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Abstract: Aiming at addressing the issues related to the tuning of loop closure detection parameters
for indoor 2D graph-based simultaneous localization and mapping (SLAM), this article proposes
a multi-objective optimization method for these parameters. The proposed method unifies the
Karto SLAM algorithm, an efficient evaluation approach for map quality with three quantitative
metrics, and a multi-objective optimization algorithm. More particularly, the evaluation metrics, i.e.,
the proportion of occupied grids, the number of corners and the amount of enclosed areas, can reflect
the errors such as overlaps, blurring and misalignment when mapping nested loops, even in the
absence of ground truth. The proposed method has been implemented and validated by testing on
four datasets and two real-world environments. For all these tests, the map quality can be improved
using the proposed method. Only loop closure detection parameters have been considered in this
article, but the proposed evaluation metrics and optimization method have potential applications in
the automatic tuning of other SLAM parameters to improve the map quality.

Keywords: graph-based SLAM; loop closure detection; map evaluation; multi-objective optimization

1. Introduction

As a key technology for autonomous navigation of mobile robots, simultaneous localization
and mapping (SLAM) focuses on the problem of acquiring a spatial map of an environment while
simultaneously localizing the robot using this map [1]. SLAM methods can be divided into two
categories: filter-based and graph-based. Filter-based SLAM is mainly developed from the principle of
recursive Bayesian estimation and is a problem of incremental, real-time data processing and robot
pose correction. For example, the extended Kalman filter (EKF) can be used to estimate the robot
location and geometric features in the environment [2]. However, due to its computational complexity
and linearization treatment, the application of EKF SLAM has been limited by its scaling limitation
and mapping inconsistence. To overcome some of these issues, particle filters have been proposed
for SLAM by sampling from robot pose data associations, but the number of particles can grow
large and the estimate can become inconsistent when mapping nested loops especially in large-scale
environments [3-5]. On the other hand, graph-based SLAM models the map as a sparse graph
with constraints corresponding to the relation between robot motion and environment measurement.
By solving the sparse nonlinear optimization problem, graph-based methods can address the full
SLAM problem of large-scale environments [6]. Kohlbrecher et al. [7] developed the Hector-SLAM
scheme, which uses the Gauss-Newton equation to solve the nonlinear least square problem formulated
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for the front-end scan matching between the laser data and the map. Lu and Milios [8] proposed
a graph-based optimization mathematical framework and Gutmann and Konolige [9] developed
an efficient loop closure detection method to minimize the accumulated errors during mapping for
the back-end process. With the development of optimization tools, open source implementation of
graph-based SLAM frameworks is available nowadays. Konolige et al. [10] proposed Karto SLAM,
the first open source graph-based framework accounting for the system sparsity. Also, Google’s open
source solution Cartographer [11] introduces local submaps that integrate multi-sensor data and the
matching strategy for loop closure detection. More literature on filter- and graph-based SLAM can be
found in [12,13].

Compared with filter-based methods, graph-based SLAM can significantly reduce the accumulated
error through back-end optimization and thus provide more consistent maps for large-scale
environments, even ones with multiple nested loops. Loop closure detection is a most critical
process in graph-based SLAM, which triggers the global nonlinear optimization by recognizing the
revisited locations of the robot. Different approaches have been proposed for loop closure detection
depending on the environments and application scenarios. The detection can be performed by
processing the laser signals, for example, by matching the extracted features from single scan or
submap [14-19] or by the matching of scan-to-scan or scan-to-submap [11,20]. The feature-based loop
closure detection methods are suitable for large-scale environment, with efficient matching of the
feature similarity, but these methods are limited to structured environments with obvious geometric
characteristics. Compared with feature matching, scan-to-scan or scan-to-submap matching methods
are more accurate and not affected by environmental features, but these methods usually have high
computational cost. When processing the laser signals cannot provide sufficient positioning accuracy at
certain locations in the map, auxiliary devices such as vision assisted sensors, RFID and magnetometer
can be incorporated for loop closure detection [21-25].

