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Abstract

Identification of a reference gene unaffected by the experimental conditions is

obligatory for accurate measurement of gene expression through relative quantifica-

tion. Most existing methods directly analyze variability in crossing point (Cp) values

of reference genes and fail to account for template-independent factors that affect Cp

values in their estimates. We describe the use of three simple statistical methods

namely analysis of variance (ANOVA), normal quantile-quantile correlation

(NQQC) and effective expression support (EES), on pooled expression ratios of

reference genes in a panel to overcome this issue. The pooling of expression ratios

across the genes in the panel nullify the sample specific effects uniformly affecting all

genes that are falsely reflected as instability. Our methods also offer the flexibility to
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include sample specific PCR efficiencies in estimations, when available, for

improved accuracy. Additionally, we describe a correction factor from the ANOVA

method to correct the relative fold change of a target gene if no truly stable reference

gene could be found in the analyzed panel. The analysis is described on a synthetic

data set to simplify the explanation of the statistical treatment of data.

Keywords: Bioinformatics, Mathematical biosciences

1. Introduction

Relative quantification of gene expression has been accepted as the gold standard

method in several modern techniques such as quantitative real-time PCR,

microarray, and high-throughput sequencing (Grozinger et al., 2007; Wang

et al., 2012a; Wang et al., 2012b; Paria et al., 2013; Das et al., 2015; Van Hoeck

et al., 2015) whose accuracy depends largely on the stability of the reference gene

employed for normalization (Bustin, 2002; Leelatanawit et al., 2012). Ideally, to

qualify as stable, a reference gene should express at a constant level in each sample

across the groups/categories (treatments, tissues, developmental stages, etc).

Unfortunately, such ideal reference genes are rare (Vandesompele et al., 2002;

Pfaffl, 2004; Chandna et al., 2012). Additionally, factors like RNA isolation,

quantification, integrity, efficiency of cDNA synthesis etc. varies across samples,

batches and tissues leading to a difference between machine-read expression level

of a reference gene and its original expression level (Livak and Schmittgen, 2001;

Bustin, 2002). Alternately this also becomes a reason for variation in expression

level of a reference gene between different samples/groups/categories which is

then reflected as its instability. Instability due to this reason is not a true instability,

because this is equally likely to affect both reference and target genes expression

read from the same sample and will nullify in relative quantification procedure

(Pfaffl et al., 2004), provided both reference and target genes have same PCR

efficiency (Livak and Schmittgen, 2001). For the sake of brevity, hereafter we shall

refer to the variation in expression not arising as a result of the experimental

treatment as “false instability”. Hence, to achieve high precision in the

measurements of a gene expression, an in-depth analysis of reference gene

stability pertaining to a specific experiment is required.

Variation in the Cp value between different samples for a reference gene has

directly been used to evaluate its expression stability (Pfaffl et al., 2004). However,

there are fair chances that a reference gene, which is actually up/down-regulated in

a particular group/category/sample in an experiment, reflect Cp value equal to rest

of the group/category/sample, or the other way round, because of false instability.

To circumvent such problems, methods like ΔCt (Silver et al., 2006) and geNorm

(Vandesompele et al., 2002) have been developed, which compare each reference

gene against the rest of the reference genes in a panel. These methods work quite
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well when dealing with a panel comprising fairly large number of reference genes.

However their precision reduces in a small panel comprised of reference genes of

divergent nature (Silver et al., 2006). It is always advised to evaluate a large

number of reference genes and use at least two for the normalization of a target

gene (Vandesompele et al., 2002; Andersen et al., 2004; Silver et al., 2006;

Chandna et al., 2012; Leelatanawit et al., 2012; Xie et al., 2012; Ling et al., 2014;

Taki and Zhang, 2013; Guo et al., 2014; Hildyard and Wells, 2014). Selecting and

employing more than one reference gene overburdens a researcher with limited

funds and reference gene sequence information. In this condition the researchers

are practically forced to normalize a target gene with any one of the popularly used

reference genes. This is very much apparent from most of the literature (Paria et al.,

2013; Das et al., 2015; Sharabi et al., 2015). Hence, there is a desperate need for a

method, with good sensitivity in both large and small panels to identify a stable

reference gene and provide possible correction measures, if no reference gene in

the panel exhibits stable expression.

