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Abstract

Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings?
This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we
show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike
trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex) encode source identity. We
find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song.
However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a
subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations
dominate responses of different neural subpopulations, helping to separate neural responses into independent
representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate
for selective spatial auditory attention.
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Introduction

Past studies of spatial effects in auditory cortex have focused on

how spatial location is encoded. These studies typically find that

single-unit spatial tuning in cortex is weak [1–4], not topographically

organized [5,6], and not encoded independently of other perceptu-

ally important features [7]. There is good evidence for a specialized

‘‘where’’ pathway in auditory cortex, in which spatial information

plays a larger role than in other cortical areas [8]. However,

although we know of no single study that directly compares spatial

tuning in cortex to that of lower stages of the auditory pathway,

spatial tuning of cortical neurons is generally broad compared to

both behavioral sensitivity [4] and spatial encoding in the midbrain

[9,10]. One hint for how to resolve these apparent discrepancies is

that in an awake animal performing a spatial task, spatial

information in cortical responses is enhanced [10]. Together, these

results suggest that although spatial information is available, it is not

the primary feature represented in the cortical auditory regions.

Instead, spatial information may modulate neural responses in a way

that depends on task demands, thus enabling analysis of sound

sources in realistic auditory scenes [11,12].

It may be that spatial effects are not best revealed by looking at

how well source location is encoded by neural responses, but

rather by examining how source location affects other aspects of

information in cortical spike trains. In everyday perception, source

location matters most in auditory scenes in which sounds compete

with each other. Although listeners can localize a sound source in

quiet, this ability is degraded in more typical, real-world settings

containing reverberant energy or competing sources [13]. In

contrast, in exactly those kinds of realistic situations where there

are competing sources, spatial separation helps listeners segregate

sounds and enables them to focus selective attention, a critical

skill for understanding a source of interest [14,15]. In this sense,

behavioral results support the idea that the locations of competing

sources strongly influence auditory perception, regardless of

whether the listener can effectively localize in such a setting.

Motivated by these observations, we hypothesized that the

effects of spatial location on cortical processing would best be

revealed by a study that uses competing sound sources. Rather

than focusing on how accurately spatial location of a source was

encoded, we explored how competing source locations influenced

the ability to encode the identity of a target communication

signal (in this case, birdsong). We found that, consistent with our

hypothesis, source location of a target song presented in isolation

had little effect on how well neurons in avian field L (the analog of

mammalian primary auditory cortex [16]) encoded song identity;

however, in the presence of a competing noise masker, both

target and masker locations strongly influenced encoding of song

identity. Moreover, depending on the location of target and

masker, different neurons were ‘‘best’’ at encoding identity. Such a
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coding scheme may provide a substrate for spatial auditory

attention, as top-down modulatory control signals could selectively

suppress responses of neurons favoring a masker in order to reduce

competition and allow more precise analysis of a target from a

desired location.

Results

Neural Responses Are Sensitive to the Locations of
Competing Sources

We recorded neural responses from male zebra finches in the

auditory forebrain (field L, based on stereotactic coordinates

[17–19]) to stimuli from four azimuthal locations in the frontal

hemifield. Target stimuli were two conspecific songs, presented

either in quiet (‘‘clean’’; Figure 1A) or in the presence of a spec-

trally similar noise masker coming from the same or a different

location as the target song (Figure 1B). We assessed neural per-

formance using a single-trial spike-distance-based [20] nearest-

neighbor classification scheme [21], calculating a percent correct

score that indicates how well neural responses coded stimulus

identity. Chance performance was 50%. Consistent with prior

studies [17,22–24], rate coding alone was insufficient to allow

reliable stimulus discrimination; mean performance when no

masker was present was only 54%, averaged across recording sites.

