
fcell-08-576996 September 1, 2020 Time: 19:21 # 1

ORIGINAL RESEARCH
published: 03 September 2020
doi: 10.3389/fcell.2020.576996

Edited by:
Sajib Chakraborty,

University of Dhaka, Bangladesh

Reviewed by:
Ismail Hosen,

University of Dhaka, Bangladesh
Pascal Schlosser,

University Medical Center Freiburg,
Germany

*Correspondence:
Bing Xing

xingbingemail@aliyun.com

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 28 June 2020
Accepted: 18 August 2020

Published: 03 September 2020

Citation:
Wang Z, Gao L, Guo X, Lian W,

Deng K and Xing B (2020)
Development and Validation of a

Novel DNA Methylation-Driven Gene
Based Molecular Classification

and Predictive Model for Overall
Survival and Immunotherapy

Response in Patients With
Glioblastoma: A Multiomic Analysis.

Front. Cell Dev. Biol. 8:576996.
doi: 10.3389/fcell.2020.576996

Development and Validation of a
Novel DNA Methylation-Driven Gene
Based Molecular Classification and
Predictive Model for Overall Survival
and Immunotherapy Response in
Patients With Glioblastoma: A
Multiomic Analysis
Zihao Wang, Lu Gao, Xiaopeng Guo, Wei Lian, Kan Deng and Bing Xing*

Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China

Purpose: Glioblastoma (GBM) is the most common primary malignant tumor of the
central nervous system, with a 5-year overall survival (OS) rate of only 5.6%. This
study aimed to develop a novel DNA methylation-driven gene (MDG)-based molecular
classification and risk model for individualized prognosis prediction for GBM patients.

Methods: The DNA methylation profiles (458 samples) and gene expression profiles
(376 samples) of patients were enrolled to identify MDGs using the MethylMix
algorithm. Unsupervised consensus clustering was performed to develop the MDG-
based molecular classification. By performing the univariate, least absolute shrinkage
and selection operator (LASSO), and multivariate Cox regression analysis, a MDG-based
prognostic model was developed and validated. Then, Bisulfite Amplicon Sequencing
(BSAS) and quantitative real-time polymerase chain reaction (qPCR) were performed to
verify the methylation and expressions of MDGs in GBM cell lines.

Results: A total of 199 MDGs were identified, the expression patterns of which
enabled TCGA and CGGA GBM patients to be divided into 2 clusters by unsupervised
consensus clustering. Cluster 1 patients commonly exhibited a poor prognosis, were
older in age, and were more sensitive to immunotherapies. Then, six MDGs (ANKRD10,
BMP2, LOXL1, RPL39L, TMEM52, and VILL) were further selected to construct the
prognostic risk score model, which was validated in the CGGA cohort. Kaplan-Meier
survival analysis demonstrated that high-risk patients had significantly poorer OS
than low-risk patients (logrank P = 3.338 × 10-6). Then, a prognostic nomogram
was constructed and validated. Calibration plots, receiver operating characteristic
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curves, and decision curve analysis indicated excellent predictive performance for the
nomogram in both the TCGA training and CGGA validation cohorts. Finally, in vitro BSAS
and qPCR analysis validated that the expressions of the MDGs were negatively regulated
by methylations of target genes, especially promoter region methylation.

Conclusion: The MDG-based prognostic model could serve as a promising prognostic
indicator and potential therapeutic target to facilitate individualized survival prediction
and better treatment options for GBM patients.

Keywords: DNA methylation-driven genes, glioblastoma, GSEA, prognostic model, multiomic analysis

INTRODUCTION

Glioblastoma, corresponding to grade IV, is the most common
(47.7%) primary malignant tumor of the central nervous system,
with an incidence rate of 3.21 per 100,000 population according
to the CBTRUS Statistical Report in the United States in 2011–
2015 (Ostrom et al., 2018). GBM is the most aggressive and
infiltrative brain tumor, with a 5-year OS rate of only 5.6%
post-diagnosis (Ostrom et al., 2018). The standard treatment
strategy for GBM is maximal safe surgical resection, followed
by concurrent radiation and chemotherapy (Weller et al., 2014).
However, despite the great progress made in GBM treatment,
GBM still exhibits significant morbidity and mortality. With
the rapid development of large-scale genome−sequencing
technologies, numerous molecular biomarkers for GBM
have been reported in the literature, including IDH 1/2
mutation, MGMT promoter methylation status, TERT promoter
mutations, B-Raf proto-oncogene (BRAF) mutations, ATRX
mutations, EGFR mutations, and 1p/19q codeletion (Smith
et al., 2000; Liu et al., 2012; Chan et al., 2015; Bell et al., 2018).
However, those biomarkers only present limited values in
predicting survival of GBM patients in clinical applications.
Thus, it is indispensable to explore the underlying molecular
mechanisms and investigate prognostic biomarkers and
therapeutic targets for GBM.