PCR efficiency (E) is another factor that affect Cp value and due weightage is

given to this parameter during normalization of a target gene with a reference gene

(Pfaffl, 2004). However differential PCR efficiency that affects Cp value within a

reference gene itself is often overlooked leading to erroneous evaluation of

stability. A reference gene with PCR efficiency less than 2 will have higher

variation in its Cp values than a gene with PCR efficiency of 2 (Pfaffl, 2004). This

variability in Cp value is another source of false instability. Additionally, for each

reference gene PCR efficiency may differ from sample to sample due to variation

in impurity or PCR inhibitory compound levels (Wilson, 1997; Guescini et al.,

2008), which certainly will affect Cp value and the stability measure of a reference

gene. A method to measure PCR efficiency of each sample during quantitative

real-time PCR has been developed (Tichopad et al., 2003). Hence, a kind of

stability evaluation method is needed, which can account for PCR efficiency and

nullify the possible variation arising due to the differences in PCR efficiency.

Statistical methods developed so far for evaluation of the reference gene stability

are based on real experimental data. This certainly is advantageous; however, the

complexity of real life data does not allow identification of the limitation of a

statistical method i.e. to match the stability value estimated and the expression

profile of a reference gene. Hence, it would be classical to test the developed

statistical method over a predetermined synthetic data set, for a direct comparison

of estimated stability value with the expression profile of a reference gene.

We devised three simple statistical methods, namely ANOVA, NQQC and EES,

and validated them over a synthetic data set of which, ANOVA and NQQC, select

a reference gene with stable expression profile in both large and small panels and

provide an absolute stability value. While the method EES also works in both small
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and large panel, it provides the highest stability value to more than one reference

gene having same nature in a panel. These methods also account for sample

specific PCR efficiency of each reference gene to estimate more precise stability

value. For comparison purpose, we evaluated the same data sets with other widely

used methods viz., geNorm (Vandesompele et al., 2002), NormFinder (Andersen

et al., 2004), BestKeeper (Pfaffl et al., 2004) and ΔCt (Silver et al., 2006).

2. Methods

2.1. Synthetic data

A panel of nine reference genes were synthesized in a manner that it comprised of

all kinds of reference genes to make at par of the possibility in a natural/real world

data i.e. up-regulated, down-regulated and consistent. Total nine reference genes

(A, B, C, D, E, F, G, H and I) of different expression profiles were synthesized

manually. Samples were divided into three groups (or categories) namely 1, 2 and

3. In each group, there were eight samples. The Cp values of three genes (A, C and

F) were kept almost same in all the three groups, while the Cp values of three genes

(B, D and I) were adjusted in a manner to achieve a downregulation in the group 2

and 3, in comparison to group 1. Whereas for the rest three genes (E, G and H) Cp

values were fixed in a manner to get up-regulation in the group 2 and 3 in

comparison to group 1. For stability value determination, five panels namely P-I,

P-II, P-III, P-IV and P-V comprising different nature of reference genes were

formed (Table 1). Further, we kept three different PCR efficiency (E) conditions

for different data sets: 1) sample specific PCR efficiency for each reference gene,

2) gene specific PCR efficiency, and 3) global PCR efficiency (E = 2) for each

reference gene in each sample. (See supplementary file 1: Data sets for analysis).

Table 1. Reference gene composition of different panel with their nature and

number.

