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Background: Prediction of neonatal deaths in NICUs is important for benchmarking and evaluating healthcare
services in NICUs. Application of machine learning techniques can improve physicians’ ability to predict the neo-
natal deaths. The aim of this study was to present a neonatal death risk prediction model using machine learning

Methods: This study was conducted in Tehran, Iran in two phases. Initially, important risk factors in neonatal death
were identified and then several machine learning models including Artificial Neural Network (ANN), decision tree
(Random Forest (RF), C5.0 and CHART tree), Support Vector Machine (SVYM), Bayesian Network and Ensemble models
were developed. Finally, we prospectively applied these models to predict neonatal death in a NICU and followed up
the neonates to compare the outcomes of these neonates with real outcomes.

Results: 17 factors were considered important in neonatal mortality prediction. The highest Area Under the Curve
(AUC) was achieved for the SYM and Ensemble models with 0.98. The best precision and specificity were 0.98 and
0.94, respectively for the RF model. The highest accuracy, sensitivity and F-score were achieved for the SYM model
with 0.94, 0.95 and 0.96, respectively. The best performance of models in prospective evaluation was for the ANN, C5.0

Conclusion: Using the developed machine learning models can help physicians predict the neonatal deaths in

Background

The neonatal period is the first 28 days of life, which is
the stage of developing physiological adaptations for
extra-uterine life. This time is a vulnerable period and
the high neonatal mortality rate is due to the high level
of vulnerability in this period [1]. Neonatal and children
death is a major health indicator [2] and mortality predic-
tion is applied for reviewing and benchmarking, looking
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the results in neonatal intensive care units (NICUs) and
evaluating efficacy [3]. About two-thirds of infant deaths
and about half of the under-five deaths occur in neona-
tal period [4]. Predictions show that between 2019 and
2030, approximately 52 million children under the age
of 5 will die, approximately half of whom will be neonate
[2]. However, the under-5 mortality rate has declined
around the world, but the neonatal mortality rate is still
an alarming issue [5].

In order to public health policy-making and man-
agement of pregnancy, childbirth and neonate peri-
ods, including the proper selection of risk factors and
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development of selective care pathways for high-risk
pregnancies, it is important to predict high-risk neonates
[6]. Furthermore, early identification of neonates who
are at risk for death can help physicians provide early
treatment and has a direct impact on their survival and
decreasing their morbidity [7].

Machine Learning (ML) is a subset of Artificial Intel-
ligence (AI), which incorporates all methods that permit
machines to learn from data [8]. The expectation of ML
is to train machines based on the provided data and algo-
rithms. The machines learn how to make autonomous
decisions using large sets of data inputs and outputs [9,
10]. In NICUs, decision-making is a complex and impor-
tant process, and the use of artificial intelligence and
machine learning techniques can improve the quality of
neonatal care by providing early warnings to healthcare
providers [11].

According to some studies, the use of machine learn-
ing methods in predicting the neonatal mortality was
promising. For example, Mboya et al. [5] showed that
the predictive ability of perinatal death in machine learn-
ing algorithms was considerably superior over the logis-
tic regression method. However, despite there are many
studies in this field, most of them have been done on spe-
cific groups of neonates, such as premature or Very Low
Birth Weight (VLBW) neonates or in general settings
rather than specifically in the NICUs. For instance, in a
cohort study in Tanzania (2020), perinatal death predic-
tion using machine learning models were compared to
logistic regression. The results showed that there was
no significant difference in perinatal death prediction
between machine learning and regression models, except
for bagging method. In addition, the machine learning
algorithms had a superior net benefit and its predictive
ability was greatly higher than regression model [5]. In
a 2019 study, researchers in Bangladesh developed and
evaluated regression models to predict the risk of neo-
natal death based on known characteristics in the begin-
ning of pregnancy, beginning of delivery and five minutes
after delivery. According to results, the predictive ability
of the model was moderate at the beginning of pregnancy
(AUC=0.59). At the beginning of delivery, the predictive
ability was significantly better (AUC=0.73) and at 5 min
after birth, the predictive ability was good (AUC=10.85)
[6]. Researchers in Ohio (2018) predicted postoperative
neonatal deaths using a superlearning method (includ-
ing 14 algorithms) and showed that performance of the
superlearner algorithm was better than any of the other
algorithms alone [12].

