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Abstract: This paper synthesizes tagging studies to
highlight the current state of knowledge concerning the
behaviour and survival of anadromous salmonids in the
marine environment. Scientific literature was reviewed to
quantify the number and type of studies that have
investigated behaviour and survival of anadromous forms
of Pacific salmon (Oncorhynchus spp.), Atlantic salmon
(Salmo salar), brown trout (Salmo trutta), steelhead
(Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus
clarkii). We examined three categories of tags including
electronic (e.g. acoustic, radio, archival), passive (e.g.
external marks, Carlin, coded wire, passive integrated
transponder [PIT]), and biological (e.g. otolith, genetic,
scale, parasites). Based on 207 papers, survival rates and
behaviour in marine environments were found to be
extremely variable spatially and temporally, with some of
the most influential factors being temperature, popula-
tion, physiological state, and fish size. Salmonids at all life
stages were consistently found to swim at an average
speed of approximately one body length per second,
which likely corresponds with the speed at which
transport costs are minimal. We found that there is
relatively little research conducted on open-ocean mi-
grating salmonids, and some species (e.g. masu [O.
masou] and amago [O. rhodurus]) are underrepresented
in the literature. The most common forms of tagging used
across life stages were various forms of external tags,
coded wire tags, and acoustic tags, however, the majority
of studies did not measure tagging/handling effects on
the fish, tag loss/failure, or tag detection probabilities
when estimating survival. Through the interdisciplinary
application of existing and novel technologies, future
research examining the behaviour and survival of
anadromous salmonids could incorporate important
drivers such as oceanography, tagging/handling effects,
predation, and physiology.

Introduction

Importance of salmonids, and recent population trends
Anadromous salmonids are important ecologically, culturally,

and economically across the globe, as a critical aspect of their

ecological systems, as a significant commercial and artisanal

fishery, and as a sensitive environmental indicator. They provide

cultural and social value to local and native peoples [1], and form

a multi-million dollar global fishery. While at sea and in

freshwater, salmonids are important prey items and nutrient

sources, and they continue to provide such benefits after death by

supplying enrichment to terrestrial systems as they decay on the

riverbed [2,3]. An anadromous life history means that salmonids

can be affected by changes in both freshwater and marine

ecosystems, including widespread habitat degradation, altered

ecosystem productivity, overharvest, and climate change [4–10].

Over the last century, many populations of wild salmonids have

declined in abundance [7,11–15]. In recent years, some

populations have been threatened with extinction and extirpation

[16,17] resulting in many areas that are either devoid of salmon

[8,18] or are reliant on hatchery-raised salmon populations [15].

In many regions, enhancement programs such as hatcheries and

fish farms (aquaculture) have been introduced in an attempt to

supplement wild populations and to meet the global demands for

human consumption of salmon. However, hatchery and aquacul-

ture enhancement may have inadvertently introduced a new suite

of concerns for wild populations, such as interbreeding risk

resulting in a loss of genetic variation, increased competition for

scarce resources and habitat, and an increase in disease prevalence

and dispersal [19–22]. The ‘crisis’ of declining salmon populations

is currently considered one of the major issues in fisheries biology

[8], and extensive management efforts are being applied in an

attempt to conserve at-risk populations. In general, population

declines seem to be more drastic in southern latitudes, and are less

apparent at higher latitudes [23–26]. Perhaps the most alarming

aspect is that the causes for the declines remain largely unknown.

The majority of research and management efforts on anadro-

mous salmonids have historically focused on the freshwater phase

of the lifecycle (including outmigrating juveniles, and upriver

migrating adults) [3,5]. The reason for this is largely technical, as

there are inherent difficulties with studying salmonids in the
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marine environment. Consequently, current knowledge of the

marine phase of the lifecycle (i.e. both juveniles and adults in saline

environments including estuaries, coastal waters and open-ocean)

is still quite limited, despite it being generally acknowledged as a

critical stage related to low survival caused by both abiotic and

biotic factors [7,23,27–30].

Objectives of this review
In light of the declining abundance of many wild salmon

populations, and the knowledge gap relating to the behaviour and

survival of salmonids in the marine environment, this paper has

three main objectives. First, we reviewed the scientific literature to

quantify the number and range of studies that have investigated

aspects of salmon behaviour and survival in the marine

environment. Owing to the impressive, informative and long-term

data sets that have been generated through tagging studies, we

focused our literature review on studies that utilized some form of

tagging to investigate aspects of salmonid biology in marine

waters. Second, we sought to synthesize the current state of

knowledge concerning salmonid behaviour and survival in the

marine environment. Third, we highlight particular knowledge

gaps that require further attention and suggest some approaches,

both technological and methodological, from which future studies

could benefit in order to improve our understanding of salmonid

biology. The review is broken into various life history phases that

occur within the marine environment, namely the out-migration of

juveniles (plus Atlantic salmon kelts [Salmo salar] and adult

steelhead [Oncorhynchus mykiss]), sub-adults and adults in the

open-ocean, and mature adults on their return spawning

migration towards freshwater. To fully appreciate the complexity

of the ‘salmon crisis’, with an aim to target key factors that may be

responsible for the global decline in abundance of wild salmon, we

first examine the complex life histories of the salmonids, followed

by a brief review of tag types that are commonly applied to

salmonids.

Life histories of salmonids
There is only one species of Atlantic salmon (family Salmonidae;

species Salmo salar), while the Pacific salmonids (family Salmonidae;

genus Oncorhynchus) comprise eight species, including Chinook (O.

tshawytscha), chum (O. keta), coho (O. kisutch), pink (O. gorbuscha),

sockeye (O. nerka), masu (O. masou), amago (O. rhodurus), and

steelhead (O. mykiss). In addition, there are anadromous forms of

brown trout and sea trout (S. trutta), and cutthroat trout (O. clarkii).