Panel Number of reference genes Genes in the Panel

Stable Upregulated Downregulated

P-I 9 A, C, F E, G, H B, D, I

P-II 4 F, A G I

P-III 4 F G I, D

P-IV 4 F G, H I

P-V 3 F G I
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2.2. Stability evaluation

2.2.1. Common Terms/Formula used in this study (adopted from
Pfaffl, 2004)

i) Reference sample = a sample whose Cp value was used to get fold change in all

the samples of the respective reference gene (It can be any sample from any group,

but must be the same for all the reference genes in the panel; Here we kept S1 i.e.

Sample 1 of group 1 for each reference gene);

ii) Transcript number of each reference gene in each sample were calculated using

the formula E−Cp. However the exact transcript number of any reference gene in a

sample can only be estimated from gene-specific standard curve. Hence, for each

reference gene, we have normalized the transcript number in each sample to the

reference sample. So, a factor missed due to lack of standard curve were

neutralized and further statistical procedure was unbiased;

iii) Intra-gene transcript expression fold ratio (intra-GTEFR) = fold ratio of the

respective reference gene transcript in a sample normalized to reference sample

{[E-Cp sample X (X = 1 to n)] ÷ [E-Cp reference sample (S1)] or [ECp reference sample (S1) – Cp

sample X (X= 1 to n)]};

iv) Inter gene (relative) transcript expression fold ratio (inter-GTEFR) =

expression ratio of two reference genes in a sample i.e. ratio of two intra-GTEFR

in a sample {[ET
Cp of TS1] * [ER

Cp of RSX] ÷ [ET
Cp of TSX] * [ER

Cp of RS1]} where

TS1: indicates target reference gene (T) in the reference sample; RSX: indicates

reference gene (R) in sample X; TSX: indicate target reference gene (T) in sample

X, RS1: indicates reference gene (R) in the reference sample; X indicates any

sample from 1st to last. The notation T is used in this equation in place of TRG to

reduce visual complexity.

v) TRG = target reference gene (a reference gene in a panel whose stability is being

evaluated); the other genes in the panel will be simply referred to as reference

genes (R).

2.2.2. Method 1: Effective Expression Support (EES) from
correlation coefficients

It is the resultant number of reference genes (R) in a panel that have significant

positive correlation with TRG for intra-GTEFR. It was calculated by subtracting the

number of reference genes showing a significant negative correlation with TRG

from the number of reference genes showing a significant positive correlation with

TRG. The reference genes showing insignificant positive/negative correlation with

TRG was dropped out from calculation. Pearson correlation coefficient between two
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reference genes for log2 transformed intra-GTEFR were calculated using

Statistical Package for Social Science (SPSS) V. 16 at 5% level of significance.

2.2.3. Method 2: Normal Quantile-Quantile Correlation (NQQC)

It measures the Pearson correlation coefficient between the distribution of pooled

inter-GTEFR of a TRG and theoretical standard normal distribution of same sample

size. Transcript number followed by intra-GTEFR for each sample of each

reference gene were estimated. After that, one by one each reference gene was used

as TRG and its inter-GTEFR in each sample were calculated against the rest of all

the reference genes in that panel. Hence, for each TRG there was a total of n (N-1)

number of pooled inter-GTEFR value, where ‘n’ is the total number of samples and

‘N’ is the number of reference genes in the panel. Pooled inter-GTEFR data was

log2 transformed, followed by drawing a normal quantile-quantile plot (NQQP)

[(Fig._1)TD$FIG]

Fig. 1. Normal Q-Q plot of reference genes A, B and E from panel-I at global PCR efficiency (E = 2).