As for studies related to NICUs, researchers in Iran
(2020) used neural network and logistic regression to
predict the probability of mortality in preterm neonates
after admission to NICU and showed that neural network
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with 60 neurons in hidden layer had a more acceptable
performance [3]. In 2020, researchers in Finland used
9 different classifiers to predict mortality and morbid-
ity among very low birth weight infants on time series
data and clinical variables. The results showed that ran-
dom forest had the best results compared to the other
classifiers in predicting death (AUROC=0.922 and
F1-score=0.493) [13].

Despite of these models to predict the neonatal death
risk, the performance of different algorithms on different
datasets has been different. Furthermore, the best AUC
on neonatal death obtained from these studies was 0.96
[3].

Unlike the previous studies, which were performed on
premature or VLBW neonates [3, 13], or in general set-
tings other than NICUs [5, 6, 12], the present study con-
siders all neonates without birth weight limitation in
NICU settings. Furthermore, the majority of previous
models were not prospectively applied and evaluated [5,
6, 13]; however, in the current study, we prospectively
evaluated our models in a NICU to better examine the
performance of the models from a clinical perspective.

On the other hand, according to studies, neonatal
mortality is more prevalent in the developing countries
and may follow a different pattern, so appropriate mod-
els need to be developed in these countries based on the
internal conditions. Therefore, the purpose of this study
was to present a neonatal death risk prediction model
using machine learning algorithms and apply these mod-
els in an NICU to predict the neonatal death and com-
pare the results with final status of neonates to evaluate
the performance of these models.

Methods

At first, important risk factors in neonatal death were
identified through a literature review, neonatologists’
opinions and different feature selection methods. Then,
several machine learning models were developed and
evaluated in a prospective study for external validation of
models. The overall methodology briefly is described in
Fig. 1.

Identification of the neonatal mortality risk factors

A literature review was conducted to identify neona-
tal mortality risk factors, which was reported elsewhere
[14] and then ultimately 21 important risk factors for
neonatal death were identified by neonatologists’ opin-
ions. However, four of these variables were not recorded
in the neonatal registry that we used. Therefore, these
four variables were excluded and 17 variables were
selected for the analysis. There are also different feature
selection methods in practice and according to previ-
ous studies [15-17], four well-known feature selection
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methods were applied to identify the most important
features from these 17 features. First, we used univari-
ate statistical analysis (non-parametric Mann—Whitney
and Chi-square tests) to identify significantly different
variables among alive and dead neonates. We consid-
ered p-value <0.05 as our selection criterion and identi-
fied 13 features. Some statisticians believe that marginal
(p-value<0.2) significant variables identified from uni-
variate should be included in multivariate analysis. Using
this criterion, 14 features were selected. We also used
IBM SPSS modeler feature selection node and identi-
fied 9 important features. Also, we used ‘CfsSubsetEva’
method in Weka. This method measures the significance
of attributes on the basis of predictive ability of attributes

Table 1 Different feature selection results

and its degree of redundancy. The subsets which are hav-
ing less inter-correlation but highly correlated to the tar-
get class are preferred and according to studies, variables
selected by this method have the best results in term of
the percentage of correctly classified instances compared
to other feature selection methods available in Weka [16,
17] In our dataset, this method identified 6 important
features. In Table 1, different feature selection methods
are presented.

After implementing several machine learning algo-
rithms on these five sets of features, we found that the
better results were obtained for models developed based
on 17 and 12 features, however, most models devel-
oped based on 17 features had the highest performance.

Feature selection Method

Selected features

Neonatologist opinion

17 features BW, GA, Preterm birth, SGA, Parental care, Mother disease, RDS, Steroid

therapy, Surfactant administration, Pulmonary hemorrhage, NEC, Congenital
malformation, Sepsis, Asphyxia, IVH, Intubation, Ventilation

Non-parametric Mann-Whitney and Chi-square test (p-value < 0.05)

13 features BW, GA, Preterm birth, SGA, Mother disease, RDS, Surfactant adminis-

tration, Pulmonary hemorrhage, Congenital malformation, Sepsis, IVH, Intuba-
tion, Ventilation

Non-parametric Mann-Whitney and Chi-square test (p-value > 0.2)

14 features BW, GA, Preterm birth, SGA, Mother disease, RDS, Surfactant adminis-

tration, Pulmonary hemorrhage, Asphyxia, Congenital malformation, Sepsis, IVH,
Intubation, Ventilation

IBM SPSS modeler feature selection method

12 features BW, GA, Preterm birth, SGA, RDS, Surfactant administration, Pulmonary

hemorrhage, Congenital malformation, IVH, Intubation, Ventilation, NEC

CfsSubsetEva method in Weka

5 features SGA, Parental care, Pulmonary hemorrhage, Intubation, Ventilation
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Therefore, we considered this feature set for the further
analyses. One of the examples of our experiments on 17
and 12 features on one dataset are presented in Addi-
tional file 1: Table 1.

