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Short report

A complex DICER1 syndrome phenotype associated
with a germline pathogenic variant affecting the
RNase Illa domain of DICER1

Emeli Pontén
Leanne de Kock
Kristina Lagerstedt-Robinson

ABSTRACT

Background Germline pathogenic variants in DICERT
cause DICERT syndrome, an autosomal dominant,
pleiotropic tumour predisposition syndrome with
variable expressivity and reduced penetrance for specific
dysplastic and neoplastic lesions. Recently, a syndrome
with the acronym GLOW (Global developmental delay,
Lung cysts, Overgrowth, Wilms tumour) was described in
two children with mosaic missense mutations in hotspot
residues of the DICERT RNase Illb domain.

Methods Whole genome sequencing, exome
sequencing, Sanger sequencing, digital PCR and a
review of Wilms tumours with DICERT RNase Il domain
mutations were performed.

Results A de novo heterozygous c.4031C>T (p.51344L)
variant in the sequence encoding the RNase Illa domain
of DICERT was detected. Clinical investigations revealed
a phenotype that resembles the GLOW subphenotype of
DICERT syndrome.

Conclusion The phenotypic overlap between patients
with p.S1344L mutation and GLOW syndrome provide
clinical support for recent discoveries that RNase llla-
Ser1344 site mutations impede miRNA-5p biogenesis
analogous to DICERT hotspot mutations in the

RNase Illb domain. We show that an individual with

a heterozygous germline p.S1344L mutation has a
severe form of DICERT syndrome ('DICER1 syndrome
plus’), with notable features of intellectual disability,
macrocephaly, physical abnormalities, Wilms tumour and
a well-differentiated fetal adenocarcinoma of the lung.

INTRODUCTION
The DICERT (MIM *606241) gene located at
14q32.13 is important for embryogenesis and early
somatic development. Residing in the cytoplasm,
the DICERT1 protein is an endoribonuclease (RNase)
Il cleaving double-stranded RNA. The enzyme
is crucial for producing miRNAs, as it processes
precursor strands (pre-miRNA) whereby two
single-stranded miRNA molecules are produced,
named by their prime end origin (3p/5p miRNA)."
DICER1 syndrome (MIM #601200) is an auto-
somal dominant, pleiotropic tumour predisposition
syndrome with variable expression and reduced
penetrance of benign and malignant tumours,
commonly pleuropulmonary blastoma (PPB),
cystic nephroma, Sertoli-Leydig cell tumour and
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hyperplastic proliferations such as multinodular
goitre. The most frequently observed mechanism
underlying tumour formation in DICER1 syndrome
is the presence of biallelic alterations that include
germline loss of function (LOF) pathogenic vari-
ants, combined with somatic in trans mutations in
the sequence encoding the hotspot residues of the
RNase I1Ib domain."

Missense mutations occurring in exons encoding
the DICER1 RNase IIIb domain, either involving
or adjacent to catalytically active metal-ion binding
residues including p.E1705, p.D1709, p.G1809,
p.D1810, p.E1813 and p.D1713 are recognised
as cancer hotspot loci. Alterations of these RNase
IIIb residues cause neomorphic alleles, reported to
be functionally equivalent with respect to miRNA
biogenesis.> These alterations interfere with the
canonical processing of miRNA precursors, resulting
in a relative excess of 3p-miRNA and a depletion of
Sp-miRNA.? It has recently been revealed through
evolutionary and structural coupling analyses that
RNase I11a-S1344 site is in close proximity to the
active cleft of RNase IIIb domain and that a muta-
tion in RNase II1a-S1344 exhibit the same pattern
of 5p-miRNA loss as that resulting from RNase IIIb
hotspot mutations.* In 2014, Klein et al proposed
a new DICERI related syndrome with the acronym
GLOW (Global developmental delay, Lung cysts,
Overgrowth, Wilms tumour), describing two chil-
dren with mosaic missense hotspot mutations in
DICERT1 affecting the RNase IIIb domain. A highly
penetrant and severe phenotype has been shown
in patients with mosaic’ ¢ or germline” RNase IITb
mutations, compared with patients with classic
DICERT1 syndrome caused by germline LOF patho-
genic variants.