In each experimental session, there were four loudspeaker

locations, leading to 16 target-masker spatial configurations. If the

Author Summary

When a listener is presented with many sound sources at
once, it is easier to understand a particular source when it
comes from a different spatial location than the other
competing sources. However, past studies of auditory
cortex generally find that in response to a single sound
source, there is not a precise representation of spatial
location in the cortex, which makes this effect of spatial
location hard to understand. Here, we presented zebra
finches with two simultaneous sounds (a birdsong target
and a noise masking sound) from distinct spatial locations
and recorded neural responses in field L, which is
analogous to primary auditory cortex in mammals. When
the target sound was presented by itself, the location of
the source had little effect on the ability to identify the
target song based on neural activity in field L. However,
when the target was presented with a masker sound, the
location of both sources strongly affected neural discrim-
ination performance. Moreover, different subpopulations
of neurons preferentially encoded either target or masker,
providing a potential substrate for spatial selective
attention. Thus, even though location is not well coded
in cortical neurons, spatial information strongly modulates
cortical responses.

Figure 1. Masking sounds increase spatial sensitivity. (A) Two target song spectrograms (frequency range 500 Hz to 8 kHz), and the response
of an example field L recording site to those two songs (10 trials each) as rasters. There is one set of rasters at each of the four azimuths for the two
target songs; the effects of changing the location are minimal. (B) The same, with the addition of a song-shaped noise masker (whose spectrogram is
shown below those of the targets), played from 290u for all target locations, at the same RMS amplitude as the target (represented by the black box
with an ‘‘M’’ on it). The masker sound affects the responses at all target locations, but the effect is stronger (primarily as deleted spikes) when the
target is at 290u. (C) Discrimination performance of the same example site. Discrimination of clean targets is reliable for all target locations. However,
masked performance is worse when the target is ipsilateral to the site than when it is contralateral. (D) The effect of adding a masker (black bars:
means 6 1 SEM, gray lines: individual sites, n = 33). The spatial sensitivity is much higher for the masked stimuli, succinctly demonstrating that the
addition of masker to a stimulus increases the dependence of performance on location. (E) Average spike rates in response to clean songs (black line:
mean 6 1 SEM, gray lines: individual sites).
doi:10.1371/journal.pbio.1001319.g001
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recording electrode was in the left hemisphere, loudspeaker

locations were on the left side (290u, ipsilateral to the electrode),

in front (0u), halfway between front and right (+45u), and on the

right (+90u, contralateral). These locations were flipped about the

midline when recording in the right hemisphere. Henceforth,

coordinates are referenced to the recording electrode, so that

ipsilateral azimuths have negative signs and contralateral azimuths

have positive signs. Discrimination performance was calculated for

all 16 configurations and three signal-to-noise ratios (SNR; 26 dB,

0 dB, +6 dB). To assess the extent to which the head created an

acoustical obstruction (‘‘head shadow’’) to the ear opposite the

sound source, we measured sound level at both ears from all four

locations using a masker token as the probe stimulus. The dif-

ferences between left and right ears were 1.5, 0.1, 20.8, and

21.3 dB for 290, 0, +45, and +90u, respectively.

For the example site in Figure 1A and B, clean performance was

near ceiling at all tested locations. Masked performance was much

lower and varied substantially as the target was moved from the

ipsilateral side (290u) to the contralateral side (+90u), holding the

masker at 290u. Across recording sites, the masked performance

varied much more than clean performance did as a function of

location. To quantify this, we computed the spatial sensitivity

(defined as the difference between the best and worst performance

for a given experimental condition; see Materials and Methods) for

each site for both clean and masked targets. Spatial sensitivity

was 3-fold higher with a masker present than without (p,.001;

Figure 1D). The driven spike rate in response to clean songs did

not vary significantly with location (r = .16, p = .068; Figure 1E).

This distinction is important: while target azimuth was at best

weakly coded by the rate response of the neurons, information

about song identity encoded in spike trains varied greatly with

target and masker locations.

The way in which classification performance varied with spatial

configuration varied from site to site. Indeed, some sites responded

best when the target was in a particular hemisphere (Figure 2A,

site 1), some for a particular target-masker location configuration

(sites 2 and 3), and some in idiosyncratic configurations that fit no

simple description (site 4).