Epigenetic modifications have been reported to play an
important role in the development and progression of multiple

Abbreviations: ANKRD10, ankyrin repeat domain 10; ATRX, X-linked alpha
thalassemia mental retardation syndrome gene; AUC, area under the curve;
BMP2, bone morphogenetic protein 2; BP, biological process; BRAF, B-Raf;
BSAS, bisulfite amplicon sequencing; CC, cellular component; CDF, cumulative
distribution function; CGGA, chinese glioma genome atlas; CI, confidence interval;
C-index, concordance index; DAC, 5-aza-2′-deoxycytidine; DAVID, database for
annotation, visualization and integrated discovery; DCA, decision curve analysis;
DEG, differentially expressed gene; DMSO, dimethyl sulfoxide; EGFR, epidermal
growth factor receptor; ERK, extracellular signal-regulated kinase; FC, fold change;
FDR, false discovery rate; GBM, glioblastoma; GO, gene ontology; GSEA, gene set
enrichment analysis; HR, hazard ratio; ICB, immune checkpoint blockade; IDH,
isocitrate dehydrogenase; IGP, In-group proportion; KEGG, kyoto encyclopedia
of genes and genomes; K-M, kaplan-Meier; KPS, karnofsky performance score;
LASSO, least absolute shrinkage and selection operator; LOXL1, lysyl oxidase Like
1; LOXL1-AS1, lysyl oxidase like 1 antisense RNA 1.; MDG, methylation-driven
gene; MEM, minimum essential medium; MF, molecular function; MGMT, O6-
methylgaunine-DNA-methyltransferase; OS, overall survival; qPCR, quantitative
real-time polymerase chain reaction; ROC, receiver operating characteristic;
RPL39L, ribosomal protein L39 Like; SubMap, subclass mapping; TCGA, the
cancer genome atlas; TERT, telomerase reverse transcriptase; TIDE, tumor
immune dysfunction and exclusion; TMEM52, transmembrane protein 52; TSS,
transcriptional start site; VILL, villin like.

cancers (Wilting and Dannenberg, 2012). DNA methylation,
one of the major components of epigenetic modification, is
a crucial signaling tool that modulates genomic functions,
especially regulation of the expression of oncogenes and tumor
suppressor genes (Wilting and Dannenberg, 2012). Aberrant
DNA methylation of the MDGs, including hypomethylation of
oncogenes and hypermethylation of tumor suppressors, is a
crucial process contributing to the oncogenesis and progression
of multiple cancers, especially GBM (Kulis and Esteller, 2010;
Wilting and Dannenberg, 2012; Aoki and Natsume, 2019).
Recent studies have investigated various DNA methylation
events in the pathogenesis, recurrence, and drug resistance of
GBM (Klughammer et al., 2018; Aoki and Natsume, 2019).
DNA methylation was also reported to provide a new option
for early diagnosis and treatment of GBM (Gusyatiner and
Hegi, 2018; Klughammer et al., 2018; Aoki and Natsume,
2019). However, previous studies mainly focused on single
DNA methylation events, whereas global DNA methylation
patterns with multiple MDGs have not been developed before
for GBM. Global DNA methylation patterns may become
a novel standard, replacing the conventional World Health
Organization (WHO) grading system based on histological
diagnosis due to its notable value in early diagnosis, subgroup
classification, risk stratification, and prognosis prediction for
GBM (Gusyatiner and Hegi, 2018; Klughammer et al., 2018;
Aoki and Natsume, 2019).

In the present study, by performing a combined multiomic
analysis based on transcriptomic and DNA methylation patterns,
we first identified the aberrantly methylated and differentially
expressed DNA MDGs by using the MethylMix algorithm.
We developed and validated a novel MDG-based molecular
classification of GBM, which was associated with prognosis
and immunotherapy response. Then, an MDG-based risk score
model was constructed and validated to predict the prognosis
and serve as potential therapeutic targets for GBM. Finally, a
novel promising prognostic nomogram with favorable predictive
performance was constructed and validated based on the
MDG signature and multiple clinicopathological parameters.
Finally, in vitro BSAS and qPCR analysis were performed to
validate the associations between promoter region methylations
and expressions of the MDGs in GBM cell lines. Our study
aimed to facilitate individualized survival prediction and better
treatment options for both physicians and GBM patients
according to the DNA methylation and transcriptomic patterns
constructed in this study.
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MATERIALS AND METHODS