Here, we show evidence that the germline
c.4031C>T (p.S1344L) mutation in DICERI1
causes a severe subtype of DICER1 syndrome
with intellectual disability (ID), macrocephaly,
extensive bilateral lung cysts, early onset of
Wilms tumour and well-differentiated fetal lung
adenocarcinoma—a clinical spectrum similar to,
but distinct from, the phenotype reported in two
patients with GLOW syndrome with postzygotic
hotspot mutations in exons encoding the RNase
[Ib domain.
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Figure 1  Patient characteristics. Photographs of the patient at 10.5
years of age showing (A) posterior ear pits of left helix, (B) a high, broad,
furrowed forehead, mild hypertelorism, short, upturned nose, facial

nevi, large mouth and teeth, (C) profile portrait of the patient showing
macrocephaly and posterior ear pits of the right helix. (D) CT scan of

the patient at 16 years of age showing bilateral large cysts and a cystic
nephroma in the remaining enlarged kidney. (E) Chest X-ray of the

patient at 16 years of age showing left convex thoracic scoliosis. (F) dPCR
results of DNA from skin biopsy from the patient. Blue cluster represents
amplification of the target region—the mutant allele c.4031C>T. Red
signals represent the internal reference control and green signals both
mutant and reference alleles. Yellow cluster represents the wells where no
amplification signal was detected. (G) Mutant frequency comparison. X-axis
and Y-axis show the intensities of signals VIC and FAM channels. Columns
display the distribution of 50% of the c.4031C>T variant in DNA from skin
and blood from the patient. Left column—skin, right column—peripheral
blood.

MATERIALS AND METHODS

Methods

Genomic DNA was extracted from peripheral blood, skin, saliva,
oral mucosa, fresh tumour tissue and formalin-fixed, paraffin-
embedded tumour tissue using standard protocols. DNA from
both parents was extracted from peripheral blood.

Sequencing and bioinformatic analysis

Standard 30x whole genome sequencing (WGS), exome
sequencing (ES) and bioinformatic analysis were performed
at Clinical Genomics, SciLifeLab, Stockholm, using the Illu-
mina HiSeq X Ten platform. Single nucleotide variants were
called using Mutation Identification Pipeline. Variants were
filtered, removing variants with a frequency over 1% in the
general population.® A constructed gene panel based on HPO-
terms (Macrocephaly HP:0000256, Polydactyly HP:0010442,

Nephroblastoma HP:0002667) consisting of in total 476 genes
were analysed regarding variants affecting coding regions or
splicing (online supplemental table 1). The clinically rele-
vant sequence variant was verified in the patient using Sanger
sequencing. Carrier testing of the parents was performed using
Sanger sequencing.

Digital PCR

Genomic DNA extracted from blood, skin, saliva and oral
mucosa were amplified using 1X QuantStudio 3D Digital PCR
Master mix and commercially available TagMan assay for
DICER1 ¢.4031C>T mutation (Applied Biosystems, California,
USA). DNA was quantified using Qubit fluorometry (Thermo
Fisher Scientific, Massachusetts, USA). Then 14.6 uL of PCR
reaction mixes were loaded into QS3D Digital 20K V2 chips
(Applied Biosystems). Protocol was followed as previously
described.” Digital PCR data were analysed using PoissonPlus
algorithm (V.4.4.10) with a 95% CI and a desired precision of
10% by QuantStudio 3D AnalysisSuite (V.3.1.2-PRC-build-03).

RESULTS

Clinical description

The patient is the first child from healthy, non-consanguineous
parents with unremarkable family history. He was born at gesta-
tional week 39 after a difficult delivery due to macrocephaly
(Apgar 1-3-7). The birth weight was 3752 g, length 53 cm and
head circumference 42cm (>99th percentile). Clinical findings
at birth included two blood vessels in the umbilical cord, unde-
scended testis, inguinal hernia, postaxial polydactyly, ear pits and
rocker bottom feet. Fontanel closure was late and he had difficul-
ties breast feeding. At 15 months of age, he was diagnosed with a
right-sided Wilms tumour (classic triphasic nephroblastoma with
all three classic histological elements). Abdominal ultrasound
also revealed a cyst of benign appearance in his left kidney. A lung
scan showed multiple large cysts and a suspected Wilms tumour
metastasis. A lobectomy of the middle lobe was performed to
remove the tumour and three cysts. Owing to suspicion of addi-
tional metastasis, another thoracotomy was performed and two
cysts in the right lower lobe were removed. The five removed lung
cysts were diagnosed as benign fibrotic emphysematous alter-
ations with bullous, cystic character. The pathologic-anatomic
diagnosis of the lesion in the middle lobe was initially Wilms
tumour metastasis, but following the identification of the patho-
genic germline DICER1 variant, pathology review determined
that the correct diagnosis was well-differentiated fetal adenocar-
cinoma. Re-examination of radiographic findings, also after the
DICER1 syndrome diagnosis, revealed a suspicion of a multi-
loculated cystic nephroma in the remaining kidney. The patient
received postoperative chemotherapy and has been tumor-free
since 2006. He had a late psychomotor development, started to
walk at 3 years of age and spoke full sentences at § years. MRI of
the brain was performed at 12 years of age and revealed signs of
white matter reduction including a thin corpus callosum. At 18
years of age, he has normal length and weight, and a pronounced
macrocephaly (>99th percentile). Dysmorphic features include
a broad and furrowed forehead, wide mouth, tooth anomalies,
doughy, soft skin and multiple nevi. Furthermore, he has ID,
autism, behavioural problems and has required surgical treat-
ment due to a left-convex thoracic scoliosis (figure 1, table 1).