Various species of Pacific salmon are found on both sides of the

northern Pacific Ocean (Western Canada and the U.S. from

California to Alaska, Japan, Russia, and Korea), whereas Atlantic

salmon are found in the north-western (Spain north to the British

Isles, Greenland, Norway and Finland) and the north-eastern

(eastern Canada and the U.S.) Atlantic Ocean. Both Pacific and

Atlantic salmon are considered anadromous, but in many of the

species there are minorities of non-anadromous forms that remain

in freshwater for the duration of their lives, however the latter are

not included in this review.

There is a tremendous amount of variation in the timing of

different life stages between and within anadromous salmon

species (see for Pacific salmon and trout: [3,31]; for Atlantic

salmon: [32,33]). However, most anadromous salmonids can be

characterized by a generalized life cycle. Adults of both Atlantic

and Pacific salmon spawn in freshwater streams or lakes (and some

in intertidal areas; pink and chum salmon) and either die soon

after (semelparous species of Pacific salmon), or have the ability to

survive the spawning period (i.e. iteroparous species). Eggs

deposited in substrate hatch to produce alevins, which remain

under gravel and use a yolk sac for nutrition until they emerge as

fry four to six weeks later. At this point, some species migrate

directly to the ocean, while others remain in freshwater as parr and

feed on small aquatic organisms typically for one to two years

before migrating to the ocean. In the spring of a subsequent year,

fish still in freshwater become smolts and migrate to the sea to

forage and mature for a number of years before returning to natal

spawning grounds to reproduce. The return spawning migration is

among the most spectacular in the animal kingdom, with some

species traversing entire oceans before entering freshwater and

migrating up to 1,500 km upriver to spawn [5,31].

Overview of tagging technologies and techniques
Various types of tags have historically, and are currently used

for research on salmonids. Tags can be grouped into three main

categories: passive, electronic, and biological. Passive tags are

those which do not have an inbuilt battery, they often involve a

visual marking of the fish, and they are primarily used for

identification of individuals or groups once they are recaptured or

within sight. Passive tags include external marks (e.g. adipose fin

clips), external visual tags ( = t-bar anchor tags [e.g. Carlin, Floy,

Peterson Disk, cinch tags]) and internally injected tags such as

coded wire tags (CWT) and passive integrated transponder (PIT)

tags. While PIT tags are characterised as passive, they use radio

frequency energy from an antenna or a closely held scanner to

power the tag circuits and allow a unique identifying signal to be

transmitted.

Electronic tags (reviewed in [34]) were characterised as those

which possess an inbuilt battery and may either store acquired

data to an onboard memory chip [e.g. archival tags ( = data

loggers)] or transmit the data, typically via acoustic or radio

transmission, to a nearby receiver (e.g. standard acoustic and radio

tags). There exist combined technology tags, such as pop-off

satellite tags (PSATs) and smart position or temperature

transmitting tags (SPOTs), which first archive and then transmit

data to a satellite. Electronic tags have been used to measure a

great range of environmental, behavioural and physiological

information from fish, including temperature, depth, light, global

or local position, acceleration, swimming muscle contractions, and

heart rate [35–41]. Radio signals attenuate rapidly in saltwater, so

radio tags are typically restricted to freshwater environments or

when the radio signal can transmit through air such as with PSATs

or SPOT tags. Acoustic tags, whether manually tracked by boat or

automatically by an array of installed receivers, have proven useful

in both marine and freshwater environments, although signal

transmission can be affected by water depth and extraneous

acoustic noise. Electronic tags are typically several orders of

magnitude larger and more expensive than passive tags, which can

both lower sample sizes within a study and restrict tagging to large

individuals. Electronic tags that transmit allow for tracking along a

migration route, meaning that tag recovery is not necessary to

obtain data. Archival tags can acquire data even when fish are not

within range of a receiver, but they must be recovered to

download stored data.

Biological tags, or ‘natural tags’, include natural distinguishable

markings, scale measurements, parasite identification, otolith

(earbone) analysis, and DNA identification, many of which can

provide information on factors such as fish age and habitats

traversed. Biological tags are used without prior capture of the fish,

thus eliminating any potential effects of capture and handling (for

reviews see [42–44]). Methods such as otolith sampling necessitate

that the fish be killed prior to sampling, while other methods can

be performed non-lethally. Although methods such as parasite and

DNA identification may not be considered ‘tagging’ in a classical

Salmon Tagging in Marine Environments

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e31311



sense, such methods have been used to provide detailed

information concerning the origin and movement patterns of the

fish.

Methods

Literature searches were carried out using two commercial

academic search engines, ISI Web of Knowledge and Aquatic

Sciences and Fisheries Abstracts, with a focus on peer-reviewed

journal articles published in the English language as early as 1900

and extending to September 2011. We used combinations of key

terms to focus search results on literature that used tagging as a

method to study movement, behaviour, or survival in marine

ecosystems of anadromous salmon within the genera Oncorhynchus

and Salmo. Specifically, we focused on research of anadromous

forms of Pacific salmon (pink, sockeye, Chinook, coho, chum,

amago, masu), Atlantic salmon, as well as anadromous brown and

sea trout, steelhead, and cutthroat trout (see Appendix S1 for

exact Boolean search terms).

Search results from both academic search engines were pooled

and duplicates removed. All abstracts from resulting papers in the

search databases were read in order to eliminate any papers that

did not meet the criteria for inclusion in the literature review; the

study had to involve some form of tagging of free-living salmonids

(i.e. salmonids released into the natural environment) and results

had to include information on behaviour or survival in the marine

environment. A descriptive review was performed on the papers

meeting our criteria.

For the descriptive review, a spreadsheet was first constructed

with predetermined variables to be queried of each paper. The

variables were chosen as a means to address the author’s

objectives, methods, and results. Examples of variables that were

queried of papers include the year of study, author’s motivation

(i.e. basic biology, conservation, enhancement, fisheries manage-

ment), geographic location, fish natal origin, species, life stages, tag

types, author’s inferred variables from tags (i.e. swim speed, travel

behaviour, location, survival), handling/tagging effects (i.e.

measured, acknowledged, not mentioned), tag loss/failure (i.e.

measured, acknowledged, not mentioned), tag detection efficiency

(i.e. measured, acknowledged, not mentioned), hatchery/farmed

vs. wild fish, environmental variables tested, and physiological

variables tested. Although we limited our descriptive review to

peer-reviewed articles from our directed searches, information

from relevant government and non-government agency reports

were incorporated into the review where appropriate, but not into

the numerical results.