The loop closure detection is essentially a process of matching similar scenes and involves a series
of parameters. For example, in Karto SLAM, the search radius and the quantity of consecutive scans to
be detected must be set for loop closure detection. These parameters should be adapted to specific
applications and directly affect whether the global nonlinear optimization should be carried out at
certain locations. The importance of parameter optimization or estimation related to scan matching or
data sampling in SLAM algorithms has been demonstrated in literature. For instance, the intrinsic
parameters of the inertial measurement unit (IMU) have been estimated online to improve the accuracy
of robot trajectory [26]. In an Augmented Unscented Kalman Filter (AUKF)- based SLAM, the map
quality can be improved by estimating the effective kinematic parameters such as wheel diameter, tread,
and sensor mounting offset [27]. Also, it has been found that the flight parameters of an unmanned
aerial vehicle (UAV), such as flight pattern, altitude, and ground speed, can significantly affect the
point cloud formation during its SLAM process [28]. Several parameters of the particle filter-based
Gmapping framework, such as the number of particles, the displacement update, and the resampling
threshold, have been tested to determine the best configuration of these parameters, and it has been
shown that these parameters have a strong impact on the mapping accuracy, CPU load and memory
consumption in Gmapping [29,30]. All these works have shed some light on the necessity and difficulty
of parameter optimization or tuning in SLAM either based on experience [29,30] or by establishing
mathematical models [26-28]. However, few works can be found on how the parameters related to
loop closure detection can affect the map quality and how to optimize these parameters for a given
environment. This can become an issue in actual applications even with open source graph-based
SLAM schemes. For example, in an industrial production scenario, the deployment of automatic
guided vehicles (AGV) is usually done by operators without much SLAM experience and thus usually
requires the assistance of algorithm engineer for manual tuning of these parameters, which accordingly
influences the production cost, time and efficiency. To overcome this issue, a first question to answer is
how to efficiently measure the mapping quality with different parameters in the SLAM algorithm for
a specific environment.
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Several approaches for map evaluation have been published in the literature. The estimated map
can be evaluated by comparing with a ground truth map, for example, by calculating the error metric
according to the k-nearest neighbor concept [31], comparing the extracted features like SURF features
and rooms [32], using image similarity methods [33,34] and topology graphs [35,36], or using artificial
landmarks placed in the environment as ground truth positions [37]. In addition, since the ground truth
trajectory is easier to obtain than the ground truth map, the errors between the ground truth trajectory
and the estimated robot positions have been proposed to evaluate mapping accuracy as well [38-40].
Rather than relying on a global reference frame, relative poses can also be used for comparing the
maps with different SLAM frameworks [41,42]. All these approaches for map evaluation are based on
the comparison with ground truth data, which however are difficult to obtain in most applications.
In the absence of ground truth, the general conditional random field [43] and several metrics including
the proportion of occupied and free cells, the number of corners and the amount of enclosed areas
of the estimated map [44] have been proposed to measure the mapping quality. These approaches
provide efficient evaluation of SLAM quality since the measurement of map dimensions or robot poses
is not required. The above map quality evaluation methods are summarized in Table 1.

Table 1. Summary of map evaluation methods.

Evaluation Methods Refs and Publication Years Pros and Cons
[31] (2013); [32] (2008); [33]
Ground truth map (2008); [34] (2008); [35] (2013)
[36] (2015); [37] (2010)

[38] (2015); [39] (2017); [40]
(2007); [41] (2009); [42] (2009)

Accurate by direct comparison with the ground truth map;
but difficult to obtain the ground truth map.

Easier to obtain ground truth tracjectory than ground truth
map, suitable for large scale environments; but still requiring
manually calibration of the groud truth trajectory.

No need for ground truth, better applicability; but less
accurate than the comparison with ground truth.

Ground truth trajectory

No ground truth [43] (2008); [44] (2017)

Aiming at addressing the issue due to the complexity and difficulty in the tuning of the loop
closure detection parameters that are critical for the back-end process of indoor 2D graph-based SLAM,
this article presents a method for the multi-objective optimization of these parameters. The proposed
method unifies Karto SLAM algorithm, an efficient evaluation approach for map quality with three
quantitative metrics, and a multi-objective optimization algorithm. The main contribution of the article
is to use three evaluation metrics, i.e., the proportion of occupied grids, the number of corners and the
amount of enclosed areas, to optimize the SLAM parameters. These metrics can reflect the errors such
as overlaps, blurring and misalignment when mapping nested loops, even in the absence of ground
truth. Compared with exiting graph-based SLAM methods, the proposed method provides a means
to further improve the mapping quality besides the back-end optimization process, by optimizing
the loop closure detection parameters. For this purpose, we first summarize the general formulation
of Karto SLAM and the detailed procedure and parameters for the loop closure detection. Then,
quantitative metrics are presented for map evaluation without ground truth. With these metrics
objectives, the Nondominated Sorting Genetic Algorithm-III (NSGA-III) multi-objective optimization
algorithm is adopted to determine the parameters for loop closure detection. Finally, the proposed
method is validated on four datasets and in two real indoor environments, respectively.

2. Problem Statement

The full SLAM problem is to estimate the environment map m and the motion trajectories of
the robot x1.7= {x1,...,x7} in which T is the time index and x; are the robot poses at time i with
i=1,2,...,T, through a series of motion control variables u1.7= {11, ..., ur} in which u; are odometry
measurements at time i withi = 1,2,..., T and the perceptions of the environment zy.r={z4,...,z7}
in which z; are the measurements at time i with i = 1,2,...,T. Then, we can describe the SLAM
problem as a process of estimating the posteriori as follows:
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p(x i, mlzyT, ul:Ter) 1)

where x represents the initial pose of the robot. By applying Bayes’ rule and following the Gaussian
assumption, the full SLAM based on maximum likelihood estimation can be transformed into
a constrained optimization problem.