To explore how such a population of neurons might encode

song identity, we considered two population-coding schemes. The

first was based on a previous study, which assumed that behavioral

performance was determined by the best thresholds across a

population of neurons, an approach termed the ‘‘lower envelope’’

principle [25]. Here we define the corresponding neural ‘‘upper

envelope’’ as the best classification performance across the entire

neuronal population. The performance of individual sites and the

upper envelope are shown in Figure 2B as a function of target and

masker location for an SNR of 26 dB. While no one site performs

well for all spatial configurations, almost all configurations yield at

least some sites that encode target identity well.

At higher SNRs, the upper envelope is at ceiling (Figure 3A). To

better reveal the effects of spatial configuration, we calculated the

mean performance across sites for each spatial configuration.

Despite the complex dependence of performance on spatial

configuration for many of the sites, the mean performance varies

smoothly with spatial configuration for each SNR. Specifically,

mean performance is best when the target is contralateral and the

masker ipsilateral to the neural recording site and worst in the

reverse configuration (Figure 3B). Figure 3C shows the mean

performances across sites in which the target is farther than the

masker from the recording site, in the contralateral direction.

Representing the data this way assumes a simple population model

in which the neurons in one hemisphere are favored over the other

(i.e., the responses from the hemisphere contralateral to the target

are enhanced and the ipsilateral responses are suppressed). Using

this model (which includes only the values in the lower right half of

the grids in Figure 3B, including the diagonal), the effect of spatial

separation (as well as SNR) is highly significant (p,.001 for both);

moreover, linear regression fits at each SNR show that performance

improves with increasing spatial separation of target and masker.

Such performance increases are parallel with results from be-

havioral studies in humans [26] and birds [27] that report spatial

unmasking.

Spike Additions and Subtractions
Maskers degrade responses to target songs. A simple way to

evaluate the masker interference is to compare the response

elicited by the target in quiet to that of responses to the target plus

masker. Differences between the two responses can be categorized

Figure 2. Spatial performance patterns are diverse across neural
recording sites. (A) The performances of four example sites that vary
widely. The performance is color-coded and percent correct value shown
for each spatial configuration. (B) The performances of all neurons at all
spatial configurations as dots. The translucent gray shows the ‘‘upper
envelope’’—that is, the surface defined by the best performance across
neural sites for each spatial configuration. The best-performing six sites
are color-coded so that all the dots of one color show performance for
that site for all tested configurations. The order of the colored dots
changes across spatial configurations, showing that the diversity of the
spatial performance patterns is important for allowing good performance
across all spatial configurations. The results shown are for the responses
at an SNR of 26 dB; that is, the target sound had half the amplitude of
the masker. Recordings were made in both hemispheres and data shown
here use the electrode hemisphere as a reference, rather than an
absolute left/right coordinate system.
doi:10.1371/journal.pbio.1001319.g002
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into orthogonal categories of spike additions, where the presence

of the masker causes extra spikes (usually in the gaps between

syllables), and spike subtractions, where spikes that are elicited by

the target alone are reduced by the presence of the masker (usually

during syllables; see Figure 4A–C). Both types of interference have

been studied before [18]; here we extended that analysis. We

modeled spike trains that had only subtractions or only additions

(Figure 4D; see Materials and Methods), and then calculated

performance for these modeled spike trains just as we did for the

measured ones.

We first validated our modeling approach by comparing

predictions for modeled spike trains containing both additions

and subtractions (i.e., the full effect of the masker) to measured

data (see Figure 4, ‘‘modeled’’ rasters and performances). The

example model rasters look similar to the measured masked spike

trains, and target song identification performance closely matched

performance using the masked spike trains. These results validate

our methods for modeling additions and subtractions.

Following validation, we modeled spike trains that included only

spike additions or only spike subtractions to separate their relative

effects on performance. When modeling spike additions only (i.e.,

when no subtractions were modeled), target identification was

better than for the measured response. On the other hand, per-

formance for subtractions-only spike trains was only slightly better

than the measured responses for two of the three configurations.

For the target-contralateral, masker-ipsilateral configuration (right

column of Figure 4), performance was essentially equal for the

subtractions-only and masked spike trains. These results suggest that

additions did not impair discrimination performance when the target

was contralateral to the recorded site. However, including additions

had some impact on the other two configurations. Overall, this

analysis shows that the masker degraded performance more by

preventing spikes that a clean target would have elicited than by

causing additional spikes.