Neonatal data

The data was collected from a neonatal registry database
in “Maternal, Fetal and Neonatal Research Center’, Teh-
ran University of Medical Sciences, Tehran, Iran. This
registry contains neonatal records from teaching hos-
pitals in Tehran. We extracted data from 1 May 2017 to
31 July 2018. Based on the previous phase, 17 confirmed
neonatal risk factors were extracted from this registry.
Our dataset consisted of 1762 records in two classes
(dead, n=138 and survived, n=1624).

Data pre-processing

The various models were firstly developed using the orig-
inal data; however, due to the low sample in “dead” class,
the model performance was not acceptable, especially in
terms of their specificity. Hence, to obtain the best mod-
els, data pre-processing techniques were applied.

Missing data imputation

Data imputation is usually used to improve the data qual-
ity and performance of machine learning models. For this
purpose, many methods are well-documented such as
replacing the mean or mode of a class group [18, 19]. In
our dataset, 14 of the 17 variables had less than one per-
cent missing values. Details on frequency of missing data
in different features in the dead and survived classes are
presented in Table 2. We used the mean and the most fre-
quent category of each class (dead vs. survived) to impute
continuous and Boolean variables, respectively [20]. The
missing values were imputed using IBM SPSS modelers.
For example, for “congenital malformation’, most records
had a value of "No", so the missing value was replaced
with "No".

Data balancing

Our dataset was imbalanced regarding to the frequency
of each class, and the “dead” class contained only 138
records (7.83%). Hence, we applied two minority over-
sampling techniques, the Synthetic Minority Over-Sam-
pling Technique (SMOTE) [21] and Adaptive Synthetic
(ADASYN) [22] to balance the data using R software
version 4.0.4. SMOTE is the most famous method to
balance the data to improve random oversampling [23].
This technique works by increasing the sample of minor-
ity class. By using this method, majority instances do
not change [24] and more data from the minority class
is added to the dataset so that the amount of data in the
minority and majority classes reaches a more balanced
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Table 2 Frequency of missing data in different features

Variables Missing data in  Missing datain  Total
dead class (N)  survived class

(N)

Birth Weight (BW)
Gestational Age (GA)
Prenatal care

R T S NS S Se o)

Mother disease

Steroid therapy

Surfactant administration
Pulmonary hemorrhage
Congenital malformation
Necrotizing EnteroColitis (NEC)
Sepsis

[N T e T S

NN NN = N = NN

Intra Ventricular Hemorrhage
(IVH)

Asphyxia 1 1
Intubation 1 0 1

N

level. Although there are many versions of this technique,
most of them do not outperform than the original ver-
sion, therefore, we relied on the original SMOTE [23].
Furthermore, the goal of ADASYN is to utilize a weighted
distribution for different minority class samples relevant
to their difficulty level of learning, where more synthetic
data is made for minority class samples that are difficult
to learn compared to those minority samples that are
simple to learn [22].

Based on these two methods, we created new datasets
by using R software. We added records to the “dead” class
using SMOTE by 3, 4, 5, and 11 times and named them
as SMOTE-oversampled datasetl (live class:1624; dead
class:552; ratio: 2.96), SMOTE-oversampled dataset2 (live
class:1624; dead class:690; ratio: 2.35), SMOTE-oversam-
pled dataset3 (live class:1624; dead class:828; ratio: 1.96),
and SMOTE-oversampled dataset4 (live class: 1624; dead
class: 1656, ratio: 1.01). We also used ADASYN (with
k=3) and created the ADASYN-oversampled dataset
(live class: 1624; dead class: 1583, ratio: 1.02).

In order to achieve the best results, we implemented
different machine learning algorithms on the original
data, and the above-mentioned oversampled datasets
and compared the performance of the models in terms of
confusion matrix measures (AUC and F1 measure).