The framework of graph-based SLAM is illustrated in Figure 1, which can be divided into the
front-end and back-end [10]. The front-end includes scan matching to provide the estimated poses
and to construct the map as a graph. The back-end is the process of nonlinear global optimization to
eliminate the accumulated errors when the robot revisits the same location. Loop closure detection is
a process of finding the robot itself back to the scene where it has been by scan matching and provides
constraints for the back-end optimization. In Karto SLAM [10], the Sparse Pose Adjustment (SPA) is
used as the back-end framework, which uses a graph to represent the history of robot measurements
and each node in the graph represents the pose computed by the correlative scan matching (CSM) [45].
The edge between two nodes can be considered as a space constraint which is the measurement of
node a i from another node a;. This measured offset between a; and a ir in the frame of a;, is denoted as
z;j. The variables a; are parameterized by a translational vector #; and a rotational angle 6;, in which

T
t =[x, yi] represent the robot location and 0; represent its rotational angle at time i with i=1,2,3,
..., I. For any two nodes a; and aj, their offset can be calculated as:

Tt .+
h(a;, a)) z[ Réj(t_f;) ] @)

where h(a;, a]-) represents the predicted observation, R; is a 2 X 2 rotation matrix in terms of 6;

as follows:
cos(6;) —sin(6;)
R; =
' [ sin(0;)  cos(6;) @)
Then the error function associated with a constraint can be written as:
eij = 21] - h(ﬂl‘, a]) (4)
and the total error is computed as:
J(a) = Z eiT]'Qijeij ()

g

where the information matrix ();; is the inverse of covariance matrix between node a; and node a;.
Then the Levenberg-Marquardt method can be used to solve this problem by minimizing the total
error in Equation (5) to determine the robot poses.

For loop closure detection, Karto SLAM algorithm generates a data chain of a certain length as
a storage container for the nodes within a certain search range with respect to the current pose that
are not adjacent in time, and then matches the current node with the nodes in the data chain. If the
probability of matching is greater than a predefined threshold, loop closure detection is successful and
the global optimization is conducted. In this process, satisfying the search range and the length of the
data chain are the prerequisite for the success of loop closure detection, as well as the condition for
whether the back-end optimization should be carried out. Accordingly, the parameters describing the
search range and the data chain length can strongly affect the SLAM results. Usually these parameters
need to be tuned by experienced SLAM engineers to improve the map quality for a specific environment.
Therefore, the problem under study in this article can be stated as to determining the loop closure
detection parameters, i.e., the search radius and the number of consecutive nodes in the data chain,
to optimize the map quality for indoor 2D SLAM.
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Figure 1. Graph-based SLAM framework [10].

3. Methodology

3.1. Loop Closure Detection

The flow chart of the loop closure detection in Karto SLAM is illustrated in Figure 2, based on the
Karto SLAM codes available on the GitHub website (https://github.com/ros-perception/slam_karto).
First, several consecutive nodes of data in a certain search range are found, and then coarse matching
and fine matching are performed. Once loop closure detection is successful, the corresponding relative
pose is used as the constraint in the global optimization to minimize the accumulative errors in robot
poses. More details on Karto SLAM can also be found in Ref. [10].

Input current node and
all previous nodes

¢ Y

Define the chain and calculate the Coarse matching between current node
barycenter of the current node and nodes in chain

v

Find near linked nodes within a
certain distance r centered on the
current node

'

Find out the barycenter of all the
previous nodes and calculating the
distance from the current node.

.

Choose consecutive nodes within
distance r that are not near linked
nodes and adding them to the chain

No
Is the length of chain >g?

Figure 2. Flow chart of loop closure detection (based on the codes on GitHub Karto SLAM website).

Is coarse matching
successful?

Fine matching between current node
and nodes in chain

A 4
No loop closure,
no optimization

Add an edge between the nearest node
in the data chain and the currentnode,
then perform global optimization

clear chain

The detailed steps of loop closure detection are described as follows:

1)  Take the current node as the center and find all the nodes which are connected to the current
node by edges within a certain distance r using the Breadth-First Search algorithm. These nodes
are called as near linked nodes that represent the latest nodes connected to the current node,
as plotted in Figure 3. The red dot represents the current node, the solid green dots represent the
previous nodes, and the near linked nodes are framed with an orange dotted line.
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2)  Calculate the distance between the current node and all the previous nodes.

3) Based on the Step 2, select all the nodes close to the current node within distance r. The loop
closure detection process focuses on finding the nodes established when the robot passes through
this position previously. Therefore, all the near linked nodes are excluded and the remaining
nodes are added to the data chain (see the dotted blue line in Figure 3). Once the length of the
data chain is larger than a predefined threshold constant g, we proceed with the matching in
Step 4.

4)  Perform coarse matching between the current node and the nodes in the data chain. If the
resulting response value P is larger than a threshold value p and the diagonal terms in the position
covariance matrix are both smaller than a certain value g, then the coarse matching is successful
and perform the fine matching. Here the response value represents the environmental similarity
between the current node and the nodes in the data chain found in Step 3. If the fine matching is
also successful, we proceed with the global optimization in Step 5.

5)  Once the loop closure detection is successful, we add an edge between the current node and
the node in the data chain which is nearest to the current node (see Figure 3). Then the global
optimization is performed to reduce the cumulative error.

Previousnode

@ Currentnode

Moving direc tion

Moving direction

D —

Figure 3. The schematic diagram of loop closure detection.