Results and Discussion

General observations
We identified 207 peer-reviewed articles (Appendix S2)

published in the English language that met our criteria of using

tagging in free-living fish to address anadromous salmonid

behaviour or survival in the marine environments. The earliest

publication resulting from our literature review appeared in 1940

[45]. As expected, the number of publications continuously

increased since then (Figs. 1, 2), reflecting an increasing use of

tagging for gathering information on salmonids in marine

environments. The main motivation for research was primarily

the pursuit of basic biological information (75.4%; n = 156),

Figure 1. Number of study of particular species by publication decade. Total number of studies (n = 245) exceeds that of reviewed papers
(n = 207) because many studies investigated more than one species. Steelhead, cutthroat, brown and sea trout were combined into ‘‘Anadromous trout’’.
doi:10.1371/journal.pone.0031311.g001
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followed by fisheries management (30.4%; n = 63), achievement of

broad conservation goals (23.2%; n = 48), development or testing

of tagging methodologies (14.5%; n = 30), assessment of salmon

enhancement (14.5%; n = 30), assessment of habitat degradation

(5.3%; n = 11), and climate change (2.9%; n = 6). Given the

widespread recognition of the impacts that global warming is

having and will probably continue to have on aquatic systems [46],

it was surprising that climate change was the least identified

motivation of any of the research we reviewed.

Irrespective of fish species or study origin, the majority of

research in which geographic location was specifically defined

(n = 207) was performed in the northeast Pacific Ocean (45.9%;

n = 95) and the northeast Atlantic Ocean (35.7%; n = 74). Other

locations included the northwest Atlantic Ocean (9.2%; n = 17),

northwest Pacific Ocean (6.3%; n = 13), Bering Sea (3.9%; n = 8),

and southern Pacific Ocean near New Zealand (1.9%; n = 4). Out

of 206 studies that defined fish natal origin, fish stocks from

Norway/Finland (24.6%; n = 46) and British Columbia/Puget

Sound (24.1%; n = 55) have been the most studied, followed by the

continental U.S. west coast (19.3%; n = 44), British Isles (9.2%;

n = 21), eastern Canada/U.S. (8.8%; n = 20), Japan/Russia (6.6%;

n = 15), Alaska (5.7%; n = 13) and New Zealand (1.8%; n = 4).

Furthermore, the majority of studies examined fish of hatchery

origin (37.7%; n = 60) compared to wild origin (12.6%; n = 20),

ranched (sea cage) origin (4.7%; n = 7), a combination of wild and

hatchery origin (30.0%; n = 47), or a combination of ranched and

hatchery origin (3.1%; n = 5). Out of the total occurrences of

species within the research [i.e. (n = 245) because some studies

examined more than one species], Pacific salmon were the most

frequently studied (69.1%; n = 143), whereas Atlantic salmon and

anadromous trout comprised 45% (n = 93) and 4.4% (n = 9) of

studies, respectively (Fig. 1). Within the Pacific salmonids,

Chinook was the most studied (18.8%; n = 39), followed by coho

(15.0%; n = 31), sockeye (13.5%; n = 28), steelhead (8.2%; n = 17),

chum (7.7%; n = 16), pink (4.8%; n = 10), and masu (1.0%; n = 2)

salmon. Overall, these results indicate very skewed distributions of

research in terms of geographic location, species, and stock origins.

Various forms of tag technologies have been employed

throughout the last half-century. Passive tag use has increased in

recent decades, and out of the total number occurrences of tags

[i.e. (n = 255) because some studies use more than one tag type],

this was the most common tagging approach that we identified

(57.3%; n = 146) (Fig. 2). In regard to the total number of

occurrences of tags in the literature (n = 255), acoustic tags were

the single most dominant tagging method (27.0%; n = 69),

followed by CWTs (19.2%; n = 49), external visual tags (t-bar

anchor) (19.0%; n = 48), external markings (12.9%; n = 33), radio

tags (9.4%; n = 24), PIT tags (6.3%; n = 16), data loggers (4.7%;

n = 12), and various forms of biological tags (e.g. otoliths, parasites,

scales) (1.6%; n = 4). When external markings were used (n = 33)

they were primarily combined with another form of tagging

(75.8%; n = 25). When acoustic transmitters were used (n = 102),

they were applied primarily to study juveniles (Tables 1, 2). In

contrast, when data loggers were used (n = 13), they were applied

primarily to study adults in the open-ocean during or prior to their

spawning migration to freshwater (Tables 1, 2), likely reflecting

tag size, and efforts to maximise tag retrievals by relocating fish

once they arrive at spawning grounds. Biological tags are relatively

Figure 2. Number of use of specific tag types by publication decade. Total number of tag use (n = 271) exceeds that of reviewed papers
(n = 207) because many studies used more than one tag type. The category ‘‘T-Bar’’ includes carlin, cinch, spaghetti, Floy, and Petersen disk tags. The
plot does not include data from a paper published in 1940 because the tag type used was not specified by the author.
doi:10.1371/journal.pone.0031311.g002
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new techniques and were used in only four (1.6%) studies. The low

number of studies using biological tags may have been an artefact

of the literature search terms being too narrow to locate more of

these studies.

Nearly 40% of studies examined multiple life stages (36.2%;

n = 75), whereas the majority only examined a single life stage

(63.8%; n = 132). External tags and CWTs were used most

frequently in studies that examined multiple life stages beginning

at the juvenile stage (Tables 3, 4), likely because they can be

applied to large numbers of juvenile fish at a low cost, there is a

publicly available database of CWT data [47], and because early

marine juvenile survival is thought to be important when

considering lifetime fitness. Acoustic transmitters were employed

most frequently when the research objectives were to examine just

one life stage (Tables 3, 4), an issue largely related to limited

transmitter battery life.