The times at which spikes are likely to be added by the masker

tend to occur when the clean response rates are low. This can

be quantified by correlating the clean stimulus response rate

(Figure 4A) with the rate of subtractions (blue depths in Figure 4C)

as a function of time. This correlation is significant and negative,

confirming that subtractions reduce spikes the most when the

likelihood of a spike in response to the clean stimulus is great

(r = 2.75, p,.001). In contrast, the correlation between the time-

dependent spike additions (red peaks in Figure 4C) and the clean

rate is weak (r = .08, p,.001). Taken together, these results suggest

that the effect of removing spikes from the peaks interferes with

target identification more than adding spikes. This holds true even

in spatial configurations where the number of spikes added is

greater than the number of spikes removed.

Discussion

Specific Experimental Paradigms Unveil Inherent Spatial
Sensitivity

Here we show that, in quiet, sound source location has only a

modest impact on coding of song identity in field L, an analog of

auditory cortex [16]. In general, spatial tuning in brainstem is

sharper than in cortex, demonstrating that cortical auditory

neurons do not directly inherit the already encoded spatial in-

formation present in lower centers of the auditory processing

stream [1,28]. However, our results show that the spatial con-

figuration of competing sources strongly affects the coding of those

sources’ content.

Spatial effects in cortical neurons are far greater when there are

competing sounds than when there is only a single source. This

observation suggests that spatial information acts to modulate

competition between sources, even in an anesthetized preparation.

The fact that these effects arise under anesthesia is important

because it shows that they are preattentive. Competition between

Figure 3. Population measures of response patterns. (A) The upper
envelope and (B) the across-site mean performance are shown as grids (with
performance color-coded and percent correct value shown in each box) for
clean targets and at each SNR (clean, +6 dB, 0 dB, and 26 dB from top to
bottom). The upper envelope performance shares its worst-performing spatial
configuration with the mean, but is (by necessity) higher than the mean at all
points. In fact, the upper envelope performance is at or very near ceiling for
the higher two SNRs. At each SNR, the mean varies smoothly as a function of
both target and masker location. For both the upper envelope and the mean,
the lowest performance is when the target is ipsilateral and the masker is
contralateral, and the highest performance is in the complementary
configuration. Performance also improves with increasing SNR. (C) Perfor-
mance increases as a function of spatial separation when considering the
subset of spatial configurations in which the target source is more contralateral
than or colocated with the masker (in the grids above, the lower right triangle,
including the diagonal). Mean performances are shown as markers (upward
triangles, circles, and downward triangles for +6, 0, and 26 dB SNR,
respectively). Linear regression fits at each SNR are shown as gray lines.
doi:10.1371/journal.pbio.1001319.g003
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Figure 4. Spike additions and subtractions affect performance differently. For three spatial configurations (left to right: target ipsilateral,
masker contralateral; target front, masker front; target contralateral, masker ipsilateral), (A) clean target rate, (B) masked rate, and (C) the difference
between masked and clean rates are shown, averaged across all sites. Red peaks show where the masker added spikes, and blue depths show masker
subtractions. The large initial peaks have been clipped to increase the dynamic range of the rates that follow. (D) Using these rates, we modeled spike
trains that had additions and subtractions, subtractions only, or additions only (‘‘modeled,’’ which includes additions and subtractions, ‘‘sub-only,’’
and ‘‘add-only,’’ respectively). We calculated percents correct for these generated spike trains for each unit and plotted them against the actual
masked performance. (E) The subtractions-only performance for each site (blue circles) and the centroid (black cross, branches are 1 SEM in each
direction). Centroids are close to the diagonal, indicating similar subtractions-only and masked performances. (F) Additions-only performances, in the
same manner as (E). Centroids are far from the diagonal, indicating a smaller detrimental effect on performance from spike additions. (G) The average
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spatially separated sources helps segregate neural responses, so

that information about competing sound sources from different

locations is concentrated in distinct subpopulations of cortical

neurons. Specifically, most neurons preferentially encode infor-

mation about contralateral sources; however, some neurons show

more specific preferences.