Model development

In this phase, we used the selected variables as input vari-
ables to develop the machine learning models. The data
were randomly splited into two groups: 70% for train-
ing and 30% for testing data and then different machine
learning algorithms including ANN, decision tree (RF,
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C5.0 and CHAID tree), SVM and Bayesian network were
developed on the original and the oversampled datasets.
Also, each algorithm was executed 10 times with differ-
ent randomly selected train and test sets.

Artificial neural network (ANN)

These networks, similar to the natural neural networks,
process the input variables through neural processing
units [20]. ANN is a set of connected input/output units
and each connection has a weight. During the training
phase, it adjusts the weights to learn how to predict the
output class [25]. There are many kinds of ANNs [26]
out of which, we used Radial Basic Function (RBF) and
Multiple Layer Perceptron (MLP) networks with differ-
ent number of processing units in each hidden layer. The
selection of the network architecture was done by trial
and error, and finally, the network with the best perfor-
mance was selected.

Decision tree

Decision tree classifies data to discrete ones applying
tree structure algorithms [25]. The main purpose of these
classifiers is to display the structural information stored
in the data. This technique generates a decision tree from
a set of labeled training samples [18]. The advantages of
this method are its ease and speed, ability to handle high
dimensional data and its understandable representation
[25]. We used the RF, C5.0 and CHAID tree algorithms
to construct the decision tree. C5.0 algorithm utilized
a pruning method. Also, this method uses a boosting
method to build and merge multiple classifiers to deliver
improved accuracy [27]. The Chi-squared Detection of
Automatic Interaction (CHAID) tree is one of the oldest
decision trees for prediction made by repeatedly splitting
the subset space into two or more subgroups [28, 29].
CHAID investigates the relationship between a depend-
ent variable and the predictors by maximizing the signifi-
cance of a Chi-square statistics [30, 31].

RF is one of the most famous machine learning tech-
niques for prediction problems [32]. RF is an Ensemble
method that developed multiple decision trees through
bootstrap aggregation. Each time an input is supplied to
RF, each of the developed decision trees is passed on to
that input. Every tree independently predicts a classifica-
tion and "votes" for the corresponding class. The overall
RF forecast is determined by the majority of the votes.
Inherently, this combined vote of multiple decision trees
is less noisy and less prone to outliers than a single deci-
sion tree [13, 33, 34].

Support vector machine (SVM)
SVM is an appropriate technique for binary classification.
This method is very popular due to its features such as
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dealing with complex nonlinear data points in the health
field. SVM is one of most accurate methods and is less
prone to over-fitting than other methods [25, 35]. Fur-
thermore, it is a suitable classifier without the need for
any prior knowledge and has high precision and robust-
ness [36, 37]. In addition to linear problems, SVM can
also be used as a nonlinear kernel function. The most
common kernel functions in SVM include Linear, Poly-
nomial and RBF [25]. In this study, we developed Linear,
RBF and Polynomial kernel functions and selected the
model with the best performance.

Bayesian network

We also applied the Bayesian Network algorithm. These
networks are known as statistical classifiers which pre-
dict the probability of membership of a given sample in a
specific class. Accuracy and speed of this network is high
for large databases [38, 39] and the performance of this
classifier is also robust [40].

Ensemble model

An Ensemble model is one of the methods to increase
the classification accuracy. In this technique, a classifica-
tion model that combines several classification methods
is selected. Each classifier returns its vote and the final
result is determined by calculating the frequency of votes
by each individual classifier [18]. In the current study,
the performance measures of different models were
reviewed, the best models were selected and combined
by two Ensemble methods including Ensemble-Con-
fidence weighted voting and Voting method and their
results were compared with each individual models.

Prospective evaluation and external validation

In order to perform external validation, we conducted a
one-month prospective study in the NICU of “Yas” hos-
pital affiliated with Tehran University of Medical Sci-
ence. We applied our models to predict outcomes of all
neonates admitted to this NICU from 20 April 2020 to
20 July 2020 (92 neonates) and then followed them up
to their discharge or death (dead, n=18 and survived,
n=74) and compared the model results with the actual
final status of these neonates.

Implementation and data analysis

We used Statistical Package for the Social Sciences (SPSS)
version 23 and Waikato Environment for Knowledge
Analysis (Weka) software to analyze the data and identify
the important features, respectively. Moreover, we used
R software version 4.0.4 and IBM SPSS Modeler version
18 to balance the data and develop the machine learning
models, respectively. In this regard, we used confusion
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matrix and performance measures including accuracy,
precision, sensitivity, specificity, F-Score and AUC.