Genetic findings
WGS analysis after bioinformatic filtering revealed four sequence
variants for clinical review (online supplemental table 2). The

142

Pontén E, et al. J Med Genet 2022;59:141-146. doi:10.1136/jmedgenet-2020-107385


https://dx.doi.org/10.1136/jmedgenet-2020-107385
https://dx.doi.org/10.1136/jmedgenet-2020-107385

w
(4
-
[«}}
=
3}
(=]
—
()]
(9]
=
(¢}
o

panuiiuo)
wyy wok yweky wokzw 1Ay (xq yo abe)
an an aN aN an aN aN an an esalelig lesane)ig anowiny Swiip
1k
snjeydedoipAH wnsojje> sndiod uyy SapuuRA paY)
N N N N N N N N N S3PUIUN [esale| pabiejul S50] SWNJOA PN 550] JWN|OA PJIA pue [esaje| pabiejug Buibew ureig
N N N N N N N N Y Y [eunbu Jeumnbuj  [eayquin pue feuinuy ey
N Y N N N N N N N N 2Insop [2uejuoj aje YN [pueIu0j Jopiiue ab.e] joueiuoy
N N N N N N N N Y oA £ sA 8 adeds 45 paseanu
WNUIB)S JUBUILIOIY
auersip
Aeuwewiziu; paseanu] ffwephiog sisoydy
uN N N UN N UN uN N N Xeloy) MoseN 035 N wnjeneIxd snag S3NI[BULIOUGE [R13S
1nau aidiyny sasean
peatjaioy Jeyueid padunouolg
pamouny spuey yos Aybnog 193} o sped Jey
N N N N UN N UN UN N N (ERILS N spuey Aybnog sbuipuy upys
S3pjUe Jo 53PpIS Uo
N Y Y N N N Y N N UN - (43)) xij2y Joudnsod ‘sud seg (yo) d o3 sajduip+aiduip feses sid
N Y N N N N N N Y A £ N N elwosone
N Y Y N N N Y N N N (594) N (594) elgeuBonIy
N N N N N N N N Y Y £ EX oA aBpuq [eseu 1ely
N N Y N N N Y N N N X N £ Saleu paviaNAILY
N N N N N N N N Y A £ EX 8 peayaioj uauiwolg
N Y N N N N Y N N N (s24) (s24) oA wspojauadiy
Apiegdd
adfL ‘w1 1e (42]) dd | adAL (4ya)) sisko bun 8dd |1 2dAL
wg kL le gdd | adhL g2 gdd 4 adL w1 1e gdd 1 201 wek|legdd 8dd Il adAL () s1sfo> un (ubL) gdd 1AL w | A L2 sisho Buny 8dd | adfL w3 sish bum 8dd | adL 8dd/sisho bun] 8dd/sisfo bum 8dd/sisko 6un]
(ya]) ssew
woklieny AN fLend wekiieny ER N fLend w138 siso [eual g snojewonewey N N £g1eNd onsho pareymopny SIS/ flews ajdnyniy S50 [euay
N N N N N N N N Y oN u EX 8 fjebawoiyday
(einuadsad
66<) WDES D40 66<) WSS 240
(enusdiad (eInuadsad
(@Inuadiad Yg6<) W79 240 BY'S6) W2 181 1S'S6) W61
(2nuadiad Yy z) wdzLL ] [ewlou | (amuadiad nuadsad (240) 3z15
(@Inuaosad po'e) B8 M [ewsou p 66<) BXSEL M We'Le) BASSLM  peay/(1) yibusy(m) 1yBem
N N N N N N N N Y k9 K8l wpl wgz siajauiered ymoin
N N N N Y N N N Y (eInua21ad yi66<) Uy (a1nua21d U6<) U7y N N Yuig 38 240
N Y Y N N N N N N (@Inuadiad Y66<) w95 (@Inuadiad Yige) wd €S N N pbu] guig
(ajnuadsad
N N N N N N N N N (amuadad yig6<) Bogty (@nuasad a6/) brsse  (anuadiad wigl) Bozer 166<) B06Y WBram L
N N Y N aN aN aN aN an pmoiiang
N Y N N Y N N N N s oA oA oA 0100
N N Y N N N N N Y EX oA N oA wspny
N Y N N aN an aN an an a aa aa Juauredu jenajja1u|
(5501 33[[e) :(421) 1215
(%T°9€) SLLsINzeNd
VIPPSLLLD (4N) 7SIN9BY LY d VIaP8SEY 8" HDN
