA, USA) were used. Protein levels were
standardized with a monoclonal antibody against glyceraldehyde-
3-phosphate dehydrogenase (anti-GAPDH; Chemicon Interna-
tional, Inc., Temecula, CA, USA). Blots were scanned with Image
Quant software to detect proteins using an electrochemifluores-
cence detection system (Amersham Corp., Arlington Heights, IL,
USA) on a Molecular Dynamics Storm PhosphorImager (Sunny-
vale, CA, USA).

RESULTS

Induction of apoptosis and p53 downstream targets by
adenovirus-p53 vectors

To determine whether p53 14/19 and p53 22/23 could induce
apoptosis, two human sarcoma cell lines with either low (HT1080)
or high (SJSA) levels of Mdm2 were utilized (Figure 1D). Normal
human skin fibroblasts with low levels of Mdm2 were used to
assess the toxicity of Ad-p53 14/19 and Ad-p53 22/23. As shown in
Figure 1, apoptosis was significantly induced by Ad-wt p53 and
Ad-p53 14/19 and to a lesser degree by Ad-p53 22/23 in low Mdm2-
expressing HT1080 cells. Apoptotic cells increased seven- to eight-
fold after infection with Ad-wt p53 or Ad-p53 14/19 and four-fold
after infection with Ad-p53 22/23, when compared to uninfected
cells or cells infected with NCV (Figure 1A). In contrast, in high
Mdm2 expressing SJSA cells, there was a marked difference
between Ad-wt p53 and Ad-p53 14/19. There was a four-fold
increase in apoptotic cells in SJSA infected with Ad-p53 14/19
compared to Ad-wt p53, and a two-fold increase of apoptosis in
SJSA infected with Ad-p53 22/23 compared to Ad-wt p53
(Figure 1B). No induction of apoptosis was detected in normal
fibroblasts after infection by any adenoviral construct (Figure 1C).
These results indicate that Ad-p53 14/19 and Ad-p53 22/23, both
defective in Mdm2 binding, can induce apoptosis in HT1080 and
SJSA cells regardless of Mdm2 expression, but have minimal effect
on normal cells. Ad-p53 14/19 induces significant apoptosis in
SJSA cells despite the overexpression of Mdm2.
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In Figure 2, it is apparent that p53 14/19 and p53 22/23 have
different transcriptional activation activity. The 22/23 mutant has
lost its transcriptional activation activity, but the 14/19 mutant
retains the activity of the wild-type protein (Lin et al, 1994). Ad-
p53 14/19 induced the expression of p53 target proteins Mdm2,
p21WAF-1and Bax in both HT1080 and SJSA, and in SJSA there was
greater induction of Mdm2 and p21WAF-1 than with Ad-wt p53. Ad-
p53 22/23 had the same ability as Ad-p53 14/19 to induce Bax, but
failed to induce Mdm2 and p21WAF-1 in either cell line. Since p53
14/19 retains its transactivation capability and induces greater
apoptosis than p53 22/23 in both HT1080 and SJSA cells, we
selected p53 14/19 for further investigation to determine if it could
sensitize cells to apoptosis caused by doxorubicin or cisplatin.

Adenovirus-p53 14/19 sensitizes sarcoma cells to
doxorubicin and cisplatin

We analysed whether Ad-p53 14/19 could sensitize sarcoma cells to
apoptosis induced by doxorubicin regardless of Mdm2 expression
level. As shown in Figures 3 and 4, HT1080 is relatively sensitive
and SJSA relatively resistant to doxorubicin treatment. After
exposure to 0.1 mg ml�1 of doxorubicin, 35% of HT1080 cells were
apoptotic (Figure 3B), while only 4% of SJSA cells were apoptotic
(Figure 4B). When doxorubicin was combined with Ad-wt p53, Ad-
p53 22/23 or Ad-p53 14/19, 66–83% of HT1080 cells underwent
apoptosis (Figure 3B). However, in SJSA cells, when doxorubicin
was combined with Ad-wt p53, only 15% of cells were apoptotic
(Figure 4B), demonstrating continued resistance. In contrast,
doxorubicin plus Ad-p53 22/23 or Ad-p53 14/19 generated greater
apoptosis (44 or 63%) in SJSA cells. This demonstrates that Ad-p53
22/23 and Ad-p53 14/19 can not only enhance apoptosis induced
by doxorubicin in sensitive cells such as HT1080 but can also
overcome Mdm2-mediated doxorubicin resistance, as in SJSA
cells. Moreover, the results suggest that Ad-p53 14/19 has more
significant synergy with doxorubicin than Ad-p53 22/23.