Thus, even though location is not directly coded in cortical

neurons, spatial information strongly modulates cortical responses.

This idea fits with recent results showing that the effects of source

location on neurons in cortex are enhanced when an awake

animal is engaged in a task requiring a localization response [10].

The degree to which spatial information affects cortical responses

changes with intention: depending on the importance of spatial

information to the task being undertaken, spatial coding may be

either enhanced or weakened. It is possible that inhibition driven

by activity in prefrontal cortex (in mammals) or its analog (in avian

species as studied here [29]) causes the sharpened tuning observed

during spatial tasks [10]; if so, such connections may also

be engaged during selective attention tasks to down-regulate

responses of neurons preferentially encoding a masking stimulus

that is to be ignored or to up-regulate responses of the distinct

population of neurons preferentially encoding the target.

In an anesthetized preparation like that tested here, the

enhancement of spatial effects due to the presence of a competing

source cannot be coming from top-down modulation from

executive centers of the brain. Instead, these effects must be the

result of neural circuitry that is ‘‘hard wired.’’ It may be that weak

spatial tuning, which is not strong enough to cause observable

changes in neural responses with changes in the location of a single

sound source played alone, causes large effects when there are

multiple sources from different positions. The preattentive spatial

competition we find provides a substrate to realize selective spatial

auditory attention. Once responses to competing sounds are

partially segregated through this kind of preattentive, spatially

sensitive process, attentional signals, including inhibitory feedback

from executive control areas, can enhance the spatial selectivity

already present.

Acoustic Head Shadow Contributes Little to Observed
Spatial Effects

In humans, many spatial effects are explained by the fact that

the head causes a significant acoustic shadow at many audible

frequencies [26,30]. When competing sound sources come from

different azimuthal locations, the SNR at the ear closer to the

target will be greater than if the sources were co-located. This kind

of ‘‘better-ear’’ effect has nothing to do with neural processing but

is a simple consequence of physics. For the human, such effects can

be very significant for speech perception, because the head shadow

can be 15 dB or more for frequencies important for speech. Thus,

although not interesting from a neural processing perspective,

these acoustic effects are important for perception.

Here, in the zebra finch, better-ear effects are small. The zebra

finch head is diminutive; its width corresponds to only one quarter

of the wavelength of the highest frequency present in our

bandlimited stimuli (8 kHz). Given that appreciable acoustic

interactions only arise when the wavelength of the sound is

comparable to or smaller than the size of the physical object in the

environment, the stimuli we presented did not contain frequencies

high enough to cause large interaural level differences. This bears

out in our measurements, which show an amplitude difference

between the ears of approximately 1.5 dB when the stimulus is at

690u. The better-ear effect is thus limited to 3 dB.

Performance in the target contralateral, masker ipsilateral

configuration was 16.8% better than performance in the target

ipsilateral, masker contralateral configuration, on average. In con-

trast, the performance benefit of lowering the masker noise level by

6 dB is only 8.8%. Moving the masker and target in space, then,

has nearly double the effect on identification performance as a

6 dB increase in SNR. Given that the maximum effect of acoustic

head shadow is only 3 dB, the better-ear acoustic effects cannot

explain the spatial effects obtained. Moreover, although a better-

ear effect may contribute to the processing of natural broadband

signals that contain frequencies high enough to interact acousti-

cally with the zebra finch head, it is unlikely to play a major role in

the effects observed here, where we used low-pass filtered stimuli.

Spike Subtractions Have a Greater Impact than Spike
Additions

Interference from a masker on the response encoding a target

can be broken down into two forms: spike additions (primarily in

the gaps between syllables) and spike subtractions (primarily

during syllables) [18]. Here, we quantified the effects of spatial

configuration on spike additions and subtractions, and then eval-

uated modeled spike trains to determine the relative impacts of

these effects on neural discrimination performance. In general,

additions were more likely than subtractions when the target was

ipsilateral to the recording site and masker was contralateral (see

Figure 4C), while subtractions were the more prevalent form of

interference in the reverse configuration. Because additions and

subtractions were calculated by comparing the responses at each

spatial configuration to responses to the corresponding target-only

stimulus, they represent only the effect of the masker on the

response, independent of the minor changes that occur due to

absolute target location.