:y6u) 115 (9%€) .zemd (%8Y'v-%L°17) (2Iqevien) 98681y d
(55| dpa|fe) - ‘y<996° dfjod aunsatu lews 8LLSJHZySLO'd '012P9Z9Y-979™ (43 191 9<V76957 pue
(sso| (%1%)
32][e) :8dd | 2dAL £00pM'd '¥<D007 1> :8dd 41 2dAL (an) :apou (¥N) .9594'd 11799612 :gdd 11 2dAL (s50] 3j2][e) (%06 "xoxdde) uonajap (QN) :anowny sw (fouanbay
(GN) 32 [ewioN  (GN) 2 uerdojje [ewioN (6 LENLLENT Y<D6ZLLIND ydhwf jeson (GN) :Bunj anmeay (4N) LIS 1ad (GN) HWDN 5152131 §dd W 19°0 inown) Aaup: (aN) eupr jewsion SIpI[e)/uoRnguIsIp anssh
(an):pooig (an):pooig (an):pooig (an):pooig (an) :pooig (an) :pooig {1D0LSUIZSIP- L5952 HNDN (an) :pooig (an) :pooig (an):pooig (an):pooig (an) :pooig (an) :pooig “uopeINW 401 1430/0
(%15=%L6'p1)
(%6'8€) :sdfjod ajiuanng (%55'08-%E'62) :HINDN eISEIaW gdd Ulelg
(9b7'95) Aoupe (%8Y'pr~%8'LE) (1) 115 (%v8'€p) :8dd 1| 2L
(%°26) :(43)) 1215 146 uoisa| [eruawidojanapiey (%EE £8-%8'91) :046U) 115 (%2 bE) 8dd | 2dAL
(%z€) 046Y) 115 (%b8'LE=%LE) :8dd Il 20KL (%29'0) A2upny 2] ND (9ESD£=%9'99):2> proshyy remjjog (%2L'L1) HADN (%06) :nown) buny
(%2'62) :ND (oSS P1-%98°71) (%0) :3pou yduwfy (9%£8) :nowny Kaup;
(%SE) IND (%8£2) *8dd 41 2dAL (9%5°¢1) :sdfjod ‘aunsaju [jews (uN) <4 KoUpDY 16U [ewioN (925" L) uteiq [eusiony (%08) enes
(%7):8dd | 2L (%61'2) (9%2'91) *8dd 1 2dAL (%2'51)  cewoiselq Aieynig (%SLP-%97°€) (%L£Z0~%52°0) eles (%8L7) ©eniles (%08) si12> [eong (SLp)nOwn) SWIM,  (%LE)4nown) swjim 4vA pue
(%€L) Ha1ain [ewoy :2qm) ueldoley [eusioy (%671):ND  :2pou yduik| fewioN (snobAzosajay) L RoUpDY 16U [ewioN (%99'0~%p°0) :2utin (OhEL-%ETY) UDlS (%09)UDS  (%Sg):Aaupyy jewsioy uonnguIsip anssi) :uoneInul
(an):pooig (%1Z0) :poojg (%870) 4 (4N) :pooig poojg (%20-%0) :Pooig (%v0'0-0) :Poojg (%v00) :Poojg (%9'1) :poojg (%05) :poolg (%82) :poojg J0dsloy |1 3seNY 143010
jesow Spesow aujuish Spesow
ulewop | 3seNy ulewop qif 3seNY  Urewop qjif 3seNy Sfesou uewiop | 3seNy S{esou ufewop qjif aseNy S{esow ufewop qjif 3seNy aujuiab urewop eyl aseny uiewop | 3seNy Sjesou 1o
Ws013d  dresow ujewop qjif aseNy 2[esouw Uewiop g} 3seNy 960£10°d H60LLa'd 2[esow Uewiop g aseNy agigLyd delgiad N60LLad Wrelsd A6oLLad auljuaB/ufewop uopeinu
Y<OELLSY A0181a°d 1<987p5> N60£10'd *¥<957157 9<Y9TLS? 2<9571§ 460819°dv<D5755 I<96p5 I<0LEpS V<95715 1LE0Y 11€0t 1595715 1<VBELS  lodsioy Il seNY L4310
(pavodal
kg 4heL AL 6 Wuw iz WALy 1hg9 ihzrn WAgoL 4h9 WhgL Wuwpl WAs ') Xas pue abe Juanieq
€21 1ed vOL 3ed €01 3ed 101 3ed zLied (0z1 3ed , Je 32 uRWRUUDIG £3ed (501 1ed /232 (zoL 1ed 10 32 /€ 32 suape) A(hpms Ted L3ed adfiouayd-+awoipus
/e 12 Uewauua1g /8 3 UewduuaIg ,, [239 UBWUURIG |, [e 2 UeWaUUIG 1232 3p0Y 3p 1ed 4/£32 0% 9p zied L1ed Juasasd ay) fe 12 uuog e 12 Rl 12 uap L3I0