In order to further demonstrate that Ad-p53 14/19 can increase
apoptosis induced by a chemotherapeutic agent, cisplatin was
selected. Cisplatin is a common chemotherapeutic agent for
sarcomas, such as osteosarcoma (Stine et al, 2003). As shown in
Figure 5, HT1080 is still relatively more sensitive to cisplatin
treatment than SJSA. After exposure to 5 mg ml�1 of cisplatin, 70%
of HT1080 cells were apoptotic (Figure 5A), while only 24% of SJSA
cells were apoptotic (Figure 5B). When cisplatin was combined
with Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19, around 84– 88% of
HT1080 cells underwent apoptosis (Figure 5A). However, in SJSA
cells, when cisplatin was combined with Ad-wt p53 and Ad-p53 22/
23, only 33–39% of cells were apoptotic (Figure 5B). In contrast,
cisplatin plus Ad-p53 14/19 generated greater apoptosis (80%) in
SJSA cells. This demonstrates that Ad-p53 14/19 can not only
enhance apoptosis induced by doxorubicin but can also enhance
apoptosis induced by cisplatin in either HT1080 or SJSA cells.

Doxorubicin induces phosphorylation of wt p53 and p53
14/19 proteins

To evaluate phosphorylation of p53 and expression of its target
proteins, SJSA and HT1080 were infected with Ad-wt p53 or
Ad-p53 14/19 in conjunction with exposure to 0.1 mg ml�1
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Figure 1 Ad-p53 14/19 induces significant apoptosis in sarcoma cell
lines. (A) HT1080 fibrosarcoma cells, (B) SJSA osteosarcoma cells and (C)
NHF were infected with NCV or Ad-wt p53, Ad-p53 14/19 or Ad-p53 22/
23. Cells were stained with propidium iodide (PI), apoptosis was assessed
with sub-G1 profile analysis using a FACScan flow cytometer and fold
increase of apoptotic cells was calculated. Values shown are the
meanþ standard deviation of Log [PI] from three independent experi-
ments. * Indicates a significant increase compare to Ad-wt p53 treatment
(Po0.05 in a two-tail Student’s t-test). (D) The expression of Mdm2 in
SJSA, HT1080 and NHF. Proteins were extracted from untreated cells and
analysed by Western blot using antibodies against Mdm2. GAPDH is the
protein loading control.
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p21WAF-1 and Mdm2, but not Bax in HT1080 and SJSA cell lines. Both cell
lines were infected with NCV, Ad-wt p53, Ad-p53 22/23 and Ad-p53 14/
19. After 24 h, whole-cell proteins were extracted and analysed by
Western blot using antibodies against p53, Mdm2, p21WAF-1 and Bax,
respectively. GAPDH is the protein loading control.
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doxorubicin. Western blotting showed that expression of p53 was
induced in cells treated with both Ad-wt p53 plus and Ad-p53 14/
19 plus doxorubicin (Figure 6). In SJSA cells, Ad-p53 14/19 alone
resulted in a higher p53 expression and greater induction of
downstream targets Mdm2 and Bax than Ad-wt p53. In HT1080
cells, both Ad-p53 14/19 and Ad-wt p53 induced p53 target
proteins Mdm2 and Bax. Mdm2 was phosphorylated in cells
infected with Ad-p53 14/19 and Ad-wt p53 alone.

In both HT1080 and SJSA cells, there was slightly higher p53
expression in cells treated with Ad-p53 14/19 plus doxorubicin
than in cells treated with Ad-wt p53 plus doxorubicin (Figure 6).
This suggests that doxorubicin stabilizes wt p53 protein and may
further stabilize p53 14/19. In both cell lines treated with Ad-wt
p53 plus doxorubicin or Ad-p53 14/19 plus doxorubicin, there were
dramatic increases in p53 phosphorylation at Ser-6, Ser-15, Ser-20,
Ser-37 and Ser-46. p53 phosphorylation mediated by doxorubicin
may enhance Bax (Figure 6) and p21WAF-1 (data not shown)
induction in SJSA cells. This serine phosphorylation is weakly or
not detected in cells infected with Ad-wt p53 or Ad-p53 14/19 alone
or cells treated with doxorubicin alone. In SJSA cells, Mdm2 was
slightly increased in Ad-wt p53-infected cells, but was dramatically
increased in Ad-p53 14/19-infected cells. In both cell lines, Mdm2
expression and phosphorylation were decreased in cells treated
with doxorubicin alone or Ad-wt p53 plus doxorubicin, and
markedly diminished in cells infected with Ad-p53 14/19 plus
doxorubicin (Figure 6).