Data Acquisition and Processing
The DNA methylation data, level-three RNA sequencing data
and corresponding clinical information of primary GBM patients
were downloaded from TCGA1. The DNA methylation profiles
included profiles of 10 normal and 448 tumor samples, and
the gene expression profiles included profiles of 5 normal
and 155 tumor samples. One hundred thirty-five samples
were represented in both the DNA methylation data and the
paired RNA sequencing data. The level-three RNA sequencing
data and corresponding clinical information of the validation
cohort, which included 216 GBM patients, were downloaded
from the CGGA2 database. All patients without prognostic
information were excluded. Ethics committee approval for this
study was not necessary because the data were obtained from
the TCGA and CGGA.

Identification of Differentially Expressed
Genes in GBM
The DEGs between GBM and normal samples of TCGA were
screened using edgeR in R 3.5.1 (Robinson et al., 2010).
Adjusted P (adj. P) values were calculated using the default
Benjamini-Hochberg FDR method to reduce the false-positive
rate. Adj. P < 0.01 and |Log2[fold change (FC)]| > 1
were considered as the cutoff criteria for identifying DEGs
(Wang et al., 2019).

Identification of DNA Methylation-Driven
Genes and Enrichment Analyses
The MethylMix package in R 3.5.1 was used to perform a
comprehensive analysis integrating DNA methylation data and
gene expression data (Cedoz et al., 2018). First, the aberrantly
methylated genes, which were based on the DEGs, between 448
GBM and 10 normal samples were screened by the LIMMA
package (Wettenhall and Smyth, 2004). Second, the correlations
between the methylation data and paired gene expression data
of 135 GBM patients were assessed. The genes with a correlation
coefficient <−0.3 and P value < 0.05 were chosen for further
analysis. Then, the β mixture models were constructed to
determine the disease-specific methylation status of multiple
genes. Finally, considering the large disparity in sample size
between the normal and tumor groups, independent sample
t-test was performed and P < 0.05 were used to determine the
MDGs. The aberrantly methylated and differentially expressed
MDGs were then determined by the above-mentioned 4 steps
(Cedoz et al., 2018).

The DAVID3 was employed to perform functional and
pathway enrichment analysis of the MDGs (Huang et al.,
2009). Gene ontology analysis, including analyses of the BP,
CC and MF categories, was used for functional annotation,
and KEGG analysis was used for pathway enrichment analysis

1https://portal.gdc.cancer.gov/
2http://www.cgga.org.cn
3http://david.ncifcrf.gov/

(Ashburner et al., 2000; Kanehisa et al., 2017). A P value < 0.05
was considered statistically significant.

Unsupervised Consensus Clustering of
GBM Patients Based on the MDGs
Unsupervised consensus clustering, a k-means machine learning
algorithm, was applied to explore a novel molecular classification
of GBM patients based on the expression patterns of the
MDGs using the “ConsensusClusterPlus” package. The clustering
procedure was performed with 1000 iterations by sampling 80%
of the data in each iteration. The optimal number of clusters was
determined by the relative change in the area under the CDF
curves of the consensus score and consensus heatmap. Then, the
cluster quality measures called the IGP were applied to verify
the similarities between different clusters in other independent
datasets by using the “clusterRepro” package. Next, K-M survival
analysis was performed to evaluate the prognosis of patients
in different clusters. Comparisons of the clinicopathological
variables between clusters were also performed to explore the
associations between the MDG-based molecular classification
and clinical features of GBM patients.

Prediction of the Immunotherapy
Responses of GBM Patients
The TIDE4 model is a computational method that integrates the
expression signatures of T cell dysfunction and T cell exclusion
to model tumor immune evasion (Jiang et al., 2018). The clinical
response of ICB was predicted by the TIDE algorithm based
on pretreatment tumor profiles. Then, an unsupervised method
(SubMap5) was applied to predict the ICB response of the
GBM patients in different MDG-based molecular subgroups
(Hoshida et al., 2007).