Results

The included variables

Based on neonatologist’s opinions, 21 important risk fac-
tors were identified and four of them were excluded from
the analysis due to high missing data in the dataset. Then,
different feature selection methods were applied on iden-
tified risk factors (Table 1).
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Description of the neonates

Table 3 indicates the distribution of the quantitative and
qualitative variables for all neonates and also dead and
survived ones.

The mean of BW was 2323.2 gr (1643.5 gr in dead and
2566 gr in survived neonates). Furthermore, the mean
of GA was 240.49 days (216 and 249.4 days in dead
and survived neonates, respectively). 56.5% of all neo-
nates were preterm and 20.5% were SGA. Additionally,
97.2% of mothers received routine perinatal care during

Table 3 Distribution of qualitative and quantitative features in the original dataset

Variables Values Dead Survived All neonates
(Mean+£SD) (Mean+£SD) (N)
Quantitative features
Birth Weight (BW) 400-6509 1643.5+1083.8 2566£8455 1762
Gestational Age (GA) 155-281 216+£34.3 2494 +£24.1 1762
Variables Values Dead Survived All neonates
N (%) N (%) (N)
Quantitative features
Preterm birth Yes 111 (80.4) 884 (54.4) 995 (56.5)
No 27 (19.6) 740 (45.6) 767 (43.5)
Small for Gestational Age (SGA) Yes 44 (31.9) 318 (19.6) 362 (20.5)
No 94 (68.1) 1306 (80.4) 1400 (79.5)
Prenatal care Yes 132 (95.7) 1580 (97.3) 1712 (97 2)
No 6(4.3) 44 (2. ) 0(28)
Mother disease Yes 26 (18.8) 41 (21 367 (20 8)
No 112(81.2) 1283 (79) 1395 (79.2)
Respiratory Distress Syndrome (RDS) Yes 77 (55.8) 474 (29.2) 551(313)
No 61 (44.2) 1150 (70.8) 1211 (68.7)
Steroid therapy Yes 1(0.7) 8 (0. ) 9(0.5)
No 137(99.3) 1616 (99.5 1753 (99.5)
Surfactant administration Yes 90 (65.2) 328 (20. ) 418 (23.7)
No 48 (34.8) 1296 (79.8) 1344 (76.2)
Pulmonary hemorrhage Yes 30(21.7) 4(0.2) 34(1.9)
No 108 (78.3) 1620 (99.8) 1728 (98.1)
Congenital malformation Yes 62 (44.9) 335 (20.6) 397 (22.5)
No 76(55.1) 1289 (79.4) 1365 (77.5)
Necrotizing EnteroColitis (NEC) Yes 6(4.3) 0(1.8) 6(2)
No 132 (95.7) 1594 (98.2) 1726 (98)
Sepsis Yes 54 (39.1) 753 (46.4) 807 (45.8)
No 84 (60.9) 71 (53.6) 955 (54.2)
Intra Ventricular Hemorrhage (IVH) Yes 41 (29.7) 235 (14.5) 276 (15.7)
No 97 (70.3) 1389 (85.5) 1486 (84.3)
Asphyxia Yes 5 (3.6) 29(1.8) 34(1.9)
No 133 (96.4) 1595 (98.2) 1728 (98.1)
Intubation Yes 78 (56.5) 95 (5.8) 73(9.8)
No 60 (43.5) 1529 (94.2) 1589 (90.2)
Ventilation Yes 104 (75.4) 168 (10.3) 272 (154)
No 34 (24.6) 1456 (89.7) 1490 (84.6)
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pregnancy (97.3% in survived vs. 95.7% in dead neonates)
and only 20.8% of mothers suffered from chronic diseases
such as gestational and chronic diabetes, chronic and
gestational hypertension and other diseases during preg-
nancy; 31.3% of neonates had RDS (29.2% in survived
vs. 55.8% in dead neonates), and steroid and surfactant
administration were seen only in 0.5% and 23.7% of all
neonates, respectively. There was also 1.9% pulmonary
hemorrhage (0.2% in survived vs. 21.7% in dead neo-
nates), heart disease (22.5%), NEC (2%), sepsis (45.8%)
and IVH (15.7%) in neonates. Additionally, the most of
neonates had no asphyxia (98.1%), intubation (90.2%) and
ventilation need (84.6%).