The plots a, b and c shows the Log2 transformed value of inter-GTEFR of the reference genes A, B and

E respectively. Gene A was evaluated as the most stable by NQQC method as it has the highest

quantile-quantile correlation coefficient. Note that the Q-Q plot of gene A is closer to the standard

normal curve than B or E.
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against theoretical standard normally distributed data point of same sample size

using SPSS V. 16 (Fig. 1). In NQQ plot Log2 transformed pooled inter-GTEFR

produces a minimum deviation from normally distributed data for the most stable

reference gene in a panel, whereas an unstable reference gene (up/down-regulated)

produces a large deviation. To quantify deviation, correlation coefficient was

calculated between Log2 transformed pooled inter-GTEFR of each reference gene

sorted in ascending order and quantile values of theoretical standard normally

distributed data for same sample size. In a panel with equal representation of

reference genes of all kinds (stable, up-regulated and down-regulated), Log2

transformed pooled inter-GTEFR of the most stable reference gene will produce a

distribution closest to normal with maximum normal quantile-quantile correlation/

NQQC (Tsai and Yang, 2005; Whiting and Arriaga, 2007).

2.2.4. Method 3: Analysis of variance

In this method, we subjected the categorized log2 transformed pooled inter-

GTEFR of each TRG to one-way ANOVA in SPSS V16. In general terms, those

genes from the panel shall be considered stable which have a low F ratio value,

indicating that the expression does not vary with the treatments (Larson, 2008;

Kim, 2014). Among those, the gene with the lowest F value will be evaluated as

the most stable, as it shows minimal variation among all. When all genes in the

panel show high F value (high between-treatment variation), the researcher could

opt the gene with the lowest F value and use a correction factor as explained in the

following section, if they do not want to enlarge their panel and continue

evaluation. Prior to employing the three methods, the Inter gene (relative)

transcript expression fold ratio (inter-GTEFR) were log2 transformed to achieve

normality in data (Osborne, 2002).

2.2.5. Correction factor from ANOVA

The corrected relative fold change of a target gene in a category (treatment/tissue

type) is the product of its uncorrected relative fold change and the correction factor.

Correction factor is estimated as 2(Y−W) where Y and W are the averages of log2

transformed inter-GTEFR of a TRG in treatment group and control group

respectively, selected for and employed for the normalization. The base of 2 is

employed to back transform the data. The Correction factor can be easily obtained

from ANOVA output of Statistical Package for the Social Sciences (SPSS)

performed over inter-GTEFR.

The different panels used in our studies were also analyzed by geNorm

(Vandesompele et al., 2002), NormFinder (Andersen et al., 2004), BestKeeper

(Pfaffl et al., 2004) and ΔCt (Silver et al., 2006) to see the validity of our statistical

assumption.
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3. Results

3.1. Effective Expression Support (EES)

EES of all the reference genes in the respective panels was estimated and is

detailed in Table 2.

3.2. NQQC test

It can be seen that the ranking of the genes by the NQQC method is significantly

affected by the PCR efficiency (E) value employed in the calculation (Table 3).

Genes with stable Cp values were adjudged as the best in all but one panel (panel-

II) when gene specific and global PCR efficiency values were used.

3.3. ANOVA test

The results of the ANOVA test for stability evaluation is summarized in Table 4.

While the gene with stable Cp values was selected in most of the cases (A and F), it

Table 2. EES of different reference genes in the different panels; α = Sample

specific PCR efficiency (E); β = Gene specific PCR efficiency (E); γ = Global

PCR efficiency (E); Superscript * indicates the genes having highest EES in panel.

EES Value

Panel Gene→
E↓

A B C D E F G H I

P-I α 0 0 0 -2 0 0 0 0 1*

β 2* 2* 1 2* -4 2* -4 -4 1

γ 2* 2* 1 2* -4 2* -4 -4 1

P-II α 0* – – – – 0* 0* – 0*

β 1* – – – – 1* -3 – 1*

γ 1* – – – – 1* -3 – 1*

P-III α – – – -1 – 0* -1 – 0*

β – – – 1* – 1* -3 – 1*

γ – – – 1* – 1* -3 – 1*

P-IV α – – – – – 0 1* 1* 0

β – – – – – -1* -1* -1* -1*

γ – – – – – -1* -1* -1* -1*

P-V α – – – – – 0 1* – 1*

β – – – – – 0* -2 – 0*

γ – – – – – 0* -2 – 0*
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can be seen that in three instances an apparently down regulated gene (I) was

selected when sample specific PCR efficiency was employed. In panel P-IV, none

of the genes qualified to be deemed stable, irrespective of whether classified as

stable or downregulated as per Cp values.