From Figure 3, we can see that distance r represents the size of the search area for loop closure
detection and g represents the quantity of consecutive nodes that have been constructed previously.
Both parameters are significant in Karto SLAM because they represent the condition for whether the
loop closure detection is successful to trigger the back-end optimization.

3.2. Map Evaluation Metrics without Ground Truth

Even without the comparison with the ground truth, one can still evaluate a grip map by observing
its image quality, for example, whether the map is skewed and whether the walls are overlapped.
In this article, we evaluate the map quantitatively using the three metrics presented in [44] as the
multiple objectives for the optimization of the search area r and the amount of nodes g for Karto SLAM.
These metrics can overcome the difficulty when evaluating map quality in the absence of the ground
truth, by analyzing the defects in the map such as blurring, overlaps and misalignment, due to error
accumulation and lack of global optimization. It should be noted that these metrics should not be used
independently to achieve more accurate results because of the contingency of a single feature.

e  The proportion of occupied grids
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The proportion of occupied grids 7 is defined as the number of occupied grids divided by the

total number of grids in the map, i.e.:
_ Woccupied

n=——— (6)

Wy

where wWyccypied represents the number of occupied grids, and w,; represents the number of all grids in
the map. When some walls or obstacles become blurred or occurred twice on the map due to the error
accumulation and the loop closure detection is not satisfied, 1 increases. A blurry wall is shown in
Figure 4a [44]; and in Figure 4b, the red wall and the blue wall represent the multiple occurrences of
the same wall in the environment on the map without back-end optimization [31]. Both cases lead
to an increase of the proportion of occupied grids. This indicates that a lower value of 1 represents
a more accurate map.

(@) (b)

Figure 4. (a) Blurry wall [44] and (b) multiple occurrences wall representation [31].
e  The number of corners in the map

For two maps generated by different combinations of loop closure detection parameters r and g,
the map with fewer corners is more likely to be optimized successfully. As shown in Figure 5, when the
robot moves through the corner, the corner is plotted in the map in red [31]. When it revisits the same
corner, the map can produce another redundant corner (in blue) because of the error accumulation
if the back-end optimization is not performed. Therefore, as long as no information is lost and the
corners in the real world are all reflected on the grid map, the more corners the map has, the higher
possibility that this map has a low quality.

Figure 5. The part of a map with several corners at the same location [31].

To obtain the number of corners denoted by 7. from the map in our approach, a Gaussian filter is
first applied to reduce the noise due to the environment using the GaussianBlur function in OpenCV.
Then, the Harris corner detector [46] based on the concept of gray difference between adjacent pixel
points is applied to acquire the corners on the map. To do this, a fixed window is used to slide in any
direction on the image, and if there is a large gray level change in the pixel in the window after sliding,
then there are corners in the window. In this article, we use the cornerHarris function in OpenCV to
detect corners in the map.
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e  The amount of enclosed areas in the map

The third metric for map evaluation is the number of enclosed areas on the map denoted
by n.. An enclosed area is a certain area completely surrounded by occupied grids on the map.
This often happens in the case of error accumulation while the back-end optimization is not carried
out. For example, when the same room is scanned by the robot multiple times but the loop closure
detection fails, the map can contain rooms that are slightly rotated and offset to each other, resulting in
multiple closed polygons on the map. An example of extracted enclosed areas is shown in Figure 6.
To obtain the number of enclosed areas on the map, we first convert the occupied grid map using the
threshold function in OpenCV to a binary image. Then, the enclosed areas can be extracted through the
topological structural analysis of the binary image by border following which can be implemented
through the findContours function in OpenCV [47].

Figure 6. Part of a map with multiple enclosed areas.
3.3. NSGA-III Multi-Objective Genetic Algorithm

Evolutionary algorithms simulate the natural selection and evolution of biological organisms and
have been widely used for solving complex nonlinear optimization problems. In recent years, a few
evolutionary algorithms have been developed for multi-objective optimization [48-51]. Unlike many
other multi-objective solving algorithms that have problems to maintain the balance of convergence
and diversity, NSGA-III algorithm [48] can provide high efficiency and good performance and is
suitable for solving multi-objective optimization of three dimensions and above. Therefore, NSGA-III
is adopted in this article to optimize the loop closure detection parameters r and g in Karto SLAM.
The multi-objective parameter optimization problem in this article can be described as:

f(x) = min{fi(x), fa(x), f3(x)} )

where x = (r, g), and fi(x) = n(r, g), folx) = ne(r, 8), fo(x)=ne(r, g).

Similar to the Genetic Algorithm (GA), the parent population in NSGA-III undergoes initialization,
selection, crossover, and mutation to obtain the offspring generation. Moreover, NSGA-III is
a population-based heuristic algorithm, which uses a large number of well-spread reference points to
maintain the diversity of the population to find a set of Pareto optimal solutions that are superior to
the rest of the solutions in the search space when the multiple objectives are considered. The flow chart
of NSGA-III is illustrated in Figure 7 and the detailed steps are described in the following steps [52]:

Step 1: Initialize parameters for the multi-objective optimization, for example, the maximum
number of iterations Gmax, the population size of each generation and the ranges of the -
optimization parameters.

Step 2: Randomly generate N individuals to form the initial population Py.