DISCUSSION

Derangements of the p53 pathway are common in soft-tissue
sarcomas and osteosarcomas. Mdm2 overexpression occurs
frequently, and these tumours typically contain wt p53 (Oliner
et al, 1992). Since Mdm2 inactivates and promotes degradation of
p53, the ability to restore p53 function by introduction of wt p53
into sarcomas is limited. We tested two modified p53 genes that
are not responsive to the Mdm2 autoregulatory feedback loop (Lin
et al, 1994). Ad-p53 22/23, an adenovirus vector encoding a
transcription-defective p53 mutant, is able to induce limited
apoptosis compared to Ad-wt p53 in both sarcoma cell lines tested,
even combined with doxorubicin or cisplatin. Since both cell lines
express endogenous wt p53 (Evdokiou and Cowled, 1998), it is
possible that p53 22/23 may form dimers or tetramers with
endogenous wt p53. These hetero-tetramers may retain partial
function as a transcription factor. Interestingly, Ad-p53 22/23,
although unable to induce Mdm2 and p21WAF-1, can still induce
Bax expression in these cell lines. Bax is one of the p53 primary-
response genes involved in the induction of apoptosis (Miyashita
and Reed, 1995); this may explain in part why Ad-p53 22/23 is able
to induce limited apoptosis in these cell lines. In addition to
induction of apoptosis by transcription-dependent mechanisms,
transcription-independent mechanism(s) have been reported for
p53 (Haupt et al, 1997b; Yan et al, 1997; Mihara et al, 2003).
We observed that Ad-p53 22/23 failed to induce apoptosis in the
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Figure 3 Ad-p53 14/19, Ad-p53 22/23 and Ad-wt p53 enhance doxorubicin (Doxo)-mediated apoptosis in HT1080 fibrosarcoma cells. Cells were
infected with NCV, Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19 for 3 days alone or in combination with 0.1 mg/ml doxorubicin. Cells were then stained with
PI and apoptosis was assessed with sub-G1 profile analysis using a FACScan flow cytometer. Examples of apoptosis are shown in (A). (B) Percentages of
apoptotis are given as the meanþ standard deviation of Log [PI] from three independent experiments. Gray bars indicate HT1080 cells treated by mock
infection, doxorubicin, NCV, Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19 alone. Black bars indicate cells treated with doxorubicin plus NCV, Ad-wt p53, Ad-
p53 22/23 or Ad-p53 14/19.
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Caov-3 cell line, but induced limited apoptosis in MDAH 2774 cell
line (data not shown). Both ovarian cancer cell lines harbour p53
mutations (Yaginuma and Westphal, 1992). Therefore, p53 22/23
may still be able to induce apoptosis via a transcription-
independent mechanism(s).

p53 14/19 maintains its transcriptional activation and anti-
proliferative functions in the face of high Mdm2 levels (Chen et al,
1995, 1996). Our data indicate that p53 14/19 has greater ability to
activate Mdm2 and p21WAF-1 than p53 22/23, and induces more
significant apoptosis than p53 22/23 in sarcoma cells. These results
suggest that p53 14/19 would be the better construct to use in
further research targeting sarcoma cell lines with high levels of
Mdm2. In addition, p53 14/19 more dramatically induced p21WAF-1

than wt p53 in SJSA cells, but there was equivalent induction of
p21WAF-1 in HT1080 cells. There appears to be no relationship
between the induced level of p21WAF-1 and the induced apoptosis
by wt p53 or p53 14/19 in HT1080 or SJSA, suggesting that the
induction of p21WAF-1 is not responsible for p53-dependent
apoptosis in this model system. The major function of p21WAF-1

is to induce cell cycle growth arrest at the G1 phase (Medrano et al,
1995). Therefore, it is likely that other downstream targets of p53
are more directly involved with induction of apoptosis induced by
p53 14/19.

We have shown that Ad-p53 14/19 induces dramatic apoptosis in
sarcoma cell lines with either low or high Mdm2 expression. In
HT1080 cells (low Mdm2), Ad-p53 14/19 induced apoptosis similar
to Ad-wt p53. In SJSA cells (high Mdm2), Ad-p53 14/19 induced
dramatically more apoptosis than Ad-wt p53 (44 vs 11%). These
results are consistent with previous Ad-p53 14/19 data from cell
growth inhibition assays (Lin et al, 2000). We also observed that
Ad-p53 14/19 more potently inhibits SJSA cells’ growth than Ad-wt
p53 in nude mice (Tang and Lin, unpublished data). Neither
construct appeared to be toxic to normal skin fibroblasts in vitro.
Two possible explanations for this selectivity are that cancer cells
may be more sensitive to adenoviral transfer of wt p53, p53 22/23
or p53 14/19, or that oncogenes such as c-myc and cyclin D1 are
overexpressed in malignant but not normal cells. Overexpression
of these oncogenes sensitizes cells to apoptosis induced by wt p53
(Hermeking and Eick, 1994; Wagner et al, 1994; Lin et al, 1996;
Hiyama and Reeves, 1999). We observed no evidence that
adenoviral transfer of p53 14/19 would be any less safe than
transfer of wt p53 to normal cells.