3.4. Comparative analysis with the other reported methods

Table 5 presents the comparative analysis of all the methods viz, NQQC, ANOVA,

ΔCt, BestKeeper, NormFinder and geNorm. It can be seen from Table 5 that our

techniques produce a result different from the existing methods only in instances

where gene specific and sample specific PCR efficiencies are used for calculation.

4. Discussion

Most of the statistical methods described to evaluate the stability of reference

genes from a panel of several genes rely on assessing the variability in the Cp value

data (Pfaffl et al., 2004; Paolacci et al., 2009). The principle behind these analyses

are that Cp values are the direct numerical representation of gene expression. The

source of variation in Cp values is two fold- process/sample induced (false

instability) and treatment induced variation in the gene expression (true instability).

Table 3. Stability values of different reference genes in the different panels from NQQC test; α = Sample

specific E; β = Gene specific E; γ = Global E; gene having highest stability has been ranked 1st followed by

subsequent stable gene in panel.

Panel Stability Rank→
E↓

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

P-I α B(0.872) D(0.862) A(0.831) F(0.828) E(0.823) H(0.823) I(0.820) G(0.819) C(0.701)

β A(0.980) C(0.978) F(0.978) G(0.964) I(0.961) D(0.952) B(0.951) H(0.951) E(0.950)

γ A(0.977) F(0.976) C(0.975) I(0.973) D(0.951) B(0.949) G(0.947) E(0.942) H(0.942)

P-II α A(0.873) I(0.865) G(0.851) F(0.789) – – – – –

β G(0.975) A(0.973) F(0.967) I(0.961) – – – – –

γ G(0.977) A(0.967) F(0.958) I(0.950) – – – – –

P-III α D(0.971) G(0.907) I(0.902) F(0.855) – – – – –

β F(0.989) G(0.969) D(0.950) I(0.957) – – – – –

γ F(0.989) I(0.974) G(0.968) D(0.963) – – – – –

P-IV α I(0.921) G(0.866) H(0.842) F(0.770) – – – – –

β F(0.984) G(0.968) H(0.959) I(0.956) – – – – –

γ F(0.977) I(0.953) G(0.947) H(0.945) – – – – –

P-V α I(0.851) G(0.815) F(0.739) – – – – – –

β F(0.986) G(0.976) I(0.959) – – – – – –

γ F(0.978) G(0.976) I(0.950) – – – – – –
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In other words, Cp values are highly influenced by sample differences arising out

of procedural errors during dissection, storage, RNA isolation etc. The Cp

variability arising out of these reasons are not easily identified in these methods

leading to low accuracy of stability estimations. Here we report three methods that

effectively neutralize the false instability and accounts only true instability.

The simplest of the three methods described here is the EES. It functions on the

basic assumption that functionally unrelated reference genes have a low probability

of co-regulation (Vandesompele et al., 2002; Andersen et al., 2004) for any given

experimental condition. This should follow that there should not be a negative

correlation in the expression of any of the genes in the chosen panel; any negative

correlation between two given genes indicates instability of expression of either

one or both of them. In a cumulative manner, thus the stability indication of a given

reference gene would be the effective number of genes that show a positive

Table 4. Stability ranking (based on F-value) of different reference genes in the different panels from

ANOVA test; α = Sample specific E; β = Gene specific E; γ = Global E. Either of the superscript * or #

indicated the genes having lowest F-value and highest stability in panel with respective PCR efficiency in

panel. Superscript * shows genes that clearly did not have a significant difference among treatment groups.

Superscript # indicates gene was selected despite showing significant difference among the treatment groups

(p < 0.05). The Cp values of this gene would have to be subjected to correction prior to analysis.

