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Microstructural controls 
of anticrack nucleation in highly 
porous brittle solids
Jonas Ritter1, Henning Löwe2 & Johan Gaume2,3*

Porous brittle solids have the ability to collapse and fail even under compressive stresses. In 
fracture mechanics, this singular behavior, often referred to as anticrack, demands for appropriate 
continuum models to predict the catastrophic failure. To identify universal controls of anticracks, we 
link the microstructure of a porous solid with its yield surface at the onset of plastic flow. We utilize 
an assembly method for porous structures, which allows to independently vary microstructural 
properties (density and coordination number) and perform discrete element simulations under 
mixed-mode (shear-compression) loading. In rescaled stress coordinates, the concurrent influence of 
the microstructural properties can be cast into a universal, ellipsoidal form of the yield surface that 
reveals an associative plastic flow rule, as a common feature of these materials. Our results constitute 
a constructive approach for continuum modeling of anticrack nucleation and propagation in highly 
porous brittle, engineering and geo-materials.

The compression of porous brittle materials can lead to localization of compaction or compacting shear bands1–3. 
This singular behavior, referred to as anticrack, originates from microstructural failure processes and has been 
observed in the compression of porous sandstone4,5, submarine landslides6, firnquakes7 or snow avalanches8–10. 
The latter is a particularly spectacular consequence of the nucleation of an anticrack under mixed mode load-
ing: Snow as a highly porous material continuously changes its microstructure under thermodynamic forcing11. 
Under a high temperature gradient, a layer of small rounded crystals can turn into a weak layer of large faceted 
crystals12. Buried in a snowpack on a mountain slope, such a layer is always subjected to mixed-mode (shear-
compressive) loading and the nucleation of an anticrack can lead to widespread anticrack propagation and 
dangerous slab avalanches3,8. To understand the generic mechanisms underlying these processes, irrespective 
of a particular material, it is necessary to decipher how the macroscopic behavior of mixed-mode anticrack 
nucleation originates from the microstructure.

From a continuum point of view, the nucleation of mixed-mode anticracks is controlled by the complex inter-
play between the yield surface, plastic flow rule and strain softening. It has been suggested that non-associated 
plasticity is necessary to reproduce anticracks in some porous sandstones13. In contrast, recent work on snow has 
demonstrated that anticrack nucleation and propagation in snow can be simulated using a continuum damage 
model with associated plasticity, if complemented by a modified strain softening law3. However, these question 
cannot be satisfactorily answered at the continuum level where involved assumptions cannot be traced back to 
and justified from the microstructure.

In the past decades, the extensive use of X-ray micro-computed tomography (XRCT) facilitated unprec-
edented insight into porous microstructures in all fields of material science14. Numerical simulations based 
on XRCT images allow to faithfully characterize and constrain the properties of the microstructural network 
(such as connectivity) on the mechanical behavior of different materials such as soils15,16, lunar soils17, snow18–22, 
rocks23,24 or concrete25–27. Simulations based on XRCT microstructure images are nowadays seen as comple-
mentary (numerical) experiments which can be repeatedly performed with different material properties, load-
ing states and boundary conditions. This opens excellent opportunities in addition to (destructive) laboratory 
experiments which naturally lag behind in view of versatility and parameter variability. However, high resolution 
microstructure-based simulations still come with considerable computational requirements. Thus systematic 
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large-strain, dynamic simulations for a comprehensive ensemble of different microstructures are still elaborate, 
which impedes the understanding of universal microstructural drivers of the complex mechanical behavior 
involved in anticracks.

A common approach to investigate microstructural controls on the mechanical behavior of porous solids 
are particle based methods such as DEM28. To access generic mechanisms relevant for a wide range of micro-
structural conditions, particle assemblies with volume fractions close to a dense packing are, however, not 
suitable. Rather a significant variation of the (mechanically) relevant parameters, i.e. volume fraction and the 
coordination number, are required to understand the controls of porosity and matrix connectivity on anticracks. 
As demonstrated by Gaume et al.29, Baxter’s sticky hard sphere (SHS) model30 can be conveniently utilized as a 
generic assembly method for DEM to independently prescribe volume fraction and coordination number, for 
very low porosity aggregates. In addition, a mapping of particle properties to continuous two-phase microstruc-
tures acquired by XRCT is principally feasible in the sense of a stochastic reconstruction, by matching two-point 
correlation functions31.