Step 3: Produce the offspring population Q; by the evaluation, selection, crossover and mutation
of the population P; (P at t = 0), then merge the parent population P; and the offspring population
Q; to form a temporary population U; of which the size is 2N.

Step 4: Carry out the non-dominant sorting of U; and divide U; to different nondomination levels
Fiwithi=1,2,...,1. All the individuals from level 1 to [ are first included in a set S;.



Sensors 2020, 20, 1906 9 of 21

Step 5: Select the first N individuals to form a new population P;; 1. According to Step 4, if |S¢| = N,
no other operations are needed and the next generation is started with P;y; = 5;. If |S¢| > N, individuals
fromlevel 1to!—1 are selected in Sy, i.e., Py 1 = U 5;11131-, and the remaining (K = N - (Ptﬂ )) individuals

are selected from the last front F;.

Generate the initial population Pt
(t=0)

v

Evaluate each individual in the
population Pt

v

Obtain offspring Qt by selection,
crossover and mutation

v

Merge parent population Pt and
offspring population Qt to form Ut

v

Evaluate each individual in the
population Ut

v

Non-dominated ranking of
individuals in population Ut

v

Select the first N individuals to
form a new population Pt

t=t+1

Figure 7. The flow chart of NSGA-III [52].

Step 6: Determine whether Gmax is reached. If yes, output Py, as the final population; otherwise,
continue with Step 3.

The selection of the individuals to form a new population in Step 5 is a most critical process in
NSGA-IIL By using the reference point strategy, the new population guarantees the individual diversity
and the solution convergence during evolution. To do this, the reference points are first located on
a normalized hyper-plane. This hyper-plane is an (M-1)-dimensional unit simplex equally inclined
to all objective axes and it has an intercept of one on each axis, where M is the number of objectives.
According to the normal-boundary intersection (NBI) method [51], a uniformly distributed reference
point set is generated on the hyper-plane as shown in Figure 8a, with the amount of reference points

can be calculated as:
M+D-1
H ( L ) ®)

where D denotes the number of divisions along each axis. Then, the ideal point of S; is determined
by identifying the minimum value of each objective, and each objective value of S; is adaptively
normalized relative to the ideal value. Thereafter, the extreme point in each objective axis is determined
by finding the individual corresponding to the minimum value of the achievement scalarizing function.
A hyper-plane through these extreme points is then created. Now, a reference line is drawn by
connecting the reference point and the origin point of the above hyper-plane. Each individual of S; is
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associated with the reference point, of which the reference line has the shortest perpendicular distance
to that individual, as illustrated in Figure 8b. Finally, the niche-preservation operation is used to choose
K individuals one at a time from F; to construct the population P; 1. It should be noted that since the
above-mentioned adaptive normalization of population members and the creation of the hyper-plane
are performed at each generation using the extreme points, NSGA-III algorithm adaptively maintains
the diversity in the space spanned by the members of S; at every generation. This enables NSGA-III to
solve the multi-objective optimization problems with differently scaled objectives. The readers are
referred to [48] for more information about NSGA-III.

Figure 8. (a) Location of reference points and (b) associating individuals with reference points on

a hyper-plane with M = 3 and D = 5.
4. Results

4.1. Validation on Datasets

Four publicly available datasets representing different kinds of indoor environments have been
used to validate the proposed approach, i.e., the dataset of the ACES building at the University of
Texas, the Austin and the Intel Research Lab dataset, the MIT Killian Court dataset, and the dataset
acquired at the CSAIL at MIT. Each of these datasets has a unique sensor configuration, and the
measurement data are all two-dimensional, thus we adjusted the sensor parameters in Karto SLAM
algorithm according to the instructions of these datasets. The parameters involved in the proposed
method in this analysis are listed in Table 2.

Table 2. The parametric description and values used in NSGA-III for the four datasets.

Parameters Description Values

r Search radius With a range of [2,6] m
g Size of chain With a range of [6,20]
q Diagonal terms in position covariance matrix 0.16
[4 Response value 0.7
M Number of objectives 3
D Divisions of each objective axis 10

Gmax Maximum number of iterations 60
N Population size 66

Note that the NSGA-III parameter values (i.e., population size, maximum number of generations)
are chosen based on experience. It has been found that with the listed values, the NSGA-III algorithm
can converge to the optimal solution, and using larger values of the population size and the maximum
number of generations has minor influence on the optimization results while can considerably increase
the computational time. The ranges of the optimization parameters are chosen as r € [2,6] m and
g €[6,20] which can cover the corresponding ranges for loop closure detection for the six quite different
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environments tested in this article. As a result, the users of our approach do not need to determine the
values of r and g for a specific environment, while NSGA-III can output their optimal values.

To demonstrate the influence of the loop closure detection parameters on the mapping results,
we have used NSGA-III to find the best and worst values of r and g for each dataset for comparison,
as listed in Table 3 respectively. On the other hand, little information can be found about how to tune
the loop closure detection parameters r and g from the literature on Karto SLAM, such as, Refs. [10,31].
We find the default values of these two parameters in the codes provided by the GitHub website of
Karto SLAM (https://github.com/ros-perception/slam_karto), i.e., # = 4 m and g=10. Therefore, we have
compared the mapping results using the best, the worst and these default values for the four datasets.