Chemoresistance is a major problem in the treatment of
malignant tumours; hence, it will be of potential value to discover
combination protocols that overcome resistance. Doxorubicin, a
topoisomerase II inhibitor, is commonly used in the treatment of
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Figure 4 Ad-p53 14/19 enhances doxorubicin-mediated apoptosis in SJSA osteosarcoma cells. Cells were infected with NCV, Ad-wt p53, Ad-p53 22/23
or Ad-p53 14/19 for 3 days alone or in combination with 0.1 mg ml�1 doxorubicin. Cells were then stained with PI and apoptosis was assessed with sub-G1
profile analysis using a FACScan flow cytometer. Examples of apoptosis in SJSA cells are shown in (A). (B) Percentages of apoptotic cells are given as the
meanþ standard deviation of Log [PI] from three independent experiments. * Indicates a significant increase compared to Ad-wt p53 plus doxorubicin
treatment (Po0.001 in a two-tail Student’s t-test). Gray bars indicate SJSA cells treated by mock infection, doxorubicin, NCV, Ad-wt p53, Ad-p53 22/23 or
Ad-p53 14/19 alone. Black bars indicate cells treated with doxorubicin plus NCV, Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19.
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sarcomas (Sondak and Chang, 2001). Doxorubicin causes apopto-
sis by direct DNA damage, at least in part in a p53-dependent
manner (Lowe et al, 1993, 1994; Malcomson et al, 1995;
Vikhanskaya et al, 1997; Weinstein et al, 1997; Blagosklonny and
El-Deiry, 1998). Cisplatin is also one of the most widely used

chemotherapeutic agents for the treatment of many types of
cancer. Apoptosis is the primary mode of cell death induced by
cisplatin, and cisplatin occurs primarily through its ability to bind
covalently to DNA and prevent DNA replication and transcription
(Li et al, 1998; Masuda et al, 1998). The HT1080 cell line is
sensitive to doxorubicin (Li et al, 2001), and the present study
shows that HT1080 is also more sensitive to cisplatin. We found
that SJSA was resistant to doxorubicin and not more sensitive to
cisplatin than HT1080. These results are in agreement with one
previous report that the mdm2 gene caused resistance to
doxorubicin but not to cisplatin in some sarcoma cell lines, and
in these lines there was an increase in the expression of the mdr-1
gene that encodes P-gp (Cocker et al, 2001). However, we did not
observe the expression of multidrug resistance proteins, such as
MDR, MRP1 and MRP4 in NHF, HT1080 and SJSA cell lines (data
not shown). Our data suggest that Ad-p53 14/19, but not Ad-wt p53
is able to overcome this resistance to doxorubicin as well as
enhance SJSA cells’ sensitivity to cisplatin. Nevertheless, Ad-p53
22/23 is also able to increase apoptosis induced by doxorubicin in
SJSA cells’ sensitize has the same effect as Ad-wt p53 in enhancing
apoptosis induced by cisplatin (Figure 4B and 5B). Ad-p53 14/19
and Ad-p53 22/23 also augmented the apoptotic response to
doxorubicin and cisplatin in HT1080, the sensitive cell line (Figure
3B and 5A).

p53 phosphorylation is induced by DNA damage at a variety of
sites including Ser-6, Ser-15, Ser-20, Ser-37 and Ser-46 (Sakaguchi
et al, 1998; Tibbetts et al, 1999; Higashimoto et al, 2000; Oda et al,
2000; Achanta et al, 2001; Shono et al, 2002). These modifications
may stabilize and activate p53 as a transcription factor. (Shieh et al,
1997; Siliciano et al, 1997; Chehab et al, 2000). Our studies show
that both Ad-wt p53 and Ad-p53 14/19 in combination with
doxorubicin dramatically increase p53 phosphorylation. Previous
studies have shown that phosphorylation at Ser-15, Ser-20 and Ser-
46 is critical for regulating apoptotic activity (Oda et al, 2000;
Shono et al, 2002). Phosphorylation of Ser-15, Ser-20 and Ser-37
interferes with Mdm2 interaction and impairs the ability of Mdm2
to inhibit p53-dependent transactivation (Shieh et al, 1997; Chehab
et al, 1999; Appella and Anderson, 2000). We found that both wt
p53 and p53 14/19 are phosphorylated at Ser-6, Ser-15 Ser-20, Ser-
37 and Ser-46 in response to doxorubicin. Hence, the mutations at
residues 14 and 19 do not affect these phosphorylation sites.
Interestingly, levels of Ser-6 and Ser-46 phosphorylation of p53 14/
19 were much higher than wt p53 in SJSA cells.