Construction and Validation of the
MDG-Based Prognostic Risk Score
Model
Univariate Cox regression analysis was performed to identify
the associations between the expression of MDGs and patient
OS in the TCGA training cohort. Prognosis-related genes with
a P value < 0.05 were further screened by the LASSO and
multivariate Cox regression analysis. Then, the prognostic risk
score model based on the MDGs was constructed to predict
patient OS. The risk score model was established with the
following formula: risk score = Exp (Gene1) × β1 + Exp
(Gene2) × β2 + · · · + Exp (Genen) × βn, where Exp represents
the expression level of the gene, and β represents the regression
coefficient of each MDG calculated by the multivariate Cox
regression analysis (Wang et al., 2019). A prognostic risk score
for each patient was calculated according to the formula. The
TCGA GBM patients were stratified into low-risk (low risk
score) and high-risk (high risk score) groups according to the
median value of their risk scores. Then, K-M survival curve
analysis using the survival package was performed to estimate

4http://tide.dfci.harvard.edu/
5https://cloud.genepattern.org/gp/
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the prognosis of patients with high and low risk scores, and the
survival differences between the high-risk and low-risk patients
were evaluated by the two-sided log-rank test. The predictive
accuracy/prognostic performance of the MDG-based prognostic
model within 0.5, 1 and 3 years was evaluated by the Harrell’s
C-index and time-dependent ROC curve analysis with the
survcomp and survivalROC packages in R (Harrell et al., 1996;
Alba et al., 2017). Both the C-index and AUC range from 0.5 to
1, with 1 indicating perfect discrimination and 0.5 indicating no
discrimination. The prognostic model constructed by the TCGA
training cohort was then validated in the CGGA GBM cohort in
a similar manner.

Univariate and multivariate Cox regression analyses were
performed with the TCGA training set and CGGA validation
set, respectively, to determine whether the predictive power of
the MDG-based prognostic risk score model was independent of
other clinicopathological variables, including age, sex, new event,
KPS, pharmacotherapy, radiotherapy, surgery, IDH mutation
status, MGMT promoter status, TERT mutation status, BRAF
mutation status, ATRX mutation status, EGFR mutation status,
and 1p/19q status.

Construction and Validation of the
Prognostic Nomogram With the MDG
Signature
All of the independent prognostic factors identified by the
univariate and subsequent multivariate Cox regression analysis
were used to establish a prognostic nomogram to evaluate
the probability of 0. 5-, 1−, and 3−year survival for TCGA
GBM patients using the rms package6 in R (Qian et al.,
2018). The Schoenfeld Residuals Test was used to investigate
the independence of residuals and time, and thereby to test
the proportional hazard (PH) assumption in the Cox model.
Only P > 0.05 can satisfy the PH assumption and the results
of the Cox regression model are meaningful and reliable.
The discrimination performance of the nomogram regarding
prognosis was quantitatively assessed by the C-index and ROC
curve analysis (Harrell et al., 1996). Calibration plots at 0.5, 1, and
3 years were also employed to visually evaluate the discriminative
ability of the nomogram (Alba et al., 2017). In addition, DCA
was performed to determine the clinical usefulness of the
nomogram by quantifying the net benefits at different threshold
probabilities in the GBM patients (Goeman, 2010). The best
prediction model commonly has a high net benefit as calculated
within the favorable probability. The prognostic nomogram was
externally validated in the CGGA GBM cohort. All analyses were
conducted using R version 3.5.1, and a P value < 0.05 was
considered statistically significant. HRs and 95% CIs are reported
where appropriate.

Integrated Survival Analyses Based on
the Expression and Methylation of MDGs
According to the median values of gene expression and
DNA methylation level of MDGs, patients were divided into

6https://cran.r-project.org/web/packages/rms/

high-expression and low-expression groups and into high-
methylation and low-methylation groups. Then, K-M survival
analyses were performed to evaluate the associations between the
expression levels or DNA methylation levels of the prognosis-
related MDGs and OS. In addition, we performed integrated
survival analyses based on the gene expression and methylation
levels of MDGs to assess the survival differences between low-
expression patients with high methylation and high-expression
patients with low methylation.

Gene Set Enrichment Analysis
Setting the expression level of a single gene as the population
phenotype, GSEA7 was performed to identify related pathways
and molecular mechanisms of the MDGs enrolled in the
prognostic model of GBM patients (Subramanian et al., 2005).
A nominal P value < 0.05 of the enrichment gene sets was
considered statistically significant.

Cell Culture and 5-aza-2′-Deoxycytidine
(DAC) Treatment
The GBM cell line U251 was preserved in our institute (Chinese
Academy of Medical Sciences and Peking Union Medical College,
Beijing, China) and was cultured in (MEM, Gibco) supplemented
with 10% fetal bovine serum and 1% penicillin/streptomycin.
U251 cells in culture were treated with 5 µM/L DAC (Sigma-
Aldrich) for 120 h, and the medium was changed every day
due to its instability. For experiments involving DAC treatment,
DMSO was utilized as the control treatment. The cells were
harvested (120 h after starting the culture) for extraction of
genomic DNA and total RNA for analysis of DNA methylation
and gene expression.