The machine learning algorithms and their evaluation

The performance of selected models on the original
data indicated that the specificity was not appropriate
mainly because of our imbalanced dataset. Therefore,
we initially created 5 oversampled datasets. Considering
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that SMOTE-oversampled datasetl and SMOTE-over-
sampled dataset4 had the best results (based on AUC
and F-score) for the most models, we only report our
results for the original, SMOTE-oversampled datasetl,
SMOTE-oversampled dataset4 and ADASYN-oversam-
pled dataset in Table 4. The details of the results for the
other oversampled data are presented in Additional file 1:
Table 1.

According to the Table 4, most models developed on
SMOTE-oversampled datasetl shows slightly better
results. Among RF models, RF with 100 built models and
10 maximum tree depths had the best accuracy (0.92)
and AUC (0.97). Top RF decision rules are presented in
Additional file 1: Table 2. Additional file 1: Table 3 shows
different neural network architectures. We found that
the best performance in ANNs was obtained in MLP
network model with 17 input variables and 9 units in
one hidden layer with accuracy (0.91) and AUC (0.96)
(Additional file 1: Fig. 1). In addition, the best result for

Table 4 Performance measures of the selected machine learning models on original, SMOTE-oversampled datasetl, SMOTE-

oversampled dataset4 and ADASYN-oversampled dataset

Model Data Accuracy Precision Specificity Sensitivity F-score AUC
RF Original data 0.91 0.97 0.62 0.94 0.95 0.90
SMOTE-oversampled dataset1 0.92 0.98 0.94 0.92 0.95 0.97
SMOTE-oversampled dataset4 0.94 0.96 092 0.97 094 0.98
ADASYN-oversampled dataset 0.96 0.99 0.92 0.99 0.95 0.96

ANN Original data 0.93 0.95 043 0.98 0.97 0.93
SMOTE-oversampled dataset1 0.91 0.94 0.84 0.94 0.94 0.96
SMOTE-oversampled dataset4 0.90 0.95 0.85 0.96 0.90 0.96
ADASYN-oversampled dataset 0.88 091 0.86 0.91 0.88 0.95

5.0 Original data 094 0.96 047 098 097 0.82
SMOTE-oversampled dataset1 0.92 0.96 0.90 0.93 0.95 0.94
SMOTE-oversampled dataset4 0.94 0.96 0.90 0.97 0.93 093
ADASYN-oversampled dataset 0.95 1 0.90 1 0.94 0.97

SVM Original data 0.94 0.96 0.55 0.97 0.97 0.90
SMOTE-oversampled dataset1 0.94 0.97 0.90 0.95 0.96 0.98
SMOTE-oversampled dataset4 0.95 0.98 0.92 0.96 0.95 0.98
ADASYN-oversampled dataset 0.94 0.95 0.82 093 0.88 0.97

Bayesian net- Original data 094 097 0.66 0.96 0.96 0.90
work SMOTE-oversampled dataset1 0.90 0.95 086 091 093 0.95
SMOTE-oversampled dataset4 0.89 0.89 0.87 0.90 0.88 0.96
ADASYN-oversampled dataset 0.88 0.89 0.86 0.89 0.88 0.94

CHAID tree Original data 0.94 0.95 0.38 0.98 0.98 0.93
SMOTE-oversampled dataset 0.90 0.96 0.88 0.90 0.93 0.96
SMOTE-oversampled dataset4 0.90 0.96 0.83 0.96 0.89 0.95
ADASYN-oversampled dataset 0.88 0.89 0.86 0.90 0.88 0.95

Ensemble Original data 0.94 0.96 048 0.98 0.97 0.94
SMOTE-oversampled dataset1 0.92 0.96 0.88 093 0.95 0.98
SMOTE-oversampled dataset4 0.95 0.97 0.84 0.97 0.95 0.98
ADASYN-oversampled dataset 0.95 0.98 0.90 0.96 094 0.98
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C5.0 was observed in the tree with 11 levels tree depth
in terms of the accuracy (0.92) and AUC (0.94), respec-
tively. The C5.0 decision rules are presented in Addi-
tional file 1: Table 4. As for SVM, we found that RBF
function with stopping criteria=1.0E-3, Regularization
parameter (C)=10, Regression precision=0.1 and RBF
Gamma=0.1 had the best accuracy and AUC with val-
ues of 0.94 and 0.98, respectively. The details of different
SVM models are present in supplement (Additional file 1:
Table 5).