Infection with Ad-wt p53 combined with doxorubicin resulted in
enhanced apoptosis compared to Ad-wt p53 or doxorubicin alone
in HT1080 but not in SJSA cells. This suggests that negative
regulation of p53 by Mdm2 in SJSA cells may limit the magnitude
of p53 activation and p53-dependent apoptosis even when p53 is
phosphorylated. Mdm2 overexpression diminished the apoptotic
response to doxorubicin even when exogenous wild-type p53 was
reintroduced, consistent with other reports (Cocker et al, 2001).

Doxorubicin treatment reduced Mdm2 expression and phos-
phorylation in both cell lines. This is consistent with a previous
report that Mdm2 is downregulated by anticancer drugs including
doxorubicin (Gao et al, 1999). Doxorubicin can activate p53 in
Mdm2-overexpressing cells by decreasing Mdm2 levels, alleviating
the inhibition of p53.

We observed increased expression of Bax in SJSA cells treated
with Ad-wt p53 plus doxorubicin compared to cells infected with
Ad-wt p53 alone. Bax levels correlated with p53-induced apoptosis.
In HT1080 cells, although the expression of Bax was induced by
Ad-wt p53 or Ad-p53 14/19, there was no relationship between Bax
expression and apoptosis. Previous studies have shown that Bax
induction by p53 is necessary to inhibit tumour growth (Yin et al,
1997), but that the contribution of Bax to p53-mediated apoptosis
is cell-type dependent (Knudson et al, 1995; McCurrach et al,
1997). In HT1080 cells, other downstream targets of p53 may be
more important for induction of apoptosis.
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Figure 5 Ad-p53 14/19 combined with cisplatin induces more significant
apoptosis than Ad-wt p53 combined with cisplatin in SJSA cells. Cells were
infected with NCV, Ad-wt p53, Ad-p53 22/23 or Ad-p53 14/19 for 3 days
alone or in combination with 5 mg/ml cisplatin. Cells were then stained with
PI and apoptosis was assessed with sub-G1 profile analysis using a FACScan
flow cytometer. Percentages of apoptosis in HT1080 cells are shown in
(A), and percentages of apoptosis in SJSA cells are shown in (B). Values
shown are the meanþ standard deviation of Log [PI] from three
independent experiments. * Indicates a significant increase compared to
Ad-wt p53 plus cisplatin treatment (Po0.005 in a two-tail Student’s t-test).
Gray bars indicate SJSA cells treated by mock infection, cisplatin, NCV, Ad-
wt p53, Ad-p53 22/23 or Ad-p53 14/19 alone. Black bars indicate cells
treated with cisplatin plus NCV, Ad-wt p53, Ad-p53 22/23 or Ad-p53
14/19.

SJSA

p53 (Ser-20)

MDM2

p53 (Ser-37)

p53 

p53 (Ser-15)

p53 (Ser-46)

p53 (Ser-6)

MDM2(Ser-166)

Bax

GAPDH

A
d-p53 14/19+

D
oxo.

A
d-w

t p53 

A
d-p53 14/19

D
oxorubicin

A
d-w

t p53 +
D

oxo.

U
ninfected

MDM2(Ser-166)

HT1080

p53 (Ser-20)

p53 (Ser-46)

p53 (Ser-6)

p53

p53 (Ser-37)

p53 (Ser-15)

Bax

A
d-53 14/19+

D
oxo.

U
ninfected

A
d-w

t p53 

A
d-p53  14/19

D
oxorubicin

A
d-w

t p53 +
D

oxo.

GAPDH

MDM2

Figure 6 Doxorubicin induces phosphorylation of p53 in HT1080 (low
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In conclusion, Mdm2 overexpression can promote cancer cell
resistance to DNA-damaging agents and limit the effectiveness of
chemotherapeutic drugs. Modified p53, particularly p53 14/19,
retains the proapoptotic and transcriptional activity of wt p53, and
can augment the effectiveness of chemotherapy even in cells
overexpressing Mdm2. Strategies involving p53 14/19 with
chemotherapeutic agents may be a useful approach for sarcomas
and other tumours with high levels of Mdm2.
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