The most frequent variable authors inferred from tagging

studies was survival (59.0%; n = 122), various travel behaviours

(e.g. holding, vertical migrations) (44.0%; n = 91), assessments of

fish position or location (37.2%; n = 77), swim speed (26.6%;

n = 55), migration route (23.7%; n = 49) and origin (9.7%; n = 20).

A large proportion of the studies did not directly assess potential

mechanisms influencing survival or behaviour; less than half of the

studies (45.0%; n = 93) reported on linking environmental

variables to tagging results, and even fewer (13.5%; n = 28) looked

for associations between individual physiology and tagging results.

Temperature was the most common environmental variable found

to be associated with behaviour (17.9%; n = 27) and survival

Table 1. Frequency (% within parentheses) of use of different tag types to study the life stages of anadromous salmonids in the
marine environment for studies focusing on survival (i.e. those focusing on only survival and both on survival and behaviour).

Tag type

Life stage Acoustic Radio Data Logger PIT CWT External Biological Row Total

Out-migration (juveniles) 23 (63.9/42.6) 3 (20/5.6) 0 (0/0) 7 (53.8/13) 10 (25.6/18.5) 11 (19.3/20.4) 0 (0/0) 54 (NA/100)

Out-migratin (juveniles) to
open ocean

2 (5.6/20) 0 (0/0) 0 (0/0) 0 (0/0) 2 (5.1/20) 6 (10.5/60) 0 (0/0) 10 (NA/100)

Out-migration (kelts) 3 (8.3/42.9) 0 (0/0) 1 (100/14.3) 1 (7.7/14.3) 0 (0/0) 2 (3.5/28.6) 0 (0/0) 7 (NA/100)

Return migration 4 (11.1/15.4) 11 (73.3/42.3) 0 (0/0) 0 (0/0) 2 (5.1/7.7) 9 (15.8/34.6) 0 (0/0) 26 (NA/100)

Open-ocean 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 1 (2.6/33.3) 2 (3.5/66.7) 0 (0/0) 3 (NA/100)

Open-ocean to return
migration

1 (2.8/100) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 1 (NA/100)

Entire life cycle (juvenile-
return adult)

3 (8.3/4.9) 1 (6.7/1.6) 0 (0/0) 5 (38.5/8.2) 24 (61.5/39.3) 27 (47.4/44.3) 1 (100/1.6) 61 (NA/100)

Column Total 36 (100/NA) 15 (100/NA) 1 (100/NA) 13 (100/NA) 39 (100/NA) 57 (100/NA) 1 (100/NA) 162 (100/100)

The first % value within parentheses shows the relative frequency of use of a given tag type across life stages. The second % value shows the relative frequency of use of
different tag types to study a particular life stage. The total frequency of tag use (n = 342) exceeds that of reviewed papers (n = 207) because many studies encompassed
more than one life stage. The category ‘‘Biological’’ includes otoliths and scales, whereas the category ‘‘External’’ includes Carlin, cinch, Floy, Petersen disk tags and
external markings.
doi:10.1371/journal.pone.0031311.t001

Table 2. Frequency (% within parentheses) of use of different tag types to study the life stages of anadromous salmonids in the
marine environment for studies focusing on behaviour (i.e. those focusing on only behaviour and both on behaviour and survival).

Tag type

Life stage Acoustic Radio Data Logger PIT CWT External Biological Row Total

Out-migration (juveniles) 36 (54.5/60) 3 (13.6/5) 1 (8.3/1.7) 6 (66.7/10) 4 (21.1/6.7) 9 (18.8/15) 1 (25/1.7) 60 (NA/100)

Out-migratin (juveniles) to
open ocean

2 (3/20) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 8 (16.7/80) 0 (0/0) 10 (NA/100)

Out-migration (kelts) 4 (6.1/40) 0 (0/0) 2 (16.7/20) 1 (11.1/10) 0 (0/0) 3 (6.3/30) 0 (0/0) 10 (NA/100)

Return migration 16 (24.2/32) 17 (77.3/34) 3 (25/6) 0 (0/0) 1 (5.3/2) 13 (27.1/26) 0 (0/0) 50 (NA/100)

Open-ocean 3 (4.5/27.3) 0 (0/0) 2 (16.7/18.2) 0 (0/0) 4 (21.1/36.4) 1 (2.1/9.1) 1 (25/9.1) 11 (NA/100)

Open-ocean to return migration 1 (1.5/25) 0 (0/0) 3 (25/75) 0 (0/0) 0 (0/0) 0 (0/0) 0 (0/0) 4 (NA/100)

Entire life cycle
(juvenile-return adult)

4 (6.1/11.4) 2 (9.1/5.7) 1 (8.3/2.9) 2 (22.2/5.7) 10 (52.6/28.6) 14 (29.2/40) 2 (50/5.7) 35 (NA/100)

Column Total 66 (100/NA) 22 (100/NA) 12 (100/NA) 9 (100/NA) 19 (100/NA) 48 (100/NA) 4 (100/NA) 180 (100/100)

The first % value within parentheses shows the relative frequency of use of a given tag type across life stages. The second % value shows the relative frequency of use of
different tag types to study a particular life stage. The total frequency of tag use (n = 342) exceeds that of reviewed papers (n = 207) because many studies encompassed
more than one life stage. The category ‘‘Biological’’ includes otoliths and scales, whereas the category ‘‘External’’ includes Carlin, cinch, Floy, Petersen disk tags and
external markings.
doi:10.1371/journal.pone.0031311.t002
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(9.1%; n = 6) (Table 5). Among physiological variables the

author’s tested, energetic state of the fish was most commonly

associated with behaviour (2.0%; n = 3), whereas osmoregulatory

state of the fish was most commonly associated with survival

(4.5%; n = 3) (Table 5). Other variables commonly found to be

associated with behaviour or survival included fish size and stock

effects (i.e. populations, wild versus hatchery) (Table 5). However,

this does not necessarily mean that these particular variables are

the most important in affecting salmonid behaviour or survival, as

the variables were not equally tested for among studies.