Here, we employ this methodology to systematically investigate a large ensemble of diverse microstructures 
with a wide range of coordination numbers and volume fractions within DEM under mixed-mode loading con-
ditions (Fig. 1). From all simulations, we derive a single form of the continuum yield surface and the plastic flow 
rule relevant for anticrack nucleation. The results provide fundamental insight how the continuum mechanical 
behaviour of very loose and brittle solids is controlled by volume fraction and microstructural connectivity.

Results
Mixed‑mode anticrack nucleation.  Heterogeneous compaction in brittle, highly porous solids is high-
lighted in uniaxial compression DEM simulations (Fig.  1C). The deformation occurs in a localized manner 
within a compacted region (illustrated by large vertical strain rates and distributed broken bonds in Fig. 1B,C) 
while the rest of the sample remains undisturbed. The generic behavior under uniaxial compression is shown in 
Fig. 2A,C for different volume fractions and coordination numbers. Stress–strain curves follow a quasi elastic 
brittle behavior i.e. (1) an almost linear elastic phase including non-cascading bond breaking events for low 
deformations up to (2) catastrophic failure followed by (3) strain softening. Increasing values of volume fractions 
and/or increasing values of coordination number lead to increasing elastic modulus and compressive strength. 
In addition, the increase in the broken bonds percentage is strongly correlated with the amount of softening after 
failure. After the strain-softening phase, samples collapse under the load leading to the localization of a compac-
tion band2 (Fig. 1B) which is generally referred to as anticrack4. The residual stress after softening is the result of 
a competition between bond breaking and formation of new frictional contacts.

The yield surface of the samples (Fig. 2B,D) was evaluated from mixed-mode loading simulations. All porous 
solid samples can fail under tension, shear, compression, and mixed-mode loading states leading to a closed 
yield surface. Tensile and shear strength are similar in magnitude, and both lower than the compressive strength. 
While the shape of the yield surface does not appear to be significantly affected by the initial microstructures, its 
size drastically increases with increasing volume fraction and coordination number, in line with the observation 
made for the compressive strength. Figure 3 shows the volumetric response of the samples for different loading 
angles. A transition between volume increase (expansion), and volume reduction (compaction) after failure 
is found for a loading angle of ∼ 67.5◦ . For the latter angle, the vertical displacement of the clump uz remains 
almost constant during shearing. For larger compressive stresses, i.e. lower loading angles, fracture is followed 
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Figure 1.   (A) Simulated system with fixed particles (green). Red necks represents bonds between particles. 
The loading clump is represented in blue. (B) Average vertical velocity �|vz |� and average vertical strain rate 
�ǫ̇zz� along the sample’s height. (C) Spatial distribution of the absolute value of the vertical velocity |vz | and (x, z) 
coordinates of broken bonds (white crosses) for a configuration with a volume fraction φ0 = 0.3 , a coordination 
number zc = 2.87 and a deformation of 8%. Broken bonds are located within a compacted region in the upper 
∼ 0.5 cm of the sample. Below this compacted zone, the sample remained mostly undisturbed.
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by sample’s compaction (anticrack nucleation). In contrast, lower compressive stresses, i.e. larger loading angles 
lead to samples’ expansion after fracture (crack nucleation).