Bisulfite Amplicon Sequencing
Genomic DNA was prepared by the proteinase K method. BSAS
was performed as described in the literature (Masser et al., 2015).
Prediction of CpG islands in promoter regions and design of
BSAS primers were performed using MethPrimer 2.0 software8

according to the genomic sequence around the TSS. Three pairs
of primers were predicted and selected for each gene to perform
BSAS. The BSAS primers are listed in Supplementary Table 1.
The site relative to TSS and the corresponding chromosomal
location of the CpGs located in the promoter region are listed
in Supplementary Table 2. Then, the MethylKIT package in R
3.5.1 was used to analyze the methylation data and calculate
the average methylation level at all CpG sites. The overall
methylation level of each gene was calculated by the average
value of the methylation levels of all the CpG sites located in the
promoter region.

Quantitative Real-Time Polymerase
Chain Reaction
The primers used for PCR amplification are listed in
Supplementary Table 1. Total RNA was extracted using

7http://software.broadinstitute.org/gsea/index.jsp
8http://www.urogene.org/cgi-bin/methprimer2/MethPrimer.cgi/
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TRIzol reagent (TAKARA). The cDNA reverse transcription
kit (TOYOBO) was used to reverse-transcribe RNA, and the
SYBR Green PCR Kit (Applied Biosystems) was utilized to
amplify the resulting cDNA. The samples were detected by the
Applied Biosystems StepOne Real-Time PCR System. GAPDH
mRNA levels were quantified as a reference control, and all
samples were run in triplicate. Relative mRNA expression levels
of the MDGs were determined using the 2−11Ct method,
and the FC was normalized against the mRNA levels of the
GAPDH gene.

RESULTS

Identification of DEGs in GBM
A total of 13,625 DEGs, including 6,565 upregulated and 7,060
downregulated genes, were identified between GBM and normal
samples in the TCGA GBM dataset, which were selected for
further analysis.

Identification of MDGs and Enrichment
Analyses
Following the MethylMix algorithm and independent sample
t-test analysis, we identified a total of 199 aberrantly methylated
and differentially expressed MDGs (Supplementary Table 3).
Most of these MDGs (146/199, 73.4%) were highly methylated;
only 53 (26.7%) genes were lowly methylated (Figure 1). The β

mixture models and correlation plots of the representative MDGs
are displayed in Figure 1.

Then, enrichment analyses were performed to explore the
molecular mechanisms of MDGs in the development and
progression of GBM. In the BP category, the MDGs were
significantly enriched in signal transduction, cell communication
and energy pathways (Figure 1M). In the CC category,
the MDGs were significantly enriched in the cytoplasm,
nucleus, plasma membrane and exosomes (Figure 1N). In the
MF category, the high-methylated MDGs were significantly
enriched in RNA binding and methyltransferase activity, whereas
the low-methylated genes were enriched in DNA binding
and transcription factor activity (Figure 1O). In addition,
KEGG pathway analysis revealed that the high-methylated
MDGs were mainly enriched in integrin family cell surface
interactions, mTOR signaling pathway, and apoptosis, whereas
the low-methylated genes were enriched in integrin family
cell surface interactions and the VEGF and VEGFR signaling
network (Figure 1P).

MDG-Based Molecular Classification of
GBM Patients and Associations With
Prognosis and Clinical Patterns
To explore a novel molecular classification of GBM based on
the expression patterns of the MDGs, unsupervised consensus
clustering was performed on the 151 TCGA GBM patients.
According to the relative change in the area under the CDF
curve and consensus heatmap, the optimal number of clusters
was determined as two (k value = 2), and no appreciable increase

was observed in the area under the CDF curve (Figures 2A–C).
Then, all 151 patients were divided into two subgroups, including
124 (82.1%) patients in Cluster 1 and 27 (17.9%) in Cluster 2.
K-M survival analysis demonstrated that patients in Cluster 1
showed significantly worse OS than those in Cluster 2 (log-rank
P = 2.078 × 10−2; Figure 2D). Then, the same method was
applied to validate the molecular classification in the CGGA GBM
patients. As shown in Figures 2F–H, the optimal number of
clusters was again determined as two (k value = 2), and the 350
GBM patients were divided into Cluster 1 (258 patients, 73.7%)
and Cluster 2 (92 patients, 26.3%). The patients in Cluster 1 again
showed significantly worse OS than those in Cluster 2 (log-rank
P = 1.851 × 10−2; Figure 2I). Subgroup analysis demonstrated
that when stratifying patients by age, sex, IDH mutation status,
and other clinical variables, Cluster 1 patients had worse survival
than Cluster 2 (HR > 1 and P < 0.05; Supplementary Figure 2).
Then, the cluster quality measure was applied to verify the
similarities between the different subgroups. The IGP score of
TCGA Cluster 1 was 0.811 and that of TCGA Cluster 2 was 0.198
(P < 0.001), whereas the IGP score of CGGA Cluster 1 was 0.832
and that of CGGA Cluster 2 was 0.144 (P < 0.001). There was
no significant difference between TCGA Cluster 1 and CGGA
Cluster 1 (P = 0.831) or between TCGA Cluster 2 and CGGA
Cluster 2 (P = 0.998).