Nature of the genes included in the panel

Panel PCR efficiency
(E) value
employed

Stable Upregulated Downregulated

A C F E G H B D I

P-I α 0.415* 8.27 2.25 20.28 11.96 15.7 28.02 17.35 1.72

β 0.137* 0.592 0.674 81.86 30.33 87.63 119.06 63.76 27.13

γ 0.184* 0.624 0.6 74.55 39.73 73.14 106.84 92.36 20

P-II α 0.26* – 3.38 – 10.84 – – – 1.78

β 0.163* – 0.872 – 82.07 – – – 60.91

γ 0.138* – 1.27 – 98.83 – – – 47.34

P- III α – – 1.185 – 17.34 – – 13.45 0.57*

β – – 1.93* – 90.34 – – 35.11 7.99

γ – – 1.62* – 8.041 – – 49.63 3.91

P- IV α – – 6.38 – 5.28 9.12 – – 3.18#

β – – 4.63# – 7.12 45.12 – – 60.23

γ – – 5.75# – 11.16 33.98 – – 58.74

P- V α – – 2.95 – 7.94 – – – 0.935*

β – – 0.576* – 64.51 – – – 40.79

γ – – 0.871* – 75.81 – – – 32.63
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Table 5. Comparative results of stability analysis by the different methods at PCR

efficiency of 2 (global PCR efficiency); The values in the parenthesis are the

stability indices as produced by each method. For NQQC and ANOVA, superscript

* indicate gene evaluated as most stable at global PCR efficiency and # indicate

gene evaluated as most stable at sample specific and/or gene specific PCR

efficiency.

METHOD P-I P-II P-III P-IV P-V

NQQC A*/B# G*/A# F*/D# F*/I# F*/I#

ANOVA A*/A# A*/A# F*/I# F*/I# F*/I#

ΔCt A(1.52) A(1.07) F(1.70) G(1.66) F(1.46)

BestKeeper A(0.18) A(0.18) F(0.35) F(0.35) F(0.35)

NormFinder A(0.203) A(0.179) F(0.517) F(0.872) F(0.394)

geNorm A|C(0.207) A|F(0.346) F|I(1.154) G|H(0.511) F|I(1.154)

[(Fig._2)TD$FIG]

Fig. 2. Concept of EES: a) Plot of Cp values of genes W, Y and Z in each sample. There is an apparent

downregulation (upward trend of Cp values) in W and Y but not in Z. b) Plot of expression ratios of the

three genes calculated sequentially to one another. Note that downregulation of expression ratios

between the groups occur only when gene Z is involved in the calculation. When the expression ratio

between W and Y is estimated, which are apparently downregulated as per Cp data, expression ratio is

consistent between the treatment groups. In other words the apparent stability of gene Z as reflected by

Cp values could be the result of false instability elaborated in the introduction section.
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correlation to it (Fig. 2). However, a major disadvantage of EES is that it does not

accommodate variation (stability or instability) conferred from those reference

genes in the panel showing insignificant correlation with TRG. Additionally,

reference genes belonging to different functional classes never warrant that they

will not show co-regulation in a biological phenomenon or experiment and it

would be an injustice to assume constant expression ratio or high EES as stability

index. EES only provide the prima facie stability measure of a reference gene and

hence to estimate stability in absolute terms, two additional methods, namely

NQQC and ANOVA were adopted.

For ANOVA and NQQC, first of all transcript expression fold ratio of a concerned

reference gene (TRG) in comparison to the rest of all the reference genes in a panel

was estimated. Thereafter, the stability value of a concerned TRG was estimated as:

i) correlation coefficient between the quantiles of transcript expression fold ratio

and the quantile of theoretically standard normally distributed data for same sample

size and ii) the between-group and the within-group variance (ANOVA) for

categorized pooled transcript expression fold ratio.