Life-stage specific observations
Juvenile salmon and Atlantic salmon kelts. Most tagging

studies focused on the juvenile portion of the salmon life cycle

(65.7%; n = 136), likely because this life stage exhibits high and

variable mortality rates, as well as a result of the ease of capture of

fish, relatively high abundance, proximity to research institutions

during outmigration (near river mouths and urban areas), and

availability from hatchery programs. In contrast, research on the

kelt life stage of Atlantic salmon was the least common focus,

comprising only 5.0% (n = 6) of studies on iteroparous species

(n = 119). Although less studied than juvenile out-migrations, kelt

out-migration behaviour and survival patterns mirrored that of

outmigrating smolts [48] so will be discussed in combination.

Juvenile pink, sockeye, steelhead, Atlantic salmon and Atlantic

salmon kelts tend to move actively and rapidly through coastal

(continental shelf) waters during out-migration to the ocean [48–

54]. Chum, coho and Chinook tend to migrate at a much slower

rate and can remain in coastal waters for longer periods of time

[49,50,55,56]. Apart from differences between species, movement

rates through estuarine and coastal environments vary between

population, fish origin (e.g. hatchery vs. wild; [49,57,58]) and body

size [55,57].

Juvenile salmon in coastal waters tend to migrate during ebb

tides and at night [52,53,59], swimming actively within tides [60–

62]. While estimates of swimming speed show some variability (e.g.

from 0.53 body lengths per second (bl s21) [58] up to 4 bl s21

[52]), an average routine rate of 1 bl s21 is common [63].

Laboratory swimming respirometry studies have found that a

speed of 1 bl s21 is associated with a minimum gross cost of

transport [64]. Juveniles and kelts often exhibit clear diel vertical

and horizontal movement patterns. Nocturnal migration tends to

be more rapid than movement during the day [53,59]. Swimming

depth during the day tends to be quite shallow, within 1–3 m of

the ocean surface, and even less (,0.5 m) during the night [65].

Changes in swimming depth and migration speed may be strongly

related to temperature and salinity [66], or light conditions [65],

the latter perhaps being a strategy related to predator avoidance

[67]. Indeed, vertical movement trends may be closely linked to

the feeding patterns of avian predators, resulting in movement

downward in the water column during daylight hours [67].

Mortality during the juvenile out-migration stage is higher than

during other marine life history stages, even when compared to the

lengthy adult open-ocean stage [68]. Using acoustic telemetry,

mortality of juveniles departing coastal waters has been shown to

be very high [50,58], although recent research has shown that

Table 3. Frequency (% within parentheses) of use of different tag types to study single and multiple life stages of anadromous
salmonids in the marine environment for studies focusing on survival (i.e. those focusing on only survival and both on survival and
behaviour).

Tag type

Type of study Acoustic Radio Data Logger PIT CWT External Biological Row Total

Single stage 33 (91.7/37.9) 14 (93.3/16.1) 1 (100/1.1) 8 (61.5/9.2) 10 (25.6/11.5) 21 (36.8/24.1) 0 (0/0) 87 (NA/100)

Multiple stages 3 (8.3/4) 1 (6.7/1.3) 0 (0/0) 5 (38.5/6.7) 29 (74.4/38.7) 36 (63.2/48) 1 (100/1.3) 75 (NA/100)

Column Total 36 (100/NA) 15 (100/NA) 1 (100/NA) 13 (100/NA) 39 (100/NA) 57 (100/NA) 1 (100/NA) 162 (100/100)

The first % value within parentheses shows the relative frequency of use of a given tag type across type of study. The second % value shows the relative frequency of
use of different tag types to study one or multiple life stages. The total frequency of tag use (n = 340) exceeds that of reviewed papers (n = 207) because some studies
used more than one type of tag. The category ‘‘Biological’’ includes otoliths and scales, whereas the category ‘‘External’’ includes carlin, cinch, Floy and Petersen disk
tags and external markings.
doi:10.1371/journal.pone.0031311.t003

Table 4. Frequency (% within parentheses) of use of different tag types to study single and multiple life stages of anadromous
salmonids in the marine environment for studies focusing on behaviour (i.e. those focusing on only behaviour and both on
behaviour and survival).

Tag type

Type of study Acoustic Radio Data Logger PIT CWT External Biological Row Total

Single stage 61 (93.8/47.7) 19 (90.5/14.8) 8 (66.7/6.3) 7 (77.8/5.5) 7 (36.8/5.5) 24 (50/18.8) 2 (50/1.6) 128 (NA/100)

Multiple stages 4 (6.2/8) 2 (9.5/4) 4 (33.3/8) 2 (22.2/4) 12 (63.2/24) 24 (50/48) 2 (50/4) 50 (NA/100)

Column Total 65 (100/NA) 21 (100/NA) 12 (100/NA) 9 (100/NA) 19 (100/NA) 48 (100/NA) 4 (100/NA) 178 (100/100)

The first % value within parentheses shows the relative frequency of use of a given tag type across type of study. The second % value shows the relative frequency of
use of different tag types to study one or multiple life stages. The total frequency of tag use (n = 340) exceeds that of reviewed papers (n = 207) because some studies
used more than one type of tag. The category ‘‘Biological’’ includes otoliths and scales, whereas the category ‘‘External’’ includes carlin, cinch, Floy and Petersen disk
tags and external markings.
doi:10.1371/journal.pone.0031311.t004
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juvenile mortality in the open ocean may be even higher [50].

Estimates of survival for early ocean migrating salmonids have

been made for Atlantic salmon [58,61,69,70], Chinook [50,71],

coho [50,57], chum [72], sockeye [50,73], steelhead [50,68,74–76]

and anadromous brown trout [58]. Juvenile survival can be

affected by a multitude of factors including predation [77–80],

competition [81], parasites [82,83], inability to osmoregulate

[57,80,84], pollution [85], marine entry timing [58,81,86,87],

adverse ocean conditions (temperature, salinity, oxygen, pH,

productivity) [88–90], dams [91], and smolt size [71,88].