41232p0) 3p

51232 0) 9p

51832 p0Y 3p

suoryeInw Jodsioy ujewop ||| 9seNy dlesow Jo auljwab yym syusied umouy ||y | d|qelL

143

141-146. doi:10.1136/jmedgenet-2020-107385

59:

i

Pontén E, et al. ] Med Genet 2022



Cancer genetics

Continued
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only clinically relevant variant was a heterozygous sequence
variant in exon 21 of DICERI; NM 030621.4: c.4031C>T,
(p.S1344L). The variant was verified and segregation analysis
was performed using Sanger sequencing. Neither of the parents
were carriers of this variant (data not shown). Digital PCR was
performed on patient-DNA from buccal cells (not shown), saliva
(not shown), blood and skin (figure 1), which showed a mutant
allelic frequency of 50% in all samples, thus excluding mosa-
icism of the mutation. ES of DNA prepared from kidney and
lung tumour tissue revealed that the germline heterozygous
mutation ¢.4031C>T in DICERI was more abundant in the
tumour tissue, 87% and 90%, respectively. In order to verify
loss of heterozygosity (LOH) in the tumour, DNA from the
fresh tissue (kidney tumour) was subjected to WGS. WGS data
confirmed a 0.61 Mb deletion covering the whole DICERT gene
(Chr14(Hg19): g.95247243 95858197del).

ES of the well-differentiated fetal lung adenocarcinoma
revealed distinct tumour-only single nucleotide variants that
distinguished it from the Wilms tumour and confirmed its sepa-
rate nature.

DISCUSSION

We show that a heterozygous germline mutation ¢.4031C>T
(p.S1344L) in the RNase IIla domain of DICERT1 is compatible
with life, and causes a complex ‘DICER1 syndrome plus’ pheno-
type with extensive bilateral and multilobar lung cysts, PPB,
cystic nephroma, Wilms tumour, well-differentiated fetal lung
adenocarcinoma, ID, macrocephaly, ear pits and other phys-
ical anomalies. This phenotype closely resembles reported clin-
ical findings of a patient with the identical germline p.S1344L
pathogenic variant presented at a paediatric pneumology associ-
ation meeting in Vienna.'” There are also close similarities to the
phenotype described in two children with GLOW syndrome and
mosaic hotspot mutations in the RNase IIIb domain,’ although
the postnatal overgrowth was more pronounced in the individ-
uals with GLOW syndrome. Thus, the phenotype of the widely
expressed germline RNase IIla-S1344L variant resembles the
extreme end of the phenotypes associated with mosaic hotspot
mutations in the sequence encoding the RNase IIIb domain of
DICER1." This strongly supports previous somatic findings
from integrated genetic analysis and in vitro cell experiments in
cancer cells, where the RNase II1a-S1344L mutation function-
ally perturbs RNase IIIb catalytic activity.> * The observation that
only a minority of reported germline (n=1) or mosaic (n=10)
RNase IIIb mutations are associated with the so-called GLOW
phenotype (table 1), suggests that these mutations result in severe
but highly pleiotropic phenotypes that cannot be predicted from
the genotype.?® ¢ ™ It will be important to determine whether,
in contrast, RNase Illa hotspot mutations invariably result in a
severe ‘DICER1 syndrome plus’ phenotype.