By modeling spike trains with only additions or only sub-

tractions, we were able to gauge their effects on performance.

Spike subtractions degraded performance at all configurations (in

Figure 4C, blue bars are lower than white bars). In contrast, the

spike trains with only additive interference coded target song

identity nearly as well as the responses in quiet (red bars are nearly

the same as white bars). Additions have a modest impact when

subtractions are also present; additions-only performance was

better than the fully masked responses in some configurations

(compare blue and black bars). Subtractions, on the other hand,

interfere with encoding of song identity more seriously and

consistently across all spatial configurations.

Although this analysis does not reveal the mechanisms by

which a masker interferes with coding of a target, it does give some

insight into the complex interactions that take place when two

competing sounds are present in an environment. For instance,

one might expect, a priori, that the presence of an ongoing masker

would cause activity to increase overall, so that the stereotypical

target response in quiet is hidden amidst added spikes elicited by

the masker. Yet, instead, the detrimental effects of the masker

come about primarily from suppression of responses to key fea-

tures in the target; moreover, the influence of the masker on the

(61 SEM) performance. Additions-only performance does not differ significantly from clean performance for any configuration. Subtractions-only
performance is significantly worse than clean performance. As the target moves from ipsilateral to contralateral (and the masker oppositely),
subtractions account for an increasing proportion of the masking performance hit, completely accounting for it in the target contralateral, masker
ipsilateral configuration. Gray brackets indicate significant differences of p,.05.
doi:10.1371/journal.pbio.1001319.g004
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target response depends on spatial configuration. This pattern of

spatial-configuration-dependent suppression of spikes suggests that

competing sources, each preferentially encoded by a distinct

neural subpopulation, mutually suppress each other, giving rise to

enhanced spatial modulation of responses compared to when a

single, unchallenged sound source is presented in isolation.

Spatial Release From Masking
For a given site, song identity coding tended to vary with both the

target and masker locations and generally was best when the target

was contralateral from the recording electrode and the masker was

ipsilateral to it. For a single site to show spatial release from masking,

performance for that site should increase monotonically with

increasing spatial separation between the sources. Thus, neither any

single recording site nor mean performance averaged over all sites

(shown in Figure 3B) exhibits spatial release from masking. Similar

results have been seen in the midbrain, in inferior colliculus [28],

where, as here, single units showed preferences for encoding

responses to different sources, depending on the spatial configura-

tion. However, the activity of thousands of forebrain neurons, not

just a single unit, combines to govern perception and behavior. As

shown in Figure 3, across the population of neurons in forebrain,

there are typically neurons contralateral to the target source that

encode target identity well. By looking at the mean performance

of neurons at recording sites for which the target sound is more

contralateral than the masker (or at the best neuron in that

population), performance is predicted to improve with spatial

separation (see Figure 3C). Thus, the ensemble of responses, even

from an anesthetized bird, can explain behavioral spatial unmasking

if one assumes a mechanism as simple as attending to neurons in the

hemisphere that favors encoding of the target and ignoring those

from the opposite hemisphere.

In behavioral experiments, performance improves with increas-

ing separation between target and masker sounds both for speech

and for non-speech sounds [26,31,32]. As noted above, better-ear

acoustics contribute to spatial release from masking for many

sounds important to human behavior, such as speech. Indeed,

when a target sound is easily distinguished from a masker (such as

when a communication signal is played in steady-state noise),

better-ear acoustics can fully account for spatial release from

masking in human studies. Interestingly, avian studies do not show

the same pattern. The amount of spatial release from masking is

essentially identical when behaving birds identify target birdsongs

embedded in either a chorus of songs that sound qualitatively like

the target songs or a steady-state masker (with the same long-term

spectral content as the chorus, but has different short-term

structure) [27]. This different pattern suggests that humans can

segregate a target from a dissimilar masker even when the two

sources are near each other in space, rendering spatial cues

redundant [33]. In contrast, birds may be less sophisticated in

segregating competing sources, relying more heavily on spatial

attributes even when target and masker have distinct spectro-

temporal content. Regardless, the current results demonstrate how

spatial separation of target and masker can support spatial release

from masking in those situations where it is observed behaviorally,

no matter what species.