The maps corresponding to these parameters of each dataset are shown in Figures 9-12.
The comparison of maps quality is intuitive to verify the effectiveness of our method. Figure 9
shows the ACES dataset map results, it can be seen from Figure 9b that the map obtained by default
parameters is similar to the map of Figure 9a and the worst parameters can cause obvious wall overlaps
in Figure 9c. By comparing the map results for the Intel dataset in Figure 10, we observe that the walls
with the default and the worst parameters slightly overlap on the upper right portion of the maps.
The map results for the MIT-Killian dataset are shown in Figure 11 and we can see large deviation error
occurred in the corridor from Figure 11b,c which indicate that the back-end optimization is ineffective
with the default and the worst parameters. For the MIT-CSAIL dataset, we can also see significant
accumulated errors in Figure 12¢c with the worst parameters. Since the default parameters are close to
the best parameters, their corresponding maps are similar to each other.

The three optimization objectives with the best, default and worst parameters are given in
Tables 4-6 respectively. The maps obtained by Karto SLAM with the best parameters is more consistent
with the real environment with lower 1, fewer n, and fewer n, than the maps obtained with the
worst parameters. As can be seen from Tables 4 and 5, except for the MIT-CSAIL dataset, the values
of the three metrics using the best parameters are smaller than those using the default parameters.
This indicates the effectiveness of the optimal parameters compared with the default parameters.
The metrics for the MIT-CSAIL dataset with the best and the default values are very close to each other.
We further compare the times of global optimization with different values of r and g in Table 7. It is
found that Karto SLAM performs more global optimizations with the best parameters except the Intel
dataset. For the Intel dataset, the global optimization is carried out 7 times with both the best and
worst parameters. A further investigation finds that five times of the optimization occurs after 10000
scans of the dataset (with a total of 13631 scans) with the best parameters while most optimization
occurs in the first 10000 scans with the worst parameters, as shown in Table 8. This indicates that the
global optimizations with the best values of ¥ and g can correct more robot poses.

Also, our method has been verified using the benchmark measurement suggested in Ref. [42] in
which relative relations between robot poses were extracted and every single observation between
pairs of poses was validated manually. To do this, the absolute translational and rotational errors
have been calculated as well as the corresponding standard deviation for each dataset, as listed in
Tables 9 and 10 respectively. It can be shown that both translational and rotational errors with the best
parameters are smaller than those with the default and the worst parameters for these datasets, except
for the MIT-CSAIL dataset for which the errors with the default parameters is almost identical to those
with the best parameters. Again, large errors can be seen with the default and the worst parameters for
the MIT-Killian dataset.

Furthermore, we investigate the variations of the multi-objective solutions during the evolutionary
optimization process using NSGA-III. We select the ACES dataset for demonstration. The solution
distributions at the 1%, the 30t and the last 60" iterations are displayed in Figure 13. We can see that
the three objectives 7, 1. and 7, significantly decrease from the 1% iteration. The results of the 30t
generation are very close to the Pareto optimal solution of the 60" generation, which indicates that
the results converge after the 30 generation. A set of nondominant solutions are obtained after the
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multi-objective optimization with NSGA-IIL In this article, we choose the solution that has the largest
amount of individuals in the last generation as the final results.

We also investigate the variation of the three metrics and the optimizations times against only one
parameter, while the other parameter is constant. Here the MIT-Killian dataset is used as an example
for demonstration. We let r be constant as 2 m. When g increases from 6 to 20, more nodes are required
in the data chain to satisfy the loop closure condition. When g is larger than 11, the times of back-end
optimization decreases as shown in Figure 14a, and the proportion of occupied grids significantly
increases as shown in Figure 14b. Then we let ¢ be constant as 18. As shown in Figure 15a, as the
search range r increases, it becomes easier to meet the condition for loop closure and more back-end
optimizations are carried out. This can be also indicated by the downward trend of the evaluation
metrics in Figure 15b.

From the above results, we obtain the following observations. (1) The loop closure detection
parameters can significantly affect the mapping quality. Wall overlaps, redundant corners,
more enclosed areas, and even large deviation errors can occur in the maps if these parameters
are not properly chosen for Karto SLAM, because loop closure detection is not successful or the times of
global optimization is insufficient. (2) In the absence of ground truth, the map quality can be evaluated
by the image quality in terms of the occupation rate, the number of corners and the number of enclosed
areas. (3) The map quality can be improved by optimizing the loop closure detection parameters
with the three evaluation metrics in Section 3.2 as the multiple objectives of NSGA-IIL. (4) Due to the
diversity of the environments, the performance of SLAM algorithm with a single set of parameters can
be different for these environments. An ideal scenario is that the SLAM parameters can be tuned and
specific for each environment.

Table 3. The parametric results of r and g with NSGA-III for datasets.