In support of a potentially distinct functional consequence of
RNase IIla hotspot mutations, compared with RNase IIIb muta-
tions, RNase IIla catalytic site mutations are rare in cancers and
RNase I11a-S1344L is the only recurring cancer hotspot muta-
tion that occurs in this domain. To date, p.S1344L mutations
have been described in 15 tumours. Interestingly, the types
of tumours which develop due to DICER1 hotspot mutations
are unevenly distributed among the targeted tissues. In the 15
tumours with p.S1344L in the RNase Illa domain, there were
4 Wilms tumours, 4 malignant melanomas, 1 Merkel cell carci-
noma, 3 endometroid carcinomas, 2 colorectal cancers and 1
cholangiocarcinoma.'® "> Tumours bearing RNase ITTa-51344L
hotspot mutations are most commonly malignant melanomas
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(4/15; 27%) in contrast to tumours bearing hotspot mutations
in the RNase I1Ib domain (2/318; 0.6%).* ™ This indicates that
hotspot mutations in different RNase III domains of DICER1
cause tissue-specific susceptibilities to develop certain tumours.

This is the second well-differentiated fetal lung adenocarci-
noma reported in DICER1 syndrome.'®® Here, the diagnosis
was made on the basis of glycogen-rich neoplastic glands and
tubules resembling fetal lung tissue (at 10-15 weeks gestation).
In contrast to biphasic PPB, the adjacent stroma is benign.

In addition to our patient, we identified 27 sequenced Wilms
tumours with RNase IIla or RNase IIIb domain hotspot muta-
tions; in 17 of 28 (61%) there was no alteration on the other
allele, while 11 of 28 (39%) had two mutations. One tumour
with a germline RNase Illa hotspot mutation did not undergo
somatic testing (online supplemental table 3). Further studies are
needed to determine if the sequenced Wilms tumours that lacked
somatic alterations on the other allele could have copy neutral
LOH or a deletion as described in our patient, or other genetic
aberrations that escaped detection by the methods used.

Non-tumour-related phenotypes occur in DICER1 syndrome;
macrocephaly has recently been described in 28/67 (42%) of
patients with the syndrome in a single study."” General over-
growth is more pronounced in patients with GLOW syndrome,’
while patients with RNase I1Ia-S1344L mutations only present
with macrocephaly.'® Recently, Klein et al reported activation
of the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian
target of rapamycin (mTOR) pathway in genetically modified
cells with hotspot mutations in the RNase IIIb domain associated
with GLOW syndrome.?® It is noteworthy that some patients
with mutations in the PI3K/AKT/mTOR pathway have overlap-
ping symptoms with our patient, such as polydactyly in patients
with mutations in AKT3 or PIK3CA, and multiple nevi, macro-
cephaly and ID seen in PTEN and PIK3CA-related disorders.
Posterior helical pits are rare and have previously been described
in Beckwith-Wiedemann syndrome, Simpson-Golabi-Behmel
syndrome and GLOW syndrome, all of which are cancer predis-
position syndromes with a risk of developing Wilms tumour. In
patients with Beckwith-Wiedemann syndrome and CDKNIC
mutations, an extended phenotype including ear pits and poly-
dactyly has been described. To date, ID/developmental delay
has been reported in at least nine patients with large deletions
encompassing several genes including DICER1,%'"* and in three
patients with RNase IIIb or RNase 11Ia-S1344L hotspot muta-
tions.” 1

The highly penetrant and severe phenotypes described in
patients with germline or mosaic RNase IIT domain mutations’ ®
may be explained by the likelihood of a second somatic muta-
tion stochastically occurring in any part of DICER1 being greater
than the reverse succession normally seen in DICER1 syndrome,
in combination with tissue-specific neomorphic effects of the
specific heterozygous RNase III domain mutations."!

In conclusion, germline RNase IIla-S1344L pathogenic vari-
ants result in a "DICER1 syndrome plus" phenotype that in
addition to classic features, also includes ID and ear pits. The
conferred phenotype is similar, but not identical to that of early
post zygotic DICER1 RNase IIIb hotspot mutations.
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