Materials and Methods

Neural Recordings
All experimental procedures involving animals were done in

accordance with the protocol approved by the Boston University

Institutional Animal Care and Use Committee. All subjects were

male zebra finches (Taeniopygia guttata).

Prior to the day of recording, a preparatory surgery was

performed. In this surgery, the location of field L was marked as

the point 1.2 mm anterior and 1.5 mm lateral of the midsagittal

sinus and a headpin was fixed to the skull. On the day of

recording, the bird was first placed in a soft cloth restraining jacket

in a quiet, dark room. Injections of urethane anesthetic (20%) were

administered every half hour in decreasing amounts (starting with

35 mL) until the bird was unresponsive to its head being patted and

its foot being squeezed. Once anesthetized, the bird was placed in

a stereotactic frame with its head secured by the previously

implanted pin. A craniotomy was performed in which an ap-

proximately 2 mm square of skull was removed centered about the

spot previously marked as field L. Tungsten microelectrodes

(FHC, Bowdoin, ME) ranging in impedance from 2 to 4 MV were

advanced into the brain using a micron-precision stepper motor.

Extracellular potentials were amplified at the headstage, band-

passed between 500 and 10,000 Hz, and recorded with a low-

noise soundcard at a sampling rate of 44.1 kHz.

Stimulus Generation and Presentation
Stimuli were constructed from combinations of two different

target zebra finch songs and masking noise (see Figure 1A and B

for spectrograms), all filtered between 500 and 8,000 Hz. The

songs were chosen to have similar durations (,2 s); they were

songs never before heard by the subjects. To generate the masking

noise, several songs were concatenated, the discrete Fourier

transform computed, the phase randomized uniformly between 0

and 2p (preserving symmetry), and the inverse Fourier transform

computed. The result was noise with a magnitude spectrum

identical to the average of the spectra of those songs, but with no

temporal structure. Ten independent, random tokens of noise

were created so that any residual temporal structure was averaged

out across repeated presentations. Independent noise tokens were

used on each trial instead of using a single, frozen token because

individual noise tokens with the same statistics can have drastically

different masking effects [34]. Additionally, the use of independent

masker tokens better simulates what happens in natural settings,

where, over time, a bird repeatedly hears highly stereotyped songs

from its familiar colony mates, but hears them in a different

background of masking sources each time.

Stimuli were presented using four single-driver loudspeakers in a

sound-treated booth (IAC, Winchester, UK) at a sampling rate of

44.1 kHz. Target songs were normalized so that their root-mean-

square amplitudes were 72 dB SPL (c-weighted). The loudspeakers

were at four locations in the azimuthal plane: ipsilateral to

the implanted hemisphere (290u), in front of the bird (0u),
contralateral to the implant (+90u), and at the angle halfway

between the front and contralateral angles (+45u). The speaker

locations were referenced relative to the recording electrode, with

the side ipsilateral to the implant assigned the negative sign.

Each recording session consisted of 10 blocks. In each block,

each of the two target songs was played in isolation from all four

locations. Additionally, for each target song, 16 target-masker

spatial configurations were tested, each at three SNRs. This

resulted in 26(4+46463) = 104 stimuli per block in which targets

were present. We also played the masker alone from each location

in each block, resulting in a total of 108 stimuli per block. Each of

the 10 blocks used a different, independent token of masking noise

semi; the order of the stimuli within each block was randomized.

Overall, there were 1,080 two-second stimuli presented with 1.5 s

between the end of one trial and the beginning of the next,

resulting in a recording session that lasted 63 min for each neural

site.
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Spike Extraction and Sorting
Extraction of action potentials (spikes) was performed off-line.