In addition, for CHAID tree, the 5-depth tree had the
best accuracy (0.90) and AUC (0.96). Details on CHAID
decision rules are presented in Additional file 1: Table 6.
We developed a Bayesian network with two TAN and
Markov structures. The network with TAN structure,
parameter maximum likelihood learning method, and
maximum conditioning size set=>5 had the best accuracy
(0.90) and AUC (0.95), respectively on the test data. In
Additional file 1 (Fig. 2), the selected Bayesian network
structures are shown. Also, all setting, configurations and
their values for the best performing models are presented
in Additional file 1: Table 7.

Finally, the best RF, ANN, C5.0, SVM, CHAID tree and
Bayesian network models were combined using Ensem-
ble methods (Table 4 and Fig. 2). The results indicated
that the accuracy and F-score for the SVM was better
than the other methods. Comparing different models
indicated that the RF had the highest precision and speci-
ficity compared to other models. The Ensemble and SVM
had the best AUC on the test data. Details on confusion
matrix result for each model are presented in Table 8 in
Additional file 1.

Among all variables, only the “intubation” was signifi-
cant in all six models. Then, “GA” was significant in REF,
ANN, C5.0, SVM and CHAID tree models. BW, pulmo-
nary hemorrhage and SGA were significant variables
that used by at least four models. Congenital malforma-
tion, NEC, prenatal care, preterm birth and sepsis were
significant variables that used by at least three models.
Asphyxia, mother disease and ventilation variables were
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significant in just two models. Some variables such as
steroid therapy, surfactant administration and RDS vari-
ables were only significant in one model.

Prospective evaluation

We conducted a prospective evaluation on the best RF,
ANN, C5.0, SVM, CHAID tree, Bayesian network and
Ensemble models. Table 5 shows the performance of the
models developed based on the SMOTE-oversampled
datasetl in external evaluation. Details on the confusion
matrix and the results of the prospective evaluation con-
ducted by other models (developed on other datasets) in
Additional file 1: Table 9 and Table 10 . According to the
results, most models developed on SMOTE-oversam-
pled datasetl (except RF) completely outperformed and
among them (Table 5), the highest accuracy, sensitivity,
F-score and AUC were observed for the ANN; however,
C5.0 and CHAID trees had the highest precision and
specificity. Therefore, we finally selected models devel-
oped based on the SMOTE-oversampled datasetl on 17
features.

Discussion

In this study, we developed prediction models for neo-
natal death in NICU using machine learning algorithms
and 17 important variables. Cooper et al. [12] performed
the superlearning algorithm on 68 variables. Safdari et al.
[41] and Beluzon et al. [42] considered 14 and 23 vari-
ables, respectively. Ravelli et al. [43] developed the ante-
natal prediction of neonatal mortality in very premature
infants on 13 variables. Mboya et al. [5] considered 32
predictive variables for perinatal death prediction.

In our study, “intubation” was the only identified
important neonatal mortality risk factor were also sig-
nificant in all six developed predictive models. Studies in
Thailand [44], Brazil [45] and Iran [46] also identified this
variable as one of the most important risk factors in neo-
natal death.

GA and BW were also identified as important risk
factors by at least four models. Similarly in UK [47],

Table 5 Prospective evaluation results of the selected machine learning models

Model Accuracy Precision Specificity Sensitivity F-score AUC
RF 063 0.90 0.72 061 0.73 0.81
ANN 0.86 0.96 0.83 0.86 0.91 0.92
5.0 0.84 0.97 0.89 0.82 0.89 091
SVM 0.82 0.94 0.78 0.82 0.88 0.89
Bayesian network 0.67 0.85 0.55 0.71 0.77 0.64
CHAID tree 0.83 0.97 0.89 0.81 0.88 091
Ensemble 0.84 0.95 0.83 0.84 0.89 091

The best results for each indicator are bold
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Fig. 2 Receiver Operating Characteristic (ROC) curves in a selected algorithms b Ensemble method on the test data

Ethiopia [48],China [49], Brazil [50], Iran [51], Mexico
[52], Finland [13] and Brazil [53], these two variables
were identified as important risk factors for neonatal
mortality. Furthermore, a systematic review indicated
the importance of these risk factors for neonatal mor-
tality in NICUs; GA and BW were the most cited risk
factors for neonatal death [14]. Some risk factors such
as “pulmonary hemorrhage” was found in at least four
models of our study and also stated in [45, 54—56], but
not mentioned in other machine learning studies [13,
43].