Yield surface and plastic flow.  Universal features were extracted by using a suitable continuum form of 
the yield surface, which could be re-scaled by inferring the dependence of the coefficients on volume fraction 
and coordination number. Given the elliptical shape of the samples’ yield surfaces, the Cohesive Cam Clay model 
developed by Gaume et al.3 was used to fit the simulation data in stress space of shear and normal stresses τ and 

A B
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Figure 2.   (A) Normal stress versus normal strain and percentage of broken bonds (dashed line) for uniaxial 
compression simulations for different volume fractions. (B) Yield surfaces obtained with mixed-mode loading 
simulations for different volume fractions. (C) Normal stress versus normal strain and percentage of broken 
bonds (dashed line) for uniaxial compression simulations for different coordination number values. (D) Yield 
surfaces obtained with mixed-mode loading simulations for different coordination number values.

Figure 3.   Volumetric response (tangential vs. horizontal displacement) for the configuration φ0 = 0.35 , 
zc = 2.00 for different loading angles ψ.
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σ , respectively. This yield surface was developed to simulate anticrack nucleation and propagation in snow and 
is defined here as:

where σ0 is the compressive strength, βσ0 is the tensile strength and M is the slope of the cohesionless critical 
state line3. The parameters σ0 , β and M were evaluated using a least-square estimation. Examples of the resulting 
fitted ellipse are shown in Fig. 2 (black lines). Results show that the compressive stress and the tensile strength 
both scale with the contact density νc = zcφ of the samples according to a power law (Fig. 4):

On the other hand, we did not find any trend for the parameter M which varies between 0.6 and 1 with an aver-
age of ∼ 0.8.

Given the above scaling, it appears natural to search for a universal form of the yield surface parameterized 
based on contact density only. To this end, we define a transformed stress coordinates (σ ∗, τ ∗) in which the yield 
surface is a unit circle:

To satisfy Eq. (1), σ ∗ and τ ∗ are defined as

Using this normalization based on contact density only, all failure points collapse on a universal yield surface 
defined by Eq. (4) (Fig. 5A). Interestingly, the apex of the ellipse corresponds to a loading angle ψ between 45◦ 
and 90◦ with a mean value ∼ 67.5◦ . This angle corresponds to the transition between samples’ compaction and 
expansion. To evaluate the flow rule of the samples, we evaluate the plastic flow angle θ = arctan

uz
ux

 based on 
the simulations. To verify the assumption that the samples have an associative plastic flow rule, we relate θ to the 
derivative of the yield surface ∂τ

∂σ
 , which depends on the loading angle ψ . For the sake of universality, calculations 

are performed in the normalized stress space. Details of the calculations are presented in the Methods section.
Figure 5B shows the normalized plastic flow angle θ∗ as a function of the normalized loading angle ψ∗ . All 

data points appear to collapse on a single universal linear curve given by Eq. (16) which indicates that highly 
porous brittle solids follow an associative flow rule. Note that the loading angle ψ+/− corresponding to a transi-
tion between expansion and compaction directly depends on the slope of the critical state line M, as well as the 
parameter β , which characterizes the cohesion of the material according to

For a cohesionless material ( β = 0 ), ψ+/− = arctanM (critical state line) while for a porous solid with the same 
compressive and tensile strengths ( β = 1 ), ψ+/− = π/2 which is typical for metallic foams32.

(1)τ 2(1+ 2β)+M2(σ − σ0)(σ + βσ0) = 0

(2)
σ0

σtb
= hνκc , h = 2.81× 10−3, κ = 3.59

(3)
βσ0

σtb
= kν�c , k = 1.38× 10−3, � = 3.09.

(4)τ ∗2 +σ∗2 = 1
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√
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√
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Figure 4.   Compressive strength and tensile strength scaled by the bond tensile strength versus contact density 
as well as M versus contact density.
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Discussion
An explanation as to why the yield surface is predominantly controlled by volume fraction and contact density is 
suggested by the fact that for arbitrary particle-based two-phase systems, the link between physical and structural 
properties is completely embodied in the hierarchy of n−point correlation functions33. The lowest point order 
( n = 1 ) is only determined by the volume fraction as the widely accepted, most important parameter. In the 
next higher point order ( n = 2 ), the contact density νc controls the short-range expansion of the corresponding 
correlation function34. This implies that the contact density must be considered as the the second-most impor-
tant parameter (beyond the volume fraction) in the combined expansion of the microstructure, with respect to 
point-order and spatial range. This naturally raises the question to which extent these two parameters can explain 
the macroscopic yield surface of highly porous brittle solids.