Finally, we also analyzed the expression patterns of the MDGs
and compared the clinicopathological variables between two
clusters of GBM patients. The expression patterns of the GBM-
specific MDGs were visualized in heat maps, which are shown
in Figure 2E (TCGA) and Figure 2J (CGGA). Generally, the
expression levels of most MDGs in Cluster 1 were significantly
upregulated compared with those in Cluster 2 in both the TCGA
and CGGA GBM cohorts, which indicated that an increase
in the expression levels of the MDGs may be correlated with
poor prognosis. The comparisons of the clinicopathological
variables between two clusters of GBM patients are shown
in Supplementary Figure 1. Compared with Cluster 2, the
patients in Cluster 1 were significantly older in both the TCGA
(P = 0.013) and CGGA cohort (P = 0.009). Additionally, more
1p/19q codeletions were observed in Cluster 1 patients in the
CGGA cohort (P = 0.018). However, no significant difference
in the other clinicopathological factors was observed between
the two clusters (all P > 0.05). Overall, the patients in the
Cluster 1 subgroup, with high MDG expression patterns and
older age, commonly exhibited a poor prognosis. These findings
demonstrated that our novel MDG-based molecular classification
of GBM was robust and reliable in different populations, and
different survival outcomes and clinicopathological parameters
can be clearly discriminated.

Predictions of Immunotherapy Response
of the GBM Patients
The immune checkpoint molecules, including PDCD1 (PD1),
CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4, CD80, and CD86,
were all significantly highly expressed in Cluster 1 patients in
both the TCGA (Figure 3A) and CGGA cohorts (Figure 3C).
The TIDE algorithm was applied to predict the likelihood of
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FIGURE 1 | Overview of the DNA methylation-driven genes (MDGs) identified by MethylMix analysis. (A,C,E,G,I,K) The β mixture models of the representative six
MDGs. The distribution of methylation status among GBM samples is shown by the histogram. The distribution of methylation status among normal samples is
shown by the black line. (B,D,F,H,J,L) Correlation plots of the methylation and expression levels of the representative six MDGs. Biological process (M), cellular
component (N), and molecular function (O) terms and KEGG pathways (P) enriched in the 199 MDGs.

immunotherapy response of each MDG-based molecular cluster
of GBM patients. In the TCGA training cohort, Cluster 1 (33.9%,
42/124) patients were more likely to respond to immunotherapy
than Cluster 2 (18.5%, 5/27) patients (P < 0.001). Similarly, in the
CGGA validation cohort, Cluster 1 (31.7%, 91/287) patients were
also more sensitive to immunotherapy than Cluster 2 (15.9%,
10/63) patients (P < 0.001). Then, SubMap analysis was further
used to predict the likelihood of a clinical response to anti-
PD1 and anti-CTLA4 therapy in the two clusters (Figure 3).
SubMap analysis demonstrated that compared with Cluster 2
GBM patients, Cluster 1 patients in both the TCGA and CGGA
cohorts were more sensitive to CTLA4 and PD1 inhibitors
(Figures 3B,D).

Construction and Validation of the
MDG-Based Prognostic Risk Score
Model (MDG Signature)
By performing the univariate Cox regression analysis on the 199
candidate genes in the TCGA GBM cohort, we identified 29
prognosis-related MDGs. Then, 10 out of 29 MDGs were further

screened by the LASSO regression analysis (Supplementary
Figure 3). Subsequently, six MDGs were finally selected by the
multivariate Cox analysis as the significant prognostic genes,
including (ANKRD10, HR = 0.53), (BMP2, HR = 0.52), (LOXL1,
HR = 1.81), (RPL39L, HR = 1.72), (TMEM52, HR = 1.34),
and (VILL, HR = 2.13). The expression levels of the 6 MDGs
between GBM and normal tissues were further validated in the
GEPIA database (163 tumor samples and 207 normal cerebral
samples), which revealed that all the 6 MDGs were expressed
at low levels in the GBM samples (Supplementary Figure 4).
Notably, all the 6 MDGs were significantly highly methylated in
the GBM samples compared with the normal cerebral samples
(Supplementary Figure 4).