The basic assumption of the NQQC method is that a stable TRG exhibits a stable

expression (i.e. constant inter-GTEFR) in different categories (tissue type/

treatments/stage etc.) when normalized with another stable reference gene from

the panel. However, it exhibits an up-regulation when normalized with a down-

regulated reference gene and vice versa. If a panel consists of all kinds of reference

genes, the most stable reference gene exhibits the most homogeneous variation in

its pooled inter-GTEFR distribution and will be closest to the normal. On the

contrary, an up-regulated TRG will exhibit a stable distribution across categories

when normalized with an up-regulated reference gene, but its distribution becomes

up-regulated upon normalization with a stable gene and increasingly so with a

down-regulated reference gene. The condition will be similar but in opposite

direction for a downregulated TRG. To sum up, they will have a non-homogenous

variation in its pooled inter-GTEFR, skewed towards one side.

In order to identify instability in reference genes in the panel by ANOVA, the

direct observation would be the between-treatment variation in expression (Cp

values) of a particular gene (Paolacci et al., 2009). This would mean that the

treatment means of Cp values for a given gene ‘A’ would be compared

independent of other genes in the panel. However, the Cp variation in gene ‘A’
might have arisen as a result of sample infidelities, which is probably reflected

equally in the Cp data of other genes in the panel, though we chose not to consider

it. In other words, ANOVA of Cp values fail to separate true and false instability,

simply because it functions on the assumption of sample uniformity. In our

method, we remove this assumption of sample uniformity. In place of Cp values of

gene ‘A’ a given sample S1 would have the expression ratios of ‘A’ normalized
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iteratively to each of the rest of the genes in the panel. In doing so, we bring in the

variation imparted to all the genes in the panel by the sample S1. This follows that

under the treatment T, for gene A, there are now a total of (S*N) expression ratio

values, where S is the number of samples studied under T, N is the number of

genes in the panel. The error factor of ANOVA now arises as a result of sample

imparted variations that are highly specific to gene ’A’; sample imparted variations

that affect all genes in general have been normalized within the expression ratio

values. One of the major causes of this kind of error is the contamination of sample

tissue by the surrounding tissue types during dissection. The expression of a

reference gene in the panel may or may not be differentially expressed in response

to the treatment conditions in the contaminating tissue, giving rise to the error.

Thus arises the need for a word of caution in judging the true instability of a gene

on the sole basis of low F ratio. Since the F value is the ratio of between-group

variance and within-group variance, there could be the possibility of high within

group variance contributing to the lowered F value. To rule out this issue, albeit of

low probability, the researcher is advised to look out for unreasonably high error

sum of square values in the ANOVA (Larson, 2008; Kim, 2014). Student’s t-test of
the relative quantity of a reference gene transcript (intra-GTEFR) of each reference

gene (Lardizábal et al., 2012) have also been proposed to test the expression

stability of a reference gene. However, unlike our method, this method does not

account for variation from all the reference genes in the panel.

The output of NQQC and ANOVA disagreed with that of ΔCt and geNorm in

panel-IV. The authors of ΔCt method caution that the results get affected in a small

panel if the panel comprises of reference genes of divergent nature (Silver et al.,

2006) as was the case here. The method geNorm, remove a least stable reference

gene (poorest for constant expression ratio with the majority of the reference gene

in the panel) from the panel in a stepwise manner and conclude on two reference

genes in the panel. GeNorm takes separate reference point for each gene (minimal

Cp value of the respective reference gene). Hence, there is every possibility that

many reference genes will have minimal Cp value in the different samples. In such

case the estimated expression ratio will be biased. To avoid this, in NQQC and

ANOVA method, we consider Cp value of the respective reference gene from a

single sample as reference Cp.