Furthermore, survival rates have been shown to differ between

hatchery and wild fish. Survival estimates for wild fish tend to be

higher than those for hatchery juveniles [19,57,68,75,76,81,92–

95]. In one study, survival of wild steelhead smolts during

migration away from inshore waters ranged from 18–39%, while

hatchery smolt survival was 3% [76]. Trends such as this suggest a

discrepancy in fitness between the two groups, possibly due to

differences in physiology [57], behaviour [96], and size [88,97–

99].

Open-ocean. The open-ocean migration of salmon has been

studied the least frequently, being the primary focus of only 8.7%

(n = 18) of tagging studies. This is likely due to the difficulty of

accessing fish within this environment, technological constraints,

and associated financial costs. In fact, much of what we know

about salmon migration in the open-ocean comes from early

research by fisheries capture and the use of external tags. This type

of research was performed by international organizations such as

the North Atlantic Salmon Conservation Organization (NASCO)

(Atlantic salmon), and the North Pacific Anadromous Fish

Commission (NPAFC) (Pacific salmon), which provided some of

the first scientific insights into the open-ocean behaviour and

ecology of anadromous salmon at sea. This early research revealed

that salmon populations are often highly mixed at sea. For

example, Pacific salmonid stocks from Japan, Russia, Canada, and

the United States utilize several of the same marine feeding

grounds [100–105].

A small number of recent studies have utilized recovery of data

loggers and manual tracking of fish tagged with acoustic

transmitters to assess fine scale movements of salmon in the

open-ocean. Salmon migrating in the open-ocean tend to swim at

speeds of 1 bl s21 on average [106–108], which is similar to

average swim speeds observed in other life stages (see above).

Vertical distribution in the water column varies diurnally,

seasonally, and by species (e.g. Chinook dive below 50 m whereas

most other species remain within the upper 20 m of the water

column [107]), as determined by acoustic tracking of tagged

individuals [106,107,109] and data logger recoveries [110–113].

Vertical migrations are most likely related to maximizing foraging

efficiency [112], predator avoidance, and for navigational

purposes [114].

There are several factors that are thought to influence salmon

survival in the open-ocean, including migration routes, timing,

food availability, predator levels, ocean conditions [115–119] and

carry-over effects from earlier life stages [120]. However, relatively

few tagging studies have estimated survival in the open-ocean and

the limited results suggest that survival rates can vary considerably

among species and populations, and the causes remain poorly

understood. For example, to investigate trends in survival across

the Northeast Pacific over a long time scale, a study using CWT

data from coho salmon found that ocean survival of northern

stocks (northern BC and Alaska) increased from the 1980s to 1990,

whereas survival of southern stocks has been declining over the

same time period [24]. This inverse-covariablity between northern

and southern latitude salmon production has been similarly shown

in other salmonid species [121], and is thought to be associated

with changing ocean regimes [122,123]. However, using CWT

data, a more recent study found no significant inverse-covariability

on interannual timescales between northern and southern stocks of

coho salmon [124], which demonstrates our lack of understanding

on the processes influencing population dynamics of salmonids in

the open-ocean.

Return migration. Although they can travel thousands of

kilometres in high seas, most maturing salmon have the ability to

navigate back to natal freshwater streams upon reaching maturity.

Nevertheless, straying behaviours (e.g. individuals spawning in

non-natal waters) are present in several species [22,125–129] and

may represent an important evolutionary survival strategy. Even

though some populations in certain watersheds (e.g. the Fraser

River) have recently exhibited variable river entry timing [130],

upriver spawning migrations by mature adults usually commence

within the same week each year [131,132]. Such predictability

certainly facilitates the study of this life stage, which ranked second

in our analysis (22.2%; n = 46).

Timing and location of arrival of salmon to the continental shelf

from ocean feeding grounds is based on environmental factors in

the ocean [56,133–135] and physiological state of the fish

[136,137]. Swim speed for returning adults has been determined

simplistically using manual tracking of individuals [107,138], and

by more sophisticated means using data loggers that directly

measure swim speed [139]. Again it emerges that adult salmon are

observed to routinely swim at average speeds around 1 bl s21

Table 5. Number and frequency (% within parentheses) of a
variable being found significant out of the total number of
significant findings for behaviour (n = 151) or survival (n = 66).

Study focus

Category Variable Behaviour Survival

Environmental Temperature 27 (17.9) 6 (9.1)

Depth 16 (10.6) 1 (1.5)

Diel Effects 16 (10.6) 0 (0)

Tide 15 (9.9) 0 (0)

Current 8 (5.3) 0 (0)

Salinity 7 (4.6) 2 (3)

Productivity 2 (1.3) 3 (4.5)

River Discharge 4 (2.6) 3 (4.5)

Physiological Reproductive State 2 (1.3) 2 (3)

Stress Hormones 0 (0) 1 (1.5)

Ionoregulatory State 0 (0) 3 (4.5)

Energetic Status 3 (2) 1 (1.5)

Other Fish Size 16 (10.6) 15 (22.7)

Stock 16 (10.6) 14 (21.2)

Sex 2 (1.3) 1 (1.5)

Release Date 4 (2.6) 4 (6.1)

Release Location 2 (1.3) 3 (4.5)

Trophic Effects 5 (3.3) 1 (1.5)

Fisheries 1 (0.7) 4 (6.1)

Predation 5 (3.3) 2 (3)

Total 151 (100) 66 (100)

Note that the table is based on studies focusing solely on behaviour or survival,
but not both.
doi:10.1371/journal.pone.0031311.t005
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[41,107,138]. Migration rates and timing are influenced by a

range of environmental factors (reviewed in [140]), some of which

are tides, currents, salinity levels and temperature [141–147]. As in

the open-ocean, vertical position in the water column in coastal

areas can vary among species and even within species between

relatively short distances on continental shelves. For example,

manually tracked sockeye salmon were observed to choose

different depths when swimming in well mixed coastal waters

versus stratified coastal waters, preferring deeper water when they

encountered a stratified water column created by river discharge

[138]. Vertical movements may be related to species preferring

narrow ranges of temperature [148]. Several species continue to

exhibit diel vertical movement patterns during this portion of their

life [112,138,144,149], which may be a behaviour used to

conserve energy prior to river migration, avoid predators, prepare

osmotically for freshwater entry, or aid in navigation

[140,141,148].