Afterward, the MDG-based prognostic risk score
model was established with the following formula: risk
score = ExpANKRD10 × (−0.628) + ExpBMP2 × (−0.644) +
ExpLOXL1 × 0.595+ ExpRPL39L × 0.544+ ExpTMEM52 × 0.291+
ExpVILL × 0.754 (Supplementary Figure 3C). Then, we
calculated the risk score for each patient in the TCGA training
cohort. All patients were divided into high-risk (high risk score)
and low-risk (low risk score) groups using the median value of
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FIGURE 2 | Identification and validation of an MDG-based molecular classification of GBM patients using the unsupervised consensus clustering algorithm.
Consensus clustering matrix for k = 2, which was the optimal cluster number in both the TCGA training cohort (A) and CGGA validation cohort (F). Cumulative
distribution function (CDF) curves of the consensus score (k = 2–9) in the TCGA (B) and CGGA cohorts (G). The relative change in the area under the CDF curve
(k = 2–9) in the TCGA (C) and CGGA cohorts (H). Kaplan-Meier survival analyses of the patients in the Cluster 1 and Cluster 2 subgroups in the TCGA (D) and
CGGA cohorts (I), which indicated that the patients in Cluster 1 had poorer OS than those in Cluster 2. The heatmap and clinicopathological features of the two
clusters based on the expression patterns of the MDGs in the TCGA (E) and CGGA cohorts (J).

the risk score as the cutoff (Figure 4C). K-M survival analysis
indicated that patients with high risk scores demonstrated
significantly poorer OS than patients with low risk scores
(logrank P = 3.338 × 10−6; Figure 4A). The C-index of the
MDG-based prognostic model for OS prediction was 0.802
(95% CI, 0.763 to 0.841; P = 4.33 × 10−21). Additionally,
by performing the time-dependent ROC analysis, the MDG
signature also showed favorable values in predicting 0. 5-,
1-, 3- and 5-year OS rates, with respective AUC values of
0.755, 0.757, 0.864 and 0.911 in the TCGA GBM training
set (Figure 4B).

Finally, to evaluate whether the MDG-based prognostic model
had similar predictive performances in different populations,
we applied it to predict OS in an independent external
validation cohort in a similar manner. According to the risk
score model, the 216 GBM patients from CGGA dataset

were divided into high-risk and low-risk groups (Figure 4F).
The OS of patients with high risk scores was significantly
poorer than that of those with low risk scores (logrank
P = 1.775 × 10−5; Figure 4D). The MDG signature also showed
a favorable predictive ability of the 0. 5-, 1-, 3- and 5-year
OS rates, with AUC values of 0.705, 0.748, 0.740 and 0.721,
respectively, in the CGGA validation set (Figure 4E). These
results demonstrated that the MDG signature may serve as a
robust and reliable prognostic predictor for GBM patients from
different populations.

Determination of the MDG Signature as
an Independent Prognostic Factor
Table 1 shows the demographics and clinicopathological
characteristics of GBM patients with high and low risk scores
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FIGURE 3 | The expressions of immune checkpoint molecules and predictions of immunotherapy response of the GBM patients in two MDG-based molecular
subgroups. The expressions of immune checkpoint molecules were significantly higher in Cluster 1 patients than in Cluster 2 patients in both the TCGA (A) and
CGGA (C) cohort. Subclass mapping analysis of the TCGA (B) and CGGA (D) GBM patients for predicting the likelihood of clinical response to anti-PD1 and
anti-CTLA4 therapy in two clusters. R, immunotherapy respondent.