We developed RF, ANN, C5.0, SVM, CHAID tree and
Bayesian network as well as Ensemble models and found
that the SVM had the highest accuracy, F-score and sen-
sitivity than other models. Also, SVM and Ensemble
methods resulted in the highest AUC. The best perfor-
mance in terms of specificity and precision was for RE.
Additionally, the results from prospective evaluation
showed the highest accuracy, sensitivity, F-score and
AUC was for the ANN model and the highest precision
and specificity was for the C5.0 and CHAID tree. This
result indicates that ANN, C5.0 and CHAID tree models
are more generalizable and applicable for external data.

There are several studies in this respect. Although the
studies have been conducted on different data and are
not comparable, but as shown in Table 6, Jaskari’s study
[13] for predicting the neonatal mortality showed AUC
(0.922) and F-score (0.477) for RF classifier. Beluzos et al.
[42] proposed a novel support decision method to clas-
sify newborns based on their neonatal mortality risk
and indicated that the accuracy and AUC were 93% and
0.965, respectively. Rezaeian et al. [3] developed models

for prediction of mortality of premature neonates and
presented AUC (95.99%), accuracy (96.79%), sensitiv-
ity (86.20%) and specificity (98.37%). Cooper’s study [12]
for predicting the postoperative neonatal death showed
that the AUC for model development and validation were
0.91 and 0.87, respectively. Ravelli et al. [43] developed
a model to predict neonatal mortality in very premature
infants and indicated that the AUC and accuracy were
0.83 and 0.65, respectively.

Because of different datasets, and targeted neonates,
comparing our results with other studies is difficult; how-
ever, in general, in comparison with the best results from
previous studies, we achieved the highest AUC (98% vs.
95.99% [3]), sensitivity (95% vs. 86.20% [3]) and F-score
(96% vs 0.477 [13]) than other similar studies. The high-
est accuracy (94% for SVM) and specificity (94% for RF)
in our study are much better than Vianna’s study (83%
and 62%, respectively) [57] and Ribeiro’s study (88.2% and
91.7%, respectively) [53] but less than Rezaeian’s study
(96.79% and 98.37% respectively). It should be mentioned
that Rezaeian’s models are only applicable for premature
neonates [3]. Among studies focused on all neonates (not
premature), our models showed better results.

Study limitations and future studies

One of the limitations of our study was the necessity to
balance the original data. Comparison of models devel-
oped on the original (imbalanced) with those developed
on the oversampled data showed an improved perfor-
mance especially in terms of specificity. Although, over-
sampling technique is well-defined in machine learning
[21], it produces artificial data that may effect on the
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results. Therefore, it is suggested that the study should
be replicated with a larger dataset that is more bal-
anced. Also, it is recommended to use different minor-
ity oversampling techniques other than “SMOTE” and
“ADASYN” to balance dataset and compare the results.
Additionally, we excluded some of the variables from our
analysis because of unavailability of data. It is highly rec-
ommended to consider these variables in future studies.
Also, given that this dataset was specific to this study, as
far as we know, there are no other studies (methods) on
this dataset, therefore we were not able to conduct such a
comparison. Developing other models on the same data-
set is recommended. In addition, no decision support
system has been implemented yet. Indeed, future studies
should be focused on developing such systems and evalu-
ating the impact of these models and systems on health
outcomes.

Implication

The main audiences of this study are physicians and neo-
natologists in NICUs. They can consider the models and
the different risk factors that are identified as impor-
tant factors by these models in their decision making in
NICUs. Artificial intelligence researchers and developers
who are interested in developing predictive models or
decision support systems for neonatal mortality can also
use the results of this study to select the best models for
the prediction of neonatal death.

Conclusion

We developed several machine learning-based models
including RE, ANN, SVM, C5.0, CHAID tree, Bayesian
network and Ensemble methods using different feature
selection methods to predict neonatal deaths in NICUs.
As a result, models developed using feature selected by
neonatologists (17 features). The ANN models had the
best results in prospective evaluation. Therefore, it is sug-
gested for implementing on similar projects.
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