To this end, we considered a zoo of highly porous microstructures generated from the sticky hard sphere 
ensemble30 to independently control volume fraction and contact density. Within numerical uncertainties, both 
parameters are sufficient to quantify the yield surface and plastic flow rule of the porous solids. The yield surface 
of the samples collapse on a master curve (unit ellipse), after rescaling by the contact density. In addition, we have 
numerically shown that the plastic flow rule is associative. As a consequence, the volumetric response critically 
depends on the applied pressure. For large normal stresses ( σ >

σ0(1−β)
2

 , i.e. on the right side of the apex of the 
ellipse), the plastic flow angle is negative leading to the volumetric collapse of the samples (plastic compaction). 
This process is referred to as a mixed-mode (shear-compression) anticrack. Together with previous results29 
on the unique link between elastic modulus and contact density, our present results highlight the universal 
microstructural control of this quantity for the (pre-failure) mechanical behavior of highly porous brittle solids.

The proof of associativity presented here allows us to justify a strong assumption that was previously required 
to model anticrack nucleation leading to catastrophic slab avalanches in the recent work of Gaume et al.3. In this 
approach, a continuum model for dynamic anticrack propagation in snow has been developed based on critical 
state plasticity theory. These authors used a similar ellipsoidal (Modified Cam Clay) yield surface and made the 
assumption of an associative plastic flow rule to simulate the volume change during snow deformation. In addi-
tion to the proof of associativity, the present work allows us to evaluate the parameters of the model based on a 
single microstructural quantity: the contact density.

As aforementioned, the advantage of this approach is that parameters of the Sticky Hard Spheres model 
(volume fraction and coordination number) can be directly evaluated based on X-ray tomographic images by 
matching correlation functions31. While several recent numerical studies have analyzed the mechanical response 
of porous brittle solids like snow based on the real samples’ microstructures18,19,21, it has been recently shown 
that simplified structures made of spherical particles can be used to reproduce accurately important features of 
snow mechanics in the brittle range for different processes: failure initiation35,36, crack propagation9,10, snowflake 
fragmentation37, wind blowing snow38, snow granulation39 and avalanche impact pressures40. One the one hand, 
this simplification makes us loose important information about the microstructure. However, on the other hand, 
it allows us to significantly fasten the simulations and thus make detailed parameter sensitivity studies, which 
is not possible with highly detailed representations of the microstructure. In addition, the individual particle 
properties were chosen according to the ice mechanical behavior which constitute the solid matrix of snow. Yet, 
it was shown29 that the bulk elasticity and strength of the samples linearly scales with the particle elasticity and 
bond strength, respectively. This is reflected by Equations (2) and (3) in which the yield surface parameters are 
presented in a normalized manner, which allows to apply our results to other highly porous materials with dif-
ferent solid matrix properties. The presented DEM model is able to reproduce the nucleation and propagation 
of anticracks observed in porous layers of snow in the brittle range3. The formation of new cohesive bonds dur-
ing the simulation would allow us in the future to reproduce the ductile-to-brittle transition in snow and thus 
the repetitive formation and reflection of compaction bands, as observed by Barraclough et al.2. Additionally, 

Figure 5.   (A) Normalized failure envelopes for all configurations. (B) Related plastic flow angle versus loading 
angle in the normalized stress space.
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implementing a particle breakage criterion41,42 would enable us to simulate more complex types of localized 
deformation such as erratic and oscillatory compaction bands, observed in the compression of rice crispies1.