Though only a few studies have focused on aspects of salmonid

physiology, the role of physiological state as a key driver of return

migration behaviour and survival is highlighted by a series of

studies conducted on Fraser River sockeye salmon. Specifically,

fish with advanced reproductive preparedness (e.g. elevated

plasma concentrations of reproductive hormones, including

testosterone, 11-ketotestosterone, and 17b-estradiol) migrated

fastest coastally and entered the river earlier [137,150,151].

Marine survival was related to physiological stress such that fish

with elevated plasma ion glucose and lactate levels perished in

coastal waters before entering the river [150,152,153]. Survival

was also lower in fish that were less physiologically prepared for

freshwater entry (i.e. higher plasma chloride and total osmolality

[154]). These studies provide examples of how telemetry can be

combined with physiological measurements to address research

questions.

Knowledge gaps and future directions
Core knowledge. Our review identified several priority areas

for research due to inadequate investigation to date. We believe

these knowledge gaps constrain the current understanding of

salmon in marine environments, and potentially limit the

application of contemporary tagging technologies for

management and conservation purposes. Below, we discuss each

area and give recommendations to address these concerns

wherever possible.

Globally, knowledge of the impact of climate change on salmon

behaviour and survival in the marine environment is limited. Less

than half of tagging studies analyzed in this review attempted to

link abiotic factors such as temperature, salinity, oxygen, and

productivity to salmon behaviour or survival (except see [13,155–

160]). Major climatic changes have already occurred [55], and

shifts in ocean temperatures, salinity, oxygen concentration, pH,

and prey abundance are expected to intensify [161,162], with

profound compounding effects on salmonid distribution and

survival [5]. Tagging can be a powerful tool to increase our

understanding of the impacts of environmental change on

salmonids, particularly if studies are long-term and combined

with effective environmental monitoring (e.g. through the use of

data loggers). Furthermore, experimental studies that manipulate

temperature or salinity can be combined with biopsy and

telemetry techniques to further contribute to the knowledge base

(e.g. [163]).

In addition, certain regions (e.g. Bering Sea, northwest Pacific

Ocean, New Zealand), populations (e.g. those from Alaska, Japan/

Russia, New Zealand), life stages (e.g. open-ocean, kelts) and

species (e.g. pink, masu) are underrepresented in the literature.

Most of the research we analyzed examined hatchery fish rather

than wild fish, and relatively few tagging studies compared the two

(except see [19,49,50,57,68,75,76,81,92–95,164,165]), despite

known differences in behaviour and survival. For example, wild

populations commonly display adaptive plasticity in migration

timing due to environmental variation and as a means of avoiding

interspecies competition [81], while hatchery raised fish are

manually released according to a hatchery schedule [92].

Hatchery fish often have lower fitness and subsequent survival in

natural environments than wild stocks [92]. This suggests that

conclusions from tagging studies using hatchery fish should

perhaps not be applied broadly to wild populations. Tagging

studies among populations, as well as between hatchery and wild

fish, could provide insights into key differences among such

groups.

There are also limited data on full life cycle analyses, as very few

studies assess more than one life stage at one time, a method that

does not account for any cumulative effects throughout the life

history. For instance, juvenile growth rates can affect fitness and

survival in all remaining life stages, and successful development at

sea may have cascading effects on subsequent reproductive

maturation and spawning success. Tagging juveniles and assessing

the entire life cycle while monitoring abiotic factors may provide

powerful insights into which environmental effects have the

greatest impact on lifetime fitness. Various technologies exist that

could be implemented on a large scale relatively inexpensively,

such as external visual tags or PIT tags, however, more expensive

acoustic tags or data loggers could provide more detailed

information on both biotic and abiotic factors.

Finally, we identified a definite lack of research on salmonid

survival and mortality at sea. Although some research has looked

at lifetime survival through tagging, these studies were unable to

determine exactly where and why mortality occurs. Understanding

lifetime survival rates is critical to understanding population

viability, yet there is no conclusive data to date to suggest which

life stage is associated with the highest mortality. This has made it

challenging to relate environmental variables to mortality across

life stages. While current technologies cannot yet provide precise

estimates of location and cause of mortality, this may change in the

near future. For example, to control the problem of limited battery

life, acoustic transmitters have now been designed that can ‘turn

off’ while salmon are at sea, and then power-up 2–3 years later

upon return migration to freshwater where they can be tracked

with acoustic arrays [73].

Tagging models, procedures and technologies. A

common feature of studies designed to estimate survival from

tagged animals in the wild is the potential for imperfect (i.e.

,100%) encounter (i.e. detection or recapture of electronic and

passive tags, respectively) probabilities. When researchers do not

account for encounter probabilities that are ,100%, survival

estimates will be biased low, and erroneous interpretations of

results can occur in cases where encounter probabilities vary

among tagged fish belonging to different strata (e.g. sex) or

assigned to different experimental treatments [166]. Capture-

recapture models for open populations have been developed since

the 1960’s to deal explicitly with imperfect encounter probabilities

in the estimation of survival and other demographic parameters

from tagged animals [167]. However, despite the long-standing

availability and continued development of capture-recapture

models and specialized computer software for their

implementation, only 20.9% (n = 23 out of 110) of the studies

where capture-recapture models were applicable have accounted

for imperfect encounter probabilities in the estimation of survival

for anadromous salmonids. Indeed, in general there seems to be
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little appreciation and use of capture-recapture models in fisheries

research [168]. Encounter probabilities have been measured for

multiple species of salmon smolts using the Pacific Ocean Shelf

Tracking (POST) array in coastal waters (reviewed in [50]).