First, neural traces were thresholded. The recording to 1 ms on

either side of each local maximum was windowed out and

considered a potential spike. These waveforms were sorted into

user-defined template spike waveforms using a correlation-like

coefficient:

r~SxSxT=max SxS
2, SxT

2
� �

,

where xS is a spike waveform and xT a template waveform, and the

sums are taken over time. Spikes were sorted into classes based on

the template that yielded the highest r or were thrown out if they

were not above a minimum r to any of the templates. This sorting

was verified using principal components analysis clustering. Using

this method, single units as well as multiunit clusters (which could

not be separated into single units) were extracted. Of the sites that

met the minimum performance criterion (see below), 17 were

single units and 16 were multiunit clusters. Multiunit activity

should produce weaker spatial effects than well-isolated single

units. By including both isolated and multiunit recordings in our

analysis, our approach is likely to underestimate (if anything) the

effects of spatial configuration on neurons in the forebrain.

Recordings were made in both hemispheres, but a relative

coordinate system was used so that negative azimuths always

correspond to the hemisphere ipsilateral the recording site and

positive azimuths to the contralateral side.

Neural Spike Train Analysis
Discrimination performance was calculated using a nearest-

neighbor template-matching scheme and a spike distance metric.

Methods used were similar to those used in past studies [17–

19,22,24,35,36]. To compute pairwise distances between recorded

spike trains, each spike train was convolved with a decaying

exponential kernel whose time constant determined the effective

integration time of the spike comparisons; then the sum of the

squared difference was calculated. These distances were used to

compare a test spike train against two templates, one from each

target song. Each spike train was classified as being elicited by the

song whose template was closest to the measured spike train. This

process was repeated many times for all spatial configurations for

kernel time constants of 1, 4, 16, 63, 251, and 1,000 ms. All but

one of the recording sites had an optimal time constant of 16 or

63 ms, in the same range as time constants found in similar past

studies (the outlier had an optimal time constant of 251 ms)

[17,22]. In this way, a percent correct score was calculated as a

function of time constant, representing how well the spike trains

from each spatial configuration matched the target spike trains

from the template configuration. The time constant that yielded

the best clean target discrimination for each site was used.

Spatial sensitivity was computed as the difference between the

maximum and minimum discrimination performance for a given

stimulus type. For clean songs, these extrema were determined

across the four target locations. For masked stimuli, they were

determined across all 16 location configurations, at the SNR that

had the highest variance. So that sites with poor performance did

not appear spuriously insensitive to spatial configuration, only sites

that had an unmasked discrimination performance of 90% or

more were included in the analysis.

Spike Train Modeling
To analyze the effects of spike additions and deletions separately,

modeled spike trains were generated. Spike trains were binned into

time bins of 2.5 ms. To generate a new spike train, the mean and

standard deviation of the number of spikes in each time bin were

computed across the 10 responses to each stimulus. Then, the

number of spikes in each bin was chosen randomly from a Gaussian

distribution with the same mean and standard deviation, with

negative spike counts fixed to zero. Time bins in which the masked

rate was higher than the clean rate were labeled ‘‘additions.’’ Thus,

to simulate a spike train that had only additions, the higher of the

masked and clean rates (and the corresponding SD) was chosen at

each time bin. Similarly, to simulate a subtractions-only spike train,

the minimum of the masked and clean rates was chosen for each

bin. The discrimination performance of these simulated spike trains

was then calculated in the same manner as real recordings,

described above. Refractory period violations (interspike intervals of

less than 1 ms) had a negligible effect on analysis.

Statistical Analysis
The significance of the difference between the spatial sensitivity

for clean and masked responses was computed using a paired

Student’s t test. All correlation r values were computed using

Pearson’s product-moment coefficient, with p values calculated using

a Student’s t distribution. The significance of spatial separation and

SNR for the data shown in Figure 3C were computed using a two-

way repeated measures ANOVA. After using a one-way ANOVA to

confirm a significant effect of interference type (p,.001), Tukey’s

HSD test was used to compute post hoc comparisons between all

performance values at each of the three spatial configurations in

Figure 4G. All statistics were done using MATLAB’s built-in functions.

A p value of .05 or less was considered significant.
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