Evaluating the conditions for the onset of localization of compacting shear bands or anticrack nucleation in 
porous rocks is a great challenge5,43 and has implication for the understanding of deep earthquakes. Many asso-
ciative plasticity models have been developed for porous rocks mechanics but localization is only possible with 
strain-softening, which occurs only under conditions of volume increase (dilation) according to classical critical 
state soil mechanics (CSM) models inspired by the behavior of granular materials. However, localized deforma-
tion was also reported under compressive stresses leading to compaction or compacting-shear bands1–4,44–46. 
Some researchers tried to overcome the inability of classical associative CSM models to reproduce anticracks 
or compaction bands through the development of non-associative flow rules. However, important discrepan-
cies between experiments and model predictions have been found concerning localization features13,43,47. Wong 
et al.47 attributed differences between experimental observations and localization analysis to the “inadequacy of 
the non-associative constitutive model to capture the partitioning of several damage mechanisms, including the 
growth and coalescence of stress-induced microcracks and pore collapse”. The present analysis suggests that the 
plastic behavior of highly porous solids ( φ < 0.35 ) is associative. The fact is, highly porous brittle solids undergo 
significant softening, even under large compressive stresses1–3. Gaume et al.3,29 suggested that the solid structure 
of porous solids under compression is actually under tension, which jeopardizes the continuum assumption. 
Hence, they proposed a modified hardening law based on the norm of the volumetric plastic strain, which leads 
to a shrinkage of the yield surface, even under compression until it corresponds to a point in the origin of the 
stress space, when cohesion is set to zero. The behavior under compression (on the cap of the yield surface) thus 
becomes similar to tensile mode I crack opening, which is refereed to as anticrack here (negative mode I). Here, 
simulations are performed for relatively low deformations ( < 5 %) corresponding to the nucleation of the mixed-
mode anticrack. For larger strain values, the yield surface changes significantly3. The value of β decreases due 
to cohesion loss and σ0 increases because of the creation of new frictional contacts. The decrease of β induces a 
change in the value of the slope of the apparent critical state line (CSL). In the current formulation of the yield 
surface, M is the slope of the cohesionless CSL. Hence, the slope of the cohesive CSL which starts from the 
coordinate ( −βσ0 , 0) is M ′ = M/

√
1+ 2β  . Most porous geomaterials, including rocks and snow have values 

of β between 0.1 and 0.5 typically19,48,49 leading to an increase of the apparent critical state line after failure of 10 
to 40%. Hence, the difference observed between the plastic flow direction and the normality condition to the 
initial yield surface of highly porous solids is related to a sudden change of the shape of the yield surface induced 
by the post-peak softening.

Finally, we note that the choice of volume fractions for the simulations is motivated by the applicability to 
highly porous systems below the close packing density where the used Monte Carlo method of mono-disperse 
spheres50 may fail. At high volume fractions (close to the random close packing density, as obtained by Kun 
et al.51 using a different packing algorithm) the observed compaction band regime is generally complemented 
by a regime of predominant shear bands. It would be interesting to study such crossover behavior in the future 
using a microstructure assembly method that is able to cover the whole range of volume fractions.

Methods
Initial states.  The initial states of DEM simulations are generated using Baxter’s model of Sticky Hard 
Spheres (SHS)30. SHS allows us to generate a random assembly of percolating spheres of given volume fraction 
φ and coordination number zc (average number of contacts per sphere). Note that the SHS ensemble contains 
a percolation transition where the fraction of particles in the load-bearing backbone of the microstructures 
approaches zero. Naturally, using SHS state in the non-percolating phase is meaningless for their interpretation 
as a porous brittle solid. The details of the SHS model can be found in Gaume et al.29.

We used the same microstructures as in Gaume et al.29. They are generated through Monte-Carlo simulations 
based on the SHS model. Through this statistical approach it is possible to generate different realizations of a 
sample with the same initial volume fraction φ and initial average coordination number zc but random micro-
structures. For every combination of φ and zc (Fig. 6), three realizations were simulated.