A related class of models allows researchers to estimate survival

from tag recoveries of harvested animals [169] or from both live

encounters and tag recoveries [170]. Tag recovery, whether by

commercial fisheries or by other means, was used in 63.5%

(n = 129) of studies reporting how tag data were retrieved. The use

of models based on tag-recovery data to estimate survival could be

applied to these studies. An interesting application of models based

on tag recovery is the possibility to separate fishing from natural

mortality if an estimate of tag reporting probability is available

[168]. Several experiments have been proposed to estimate the

probability that tags are reported. For example, reporting

probability can be estimated as the recovery of standard (i.e. no-

or low-reward) tags relative to high-reward tags (assuming these

are 100% reported if encountered) [171]; or by planting tags into

fisheries catches and calculating the ratio between planted tags

reported and the known number of tags that were planted [172].

Both capture-recapture and tag-recovery models are based on

the assumption that tags are not lost or shed and, in the case of

electronic tags, that they do not fail. If this assumption is violated,

survival will be underestimated [167]. However, tag loss/shed was

measured in only 7.7% (n = 16) of studies and was not even

acknowledged in 69.0% (n = 143) of studies where it could possibly

have occurred. Double-tagging individuals could minimize the

impacts of tag loss/shed on survival estimates [173], an approach

that was employed in 28.5% (n = 59) of the studies. Assuming that

loss/shed of the two tags are independent, information on the

number of fish recaptured with one or both tags could be used to

estimate the probability of tag loss/shed and then used to adjust

survival estimates [173]. Alternatively, multistate capture-recap-

ture models could be used to jointly estimate survival and tag/shed

loss [174]. When looking exclusively at studies using electronic tags

(n = 69), 11.6% (n = 8) measured tag failure. These measures are

important as they allow researchers to construct time to failure

curves for the electronic tags. This information, along with fish

detection times, can be incorporated into the likelihood function of

a capture-recapture model to account for tag failure into estimates

of survival [175,176]. A similar approach could also be used to

account for the loss/shed of passive tags into survival estimates

[175].

Another important assumption of capture-recapture and tag-

recovery models is that tagging does not affect survival; otherwise

survival estimates will be biased low [167]. Capture methods

[177], tag types [178], tagging methods (e.g. external attachment,

surgical application, gastric insertion, injection) [179,180], the use

of anesthetics, handling time, tag size and release technique (e.g.

recovery period) can all impact survival of the tagged fish.

Capture-recapture models can be modified to account for short-

term tagging effects on survival of newly tagged individuals [169].

In fact, tagging effects are not only issues in studies of survival but

also of movement and behaviour [179,181]. However, only 10.6%

(n = 22) of studies assessed tagging/handling effects, and an

acknowledgment of potential tagging/handling effects was made

in only 33.8% (n = 70) of studies. Tag size is a major limitation in

salmon research, especially in studies of juvenile fish [182], and

very few of the studies we reviewed assessed survival costs or tag

burdens on juveniles (except see [57,76,180,183–186]). While

there have been a number of studies performed under laboratory

settings to assess tag effects to supplement field studies or to model

tag limits for certain species [63,180,187–189], few studies

conducted these trials under field conditions (except see

[50,188,190]).

Remarkable advancements have been made in the field of fish

tagging throughout the last few decades. Movement towards

electronic rather than passive tags has enabled researchers to more

thoroughly investigate the movement and survival patterns of

individual salmonids in the marine environment. Nevertheless, the

historic (and ongoing) studies that utilized passive tags (primarily

CWT, and/or adipose fin clip) remain some of the most

enlightening due to their large sample sizes across multiple years

(cost effectively), and their applicability to very small juveniles.

Clearly, this is an area where current electronic tagging

technologies require further advancement to minimize costs,

decrease tag sizes, and thus allow long-term studies to be

conducted with an aim to more comprehensively examine the

interannual variability in salmonid biology.

Indeed, some manufacturers have concentrated on miniaturiz-

ing electronic tags such that they are of use in very small fish, such

as the recently developed JSAT tags [182]. At present, many of

these miniaturized tags emit an acoustic or radio signal such that

the fish can be detected when they swim within range of particular

receivers. Owing to these tags, an excellent database is

accumulating regarding the early marine phase of the lifecycle of

salmon smolts, including aspects of behaviour and survival

[50,57,68,72,73,75,76]. A limitation of these studies is that fish

must be presumed dead if they are not detected on subsequent

receivers following their detection on a prior receiver. This results

in areas between receivers where many fish may have disappeared

for reasons that cannot be ascertained with current technologies

and infrastructure.

Though not frequently used yet, multi-sensor tags are one future

development that holds considerable promise as they allow

detailed insight into the behaviour (e.g. acceleration, tail beat

frequency, dive patterns) and physiology (e.g. heart rate, blood

oxygen status) of individual fish in the natural environment [35–

39,41]. While many adult salmon can accommodate certain multi-

sensor tags, miniaturization of the tags to the point where they can

be used in smolts is some distance into the future. Multi-sensor tags

are typically archival due to the inherent difficulties of transmitting

data from multiple sensors to a receiver during the transient period

when the fish is in range. This limitation is guiding engineering

research to develop archival tags that transmit stored data

intermittently to receivers whenever the fish is in range. The

transmission will continue where it left off once the fish is in range

of a subsequent receiver. An exciting prospect is that other animals

may ultimately act as ‘receivers’. That is, large animals (e.g. sharks,

whales) that are capable of carrying a PSAT, for example, could

receive data from nearby smaller animals (e.g. juvenile and adult

salmon) and transmit the data both from themselves and from the

smaller animals to satellite receivers. Termed ‘business card’ tags,

these technologies promise exciting avenues for salmon research in

the future [191].

Conclusions. Tagging and telemetry are tools that have the

potential to integrate research and researchers across disciplines to

advance our knowledge of salmonid behaviour, physiology and

survival. By combining passive and newly emerging electronic and

biological tagging approaches, incorporating environmental,

physiological and behavioural observations into tagging studies,

and utilizing broad-scale telemetry arrays and curtains (e.g. Pacific

Ocean Shelf Tracking Project – POST, Ocean Tracking Network

– OTN, Tagging of Pelagic Predators – TOPP), multi-life stage

and multi-trophic level investigations are within reach (see [192]).

Finally, international collaboration, as is occurring in projects such
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as OTN and TOPP, will greatly benefit salmonid research in the

marine environment.
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