ACES Intel MIT-Killian MIT-CSAIL
Best (5.29 m,17 size) (2.27 m,19 size) (5.05 m,11 size) (4.02 m,10 size)
Worst (2.16 m,18 size) (3.28 m,16 size) (2 m,18 size) (2.21 m,20 size)

(a) (b) (©)

Figure 9. ACES dataset map results with (a) best, (b) default, (c) worst values.
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Figure 11. MIT-Killian dataset map results with (a) best, (b) default, (c) worst values.

(a) (b)

Figure 12. MIT-CSAIL dataset map results with (a) best, (b) default, (c) worst values.

Table 4. Results of three objectives with best parameters for datasets.

Indicators ACES Intel MIT-Killian MIT-CSAIL
n 0.0320 0.0778 0.0067 0.0344
ne 3837 3721 18297 4957
e 801 344 6737 687

Table 5. Results of three objectives with default parameters for datasets.

Indicators ACES Intel MIT-Killian MIT-CSAIL
n 0.0329 0.0805 0.0075 0.0344
e 4167 3732 20330 4957

e 862 400 7988 687




Sensors 2020, 20, 1906

Table 6. Results of three objectives with worst parameters for datasets.

Indicators ACES Intel MIT-Killian MIT-CSAIL
n 0.0341 0.0834 0.0089 0.0379
ne 4705 3783 22507 5316
e 957 429 8965 1084

Table 7. Optimization times with different parameters for datasets.

Optimization Times ACES Intel MIT-Killian MIT-CSAIL
Best 4 7 9 3
Default 3 6 6 3
Worst 1 7 1 0
Table 8. The location of optimization for the Intel dataset.
1 2 3 4 5 6 7

Best 1951 6745 12122 12738 13203 13274 13314
Worst 1853 1911 2264 8140 12722 13274 13400

Table 9. Results of absolute translational errors with different parameters for datasets.

14 of 21

Absolute Translational

2 ACES Intel MIT-Killian MIT-CSAIL
Error/m
Best 0.0608 + 0.0668 0.0616 + 0.06741 0.0367 + 0.0318 0.0369 + 0.0348
Default 0.0621 + 0.0759 0.0772 + 0.11466 0.545 + 2.4180 0.0369 + 0.0348
Worst 0.1035 + 0.2657 0.0766 + 0.1110 1.2259 + 3.3468 0.0889 + 0.1847

Table 10. Results of absolute rotational errors with different parameters for datasets.

Absolute Rotational

> ACES Intel MIT-Killian MIT-CSAIL
Error/deg
Best 0.0159 + 0.0205 0.0249 + 0.0431 0.0067 + 0.0101 0.0190 + 0.0333
Default 0.0159 + 0.0207 0.0253 + 0.0429 0.0159 + 0.0218 0.0190 + 0.0333
Worst 0.0162 + 0.0208 0.0253 + 0.0429 0.0167 + 0.0294 0.0191 + 0.0334
¥ Allsolutions Ist iteration
w O Allsolutions 30th iteration
1000 — * _ Pareto-optimal front
(LI‘\_:.
E: 950 o *'t: o K
b ) < e
.% 900 w % w w *
:j * W X ?
S 850 K
b SR wr
é T g Yr e 2o
5 800 % X%
;;J . @ & 0.035
T o 0.034

4600 -
4400 o 0.033
2 4000 - 0.032
- . 380! -
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Figure 13. NSGA-III result for 1t, 30" and 60t iterations of ACES dataset.

The occupation rate



Sensors 2020, 20, 1906 15 of 21

r=2m r-2m
enclosed areas occupation rate
g
g g
= 5
) ] g
- g g
3 e §
g & H
0 £ g
S
. 13 4
8 8
(a) (b)
Figure 14. MIT-Killian dataset map results with different g: (a) optimization times and (b) three metrics.
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Figure 15. MIT-Killian dataset map results with different r: (a) optimization times and (b) three metrics.

4.2. Real-World Experimental Results

Real-world experiments have been conducted to validate the proposed method for the tuning
of loop closure detection parameters. For this purpose, a TRIOWIN mobile robot (see Figure 16)
controlled by a PC and equipped with two SICK TIM571 laser sensors was used in the experiments.
The laser system operates at 15 Hz, with a scanning angle range of 270°, an angular resolution of
0.33°, and a maximum effective range of 25 meters. We chose the long distance (70-meter) corridor
on Floor 2, Block A, Building 8 and the underground garage on Floor Bl in the same building at
the Shanghai Electrical Apparatus Research Institute (SEARI) as our test environments. For both
experiments, the mobile robot moved back and forth twice to verify whether Karto SLAM can detect
the loop closure and trigger the back-end global optimization. In the experiments, we set p = 0.7 for
the long corridor environment p = 0.4 for the underground environment.

The best and worst values of r and g obtained through NSGA-III are listed in Table 11 for the two
environments, respectively. Figure 17 shows the environment and the map results of the 70-meter long
corridor on Floor 2, Block A, Building 8, SEARI. The maps constructed with the best and the worst
parameters are shown in Figure 17b—e respectively. We can see that the wall can slightly overlap if
the worst loop closure detection parameters are used. Figure 18 shows the environment and the map
results of the garage of about 4,000 square meters on Floor Bl, Block A, Building 8, SEARI. The maps
constructed with the best and the worst parameters are shown in Figure 18b,c, respectively. It can be
observed that the map obtained from the best parameters is more consistent with the real environment.
Obvious wall overlaps and deviation errors can be generated if the loop closure detection parameters
are not chosen properly.
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Figure 16. TRIOWIN mobile robot with mounted sensors.