BestKeeper accounts for variation in Cp value of the individual reference gene

(TRG) and considers the gene with minimal variation in Cp value as the most stable

(Pfaffl et al., 2004). The output of BestKeeper was as expected, since we had taken

a synthetic predefined data set in which the stable reference gene has minimum Cp

variation. NQQC and ANOVA produced the same output as BestKeeper and

NormFinder in most instances for this data set. When validated with a real life data

set (data not shown), there were disagreements with BestKeeper, but not with
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NormFinder. In NormFinder the intra-group and inter-group variation in

expression of the individual TRG are measured (Andersen et al., 2004), partially

explaining this observation. On the other hand, BestKeeper relies on the raw Cp

value variations within one gene, while our methods account for variation from all

the reference genes in the panel to produce a more accurate stability measure for a

TRG.

Of the four established methods, none facilitate the use of sample specific PCR

efficiencies in computations. It is interesting to note that any variation in the

results between our methods and the other methods (especially NormFinder)

occurred when sample specific PCR efficiencies were employed in the

calculations. The chosen best reference genes in these cases were not necessarily

ones with a stable Cp data. For example, with sample specific PCR efficiency, in

panel-IV gene F appears worst, however with gene specific and global PCR

efficiency, the same gene appears the best, which also comply with the result of

NormFinder and geNorm, because these two methods consider only the global

PCR efficiency (E = 2). More importantly the occurrence of such deviations in

the results were not influenced by the size of the panel as a result of pooling all

possible sources of Cp value variations, indicating the sensitivity and robustness

of our methods. The significance of PCR efficiency in the estimation of transcript

copy number from the Cp values is well understood (Livak and Schmittgen,

2001; Pfaffl, 2004). Considering that Cp values could vary due to sample specific

conditions, inclusion of sample specific PCR efficiency in computations become

indispensable for accuracy. Both the methods described in this paper facilitate the

option of including this important factor in analyses. The observations were

consistent for any sub panel drawn from this data set.

Though the results of NQQC and ANOVA estimated from gene-specific PCR and

global PCR efficiencies are similar in both large and small panels, the results

contradict in the large panel (P-I) when sample specific PCR efficiency is used.

(The similarity and dissimilarity of results are discussed with respect to the nature

of the gene chosen, but not the specific gene per say). NQQC-ANOVA result

contradictions were noted when panels had an unequal representation of gene

types in the panel, which is one of the basic assumptions of NQQC test. In all

such cases ANOVA results are more accurate as ANOVA does not hold onto

such an assumption. However a combination of NQQC and EES becomes

significant when data is uncategorized and cannot be analyzed by ANOVA.

Among the four established methods, BestKeeper (Pfaffl et al., 2004) and ΔCt
(Silver et al., 2006) methods simply rank the stability value of the reference genes

in a panel and does not provide any correction factor in case of unavailability of a

truly stable reference gene. The other two methods, geNorm (Vandesompele

et al., 2002) and NormFinder (Andersen et al., 2004) provide a correction factor,
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but since they accommodate the variation from only selected reference genes

from the panel, this would be unjustifiable as explained earlier. ANOVA method,

developed in this study, produces only one most stable reference gene as result

with the correction factor which accounts for variation from all the reference

genes in a panel i.e. giving equal weightage to all the reference genes.

5. Conclusion

It is evident from the results that with a change in PCR efficiency, ANOVA,

NQQC and EES test, change the stability value of reference genes in a panel on the

ground of a possible change in transcript expression ratio. While EES provide a

prima facie indication of the stability of the gene, NQQC and ANOVA effectively

determines a stable reference gene from a panel for non-structured and structured

data respectively. The NQQC and ANOVA test account for all the variation within

a reference gene panel and analyze category wise pooled expression ratio to assign

a stability value. This makes this method more sensitive and robust in both large

and small panels. Further, we developed a Virtual basic application (VBA) in

Microsoft excel, which directly produces the result for NQQC test and category-

wise pool of log2 transformed expression ratio (inter-GTEFR) for performing

ANOVA in SPSS. The developed NQQC-ANOVA VBA can handle a panel of

virtually any number of genes and samples. See Supplementary file 2 for NQQC-

ANOVA MS-Excel VBA and Supplementary file 3 for procedure to operate

NQQC-ANOVA MS-Excel VBA.
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