Discrete element simulations.  We used PFC3D v5 by Itasca52 to simulate the mixed-mode loading of 
porous cohesive granular samples inside a cubic box of 1 cm side-length. The simulations are performed without 
gravity which allowed us to use a large particle density ρ = 10,000 kg/m3 to speed up the simulations.

Initial positions (xp0, yp0, zp0) and particle radii r are obtained from Monte Carlo simulations. Simulations are 
performed with N = 2,048 particles which was shown large enough to prevent size effects29.

All particles close to the bottom of the system ( zp0 < 3r ) were fixed in translational and rotational movement 
(green particles in Fig. 1A). On the side, periodic boundary conditions were applied (transparent gray domain 
in Fig. 1A). At the top, a rigid clump was created to apply the mixed-mode loading.

Initial contacts between particles are bonded using the parallel bond model described in detail in Gaume 
et al.29. During the simulation, bonds can only break and new frictional cohesionless contacts can occur. Bonds 
have an elastic modulus of E = 1 GPa and a normal-to-shear stiffness ratio κ = 3 . Bonds can break under shear 
and tension and have specific shear and tensile strength σtb and τsb , respectively. We chose σtb = τsb = 1 MPa. 
This leads to a bond failure strain of ǫfb = 0.001 of the order of that of ice.

Loading and stress measure.  Load-controlled simulations are performed by applying an increasing force 
�F on the clump with different loading angles. The force is defined as �F = F(sinψ�x − cosψ�z) where ψ is the 
loading angle. A loading rate Ḟ = 0.05 N/s was chosen sufficiently small to ensure quasi-static conditions. In 
addition, we verified that the inertial number53 during the simulation was sufficiently small ( I < 10−4 ) to pre-
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vent the influence of inertial effects on the presented results. The shear and normal stresses τ and σ were calcu-
lated at the bottom of the sample as

respectively. In the above expressions, A is the cross section of the sample, N represents the subset of parti-
cles fixed at the bottom of the sample, f ix and f iz  are the resulting forces on particle i in the x and z directions, 
respectively.

Failure identification.  Failure was identified using a two-step criterion similar to that proposed by Mulak 
and Gaume35 based on the kinetic energy of the clump and the equivalent von Mises stress of the samples.

First we identify a strain range in which failure occurred (transparent gray range in Fig. 7). We define the 
normalized kinetic energy as:

where vc is the clump velocity vector. After failure, E∗k significantly increases in all simulations. Hence, we define 
a strain range for failure by searching for E∗k < ζ . In a second step, we search for the maximum equivalent von 
Mises stress q within the previously defined strain range. The equivalent von Mises stress is defined as

with s as the deviatoric part of the stress tensor given by

where I is the identity matrix, p the pressure and, σ is the Love homogenized stress tensor. The local maximum of 
q within the strain range defined above is defined as “failure point”. We verified, based on the stress–strain curves, 
that a value ζ = 0.3 led a very robust detection of failure. We also checked that the presented results remain valid 
for other failure criteria such as the second order work54 or a criterion based on the number of broken bonds.

Plastic flow in the normalized stress space.  The normalized loading direction is characterized by

with

Combining Eqs. (4) and (12) yields

1

A

∑

i∈N
f ix and

1

A

∑

i∈N
f iz ,

(8)E∗k = Ek

max Ek
= �vc�2

max �vc�2

(9)q =
√

3

2
s : s

(10)s = σ + pI

(11)p =− 1

3
trσ

(12)µ∗ = tanψ∗

(13)τ ∗ = µ∗σ ∗.

Figure 6.   Values of coordination number zc and volume fraction φ used as input of the SHS simulations to 
generate the initial states of the DEM simulations.
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Hence, plugging µ∗ from Eq. (14) into Eq. (12) gives

For an associative plastic flow, the plastic flow angle θ∗ is given by

Given the following relationship between the original and the normalized yield surfaces:

we obtain

The last piece of the puzzle consists in relating µ∗ to µ in Eq. (16). This is done by combining Eqs. (5), (6) and 
(13) and leads to

which can easily be solved for µ∗.
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