The optimization objectives, i.e., the occupation rate, the number of corners and the number of
enclosed areas, are given in Tables 12 and 13 with different parameters respectively. These results
indicate that the optimal loop closure detection parameters lead to better mapping quality especially
for the large underground garage environment. If the parameters are not properly chosen, the maps
become blurrier and have overlapping walls, redundant corners, and more enclosed areas. This is
because the maps built in the second cycle is not aligned with those built in the first cycle and thus
experience deviation, which can be proved by comparing the times of global optimizations with
different parameters as listed in Table 14. If the loop closure detection parameters are not chosen
properly, the SLAM algorithm performs the back-end optimization only once for the two environments,
and thus accumulates considerable errors especially for the large underground garage environment.

We further use the underground garage as an example to demonstrate the variations of the three
objectives during the NSGA-III optimization in Figure 19. Similar to the results for the datasets,
the three objectives 7, 1. and 7, significantly decrease from the 1% iteration. The results of the 30t
generation tend to be consistent with the Pareto optimal solution of the 60! generation, which indicates
the convergence of the multi-objective optimization.

More importantly, Karto SLAM, the computation of the three evaluation metrics and the NSGA-III
algorithm are all implemented on a computer. As a result, the loop closure detection parameter
optimization and the corresponding mapping can be completed without human intervention.

Table 11. The parametric results of r and g of NSGA-III iteration for real-world tests.

Long Distance Corridor Underground Garage
Best (3.13 m,6 size) (5.51 m,16 size)
Worst (3.34 m,13 size) (2.19 m,19 size)

(d)

Figure 17. (a) Actual environment of long corridor in SEARI- Floor 2, Block A, Building 8 and map

results with (b) best, (c) is a partially enlarged view of (b), (d) worst values. and (e) is a partially
enlarged view of (d).
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(@) (b) (©)
Figure 18. (a) Actual environment of underground garage in SEARI- Floor B1, Block A, Building 8 and

map results with (b) best, (c) worst values.

Table 12. Results of three optimization objectives with best parameters for real environments.

Indicators Long Distance Corridor Underground Garage
n 0.0176 0.0241
e 1641 4259
Ne 259 478

Table 13. Results of three optimization objectives with worst parameters for real environments.

Indicators Long Distance Corridor Underground Garage
n 0.0189 0.0268
e 1707 5005
e 280 714

Table 14. Optimization times for real environments with different parameters.

Long Distance Corridor Underground Garage
Best 2 3
Worst 1 1
*
Y 4
w
* %  Allsolutions Ist iteration
O Allsolutions 30th iteration
#*  Pareto-optimal front
- 4
700 —
723 )44 @ w -
o r
5 650 4 ey ot
",; * &Qﬁ
& 600 — w
-,—-_=J w
3
— 550 %
S a ¥ 0.027
= % % % v
2 500 4 0.0265
£ w»OK 0.026
2 Wy WP
5 450 0.0255
= 5000 0.025
4800 -0 0.0245
4600
) 4500 0024 The occupation rate
The number of corners 4300 0.0235

Figure 19. NSGA-III result for 1t, 30" and 60t iterations of the underground garage.
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5. Conclusions

A multi-objective optimization method is proposed for the loop closure detection parameters
for indoor 2D graph-based SLAM. The method integrates the Karto SLAM algorithm, an evaluation
approach for map quality with three metrics in the absence of ground truth, and the NSGA-III
multi-objective optimization algorithm. The two loop closure detection parameters under study
represent the condition for whether the SLAM algorithm should trigger the back-end optimization
of graph-based SLAM. The three optimization objectives, i.e., the occupation rate, the number of
corners, and the number of enclosed areas, reflect the deviation errors such as overlaps, blurring and
misalignment when mapping multiple nested loops. The proposed method has been implemented
and validated by testing on four datasets and two real-world environments.

It has been demonstrated that wall overlaps, redundant corners, more enclosed areas, and even
large deviation errors can occur in the maps if the parameters are not properly tuned for Karto
SLAM. For all the tests, the map quality can be improved by optimizing the loop closure detection
parameters with the three evaluation metrics as the multiple objectives of NSGA-III, which can be
proved by the iterative results of the optimization objectives or by the observation on the images.
The proposed optimization method for loop closure detection parameters and the corresponding
map improvement can be completed by running NSGA-III algorithm without human intervention,
which provides potential applications for automatic tuning of these parameters for indoor 2D SLAM to
obtain a high-quality map without ground truth.

In this work, we find that the NSGA-III algorithm requires a considerable computational time for
the SLAM parameter optimization with the three objectives. Therefore, in future research, we will
investigate how to improve the efficiency of the proposed method and whether it is possible to reduce
the number optimization objectives. We will also further analyze the influence of other parameters in
SLAM algorithms on the mapping quality and the possibility of optimizing other parameters using the
proposed multi-objective optimization method.
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