FIGURE 4 | Survival analysis, prognostic performance and risk score analysis of the MDG-based risk score model in GBM. K-M survival analysis was performed to
estimate the prognosis of patients with high risk scores and low risk scores in the TCGA training cohort (A) and CGGA validation cohort (D). The high-risk groups
had significantly poorer OS than the low-risk groups. The prognostic performances of the MDG signature demonstrated by the time-dependent ROC curve for
predicting the 0. 5-, 1-, 2-, 3-, and 5-year OS rates in the TCGA training cohort (B) and CGGA validation cohort (E). Risk score analysis of the MDG signature in the
TCGA training cohort (C) and CGGA validation cohort (F). Upper panel: Patient survival status and time distributed by risk score. Middle panel: Risk score curves of
the MDG signature. Bottom panel: Heat maps of the expressions of the 6 MDGs in the GBM samples. The colors from green to red indicate the expression level
from low to high.
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in the TCGA training cohort and CGGA validation cohort
based on the MDG signature. Univariate and multivariate
Cox regression analyses were performed to evaluate the
prognostic significance of the MDG signature independent
of other clinicopathological parameters (Table 2). In the
TCGA training cohort, univariate Cox regression analysis
demonstrated that age (P = 1.98 × 10−4), new event
(P = 2.81 × 10−3), pharmacotherapy (P = 6.97 × 10−5),
radiotherapy (P = 1.04 × 10−3), IDH mutation status
(P = 8.91 × 10−3), MGMT promoter methylation status
(P = 6.84 × 10−3), ATRX mutation status (P = 4.28 × 10−2),
and MDG signature (P = 6.27 × 10−6) significantly correlated
with prognosis (Table 2). Then, the significant survival-
associated parameters were enrolled in the multivariate analysis,
which indicated that age (P = 1.56 × 10−2), new event
(P = 4.31 × 10−2), pharmacotherapy (P = 2.04 × 10−2),
radiotherapy (P = 4.78 × 10−3), IDH mutation status
(P = 3.42 × 10−2), MGMT promoter methylation status
(P = 1.39 × 10−2), and MDG signature (P = 1.25 × 10−4)
were significantly associated with OS (Table 2). Additionally,
following the univariate and multivariate Cox regression
analyses, MDG signature was also proven to be an
independent prognostic predictor in the CGGA validation
set (Table 2). Therefore, the MDG-based prediction
model constructed by the TCGA training set may serve
as an independent prognostic factor for GBM patients in
different populations.

Construction and Validation of the
Nomogram
To generate a clinically applicable model for individual OS
prediction, we successfully constructed a prognostic nomogram
to predict the probability of 0. 5-, 1−, and 3−year survival
of GBM patients. Firstly, 6 independent prognostic factors,
including age, new event, pharmacotherapy, radiotherapy, IDH
mutation status, and MGMT promoter methylation status
were used to construct a prediction model as the reference
model. Then, 7 independent prognostic factors, including 6
clinical variables and MDG signature, were enrolled into the
final prediction model (Figure 5A). The Schoenfeld Residuals
Test demonstrated P > 0.05 for all the clinical variables
and combined model, and thereby PH assumption can be
satisfied and Cox regression analysis was reliable as a result
(Supplementary Figure 5). The C-index of the nomogram
was 0.855 (95% CI, 0.816 to 0.894; P = 8.71 × 10−30).
The calibration plots showed excellent agreement between
the predicted 0. 5-, 1- and 3-year survival rates and actual
observations in the TCGA cohort (Figures 5B–D). ROC curve
analysis indicated favorable predictive abilities of 0. 5-, 1-
and 3-year OS rates, with AUC values of 0.887, 0.841 and
0.913, respectively (Figures 5H–J). In addition, DCA curve
analysis was used to determine the clinical usefulness of the
prognostic nomogram, which showed the best net benefit at
0.5, 1, and 3 years compared with other prognostic models
(Figures 5K–M). ROC and DCA analyses demonstrated that the
discrimination performance of the nomogram was significantly

better than that of the other prognostic models constructed
by a single factor and the reference model with only clinical
variables (Figures 5H–J). All the above-mentioned findings
suggested the appreciable reliability of the prognostic nomogram
constructed by the TCGA training set. In addition, in the CGGA
external validation cohort, the C-index of the nomogram for
predicting the survival of 216 GBM patients was 0.776 (95%
CI, 0.737 to 0.815; P = 3.31 × 10−15). The calibration plots
also indicated excellent agreement between survival prediction
and actual observation in the probabilities of 0. 5-, 1- and 3-
year OS in the CGGA cohort (Figures 5E–G). The nomogram
achieved an AUC of 0.791, 0.752, and 0.833 for 0. 5-, 1-,
and 3-year OS, respectively, in the CGGA validation cohort
(Supplementary Figure 6).

Integrated Survival Analyses Based on
the Expression and Methylation of the
Six MDGs
To further explore the prognostic values of the 6 MDGs
enrolled in the prediction model, K-M survival analyses
were performed to assess the associations between the gene
expression/DNA methylation levels and OS. The ANKRD10 and
BMP2 high expression group and LOXL1, RPL39L, TMEM52
and VILL low expression group had a better prognosis
(Figure 6). In addition, the ANKRD10 and BMP2 low-
methylation group and LOXL1, RPL39L, TMEM52 and VILL
high-rmethylation group had a better prognosis (Figure 6).
Finally, the integrated survival analyses were performed, and the
results demonstrated that the low methylation/high expression
survival rates of ANKRD10 and BMP2 were significantly higher,
whereas the high methylation/low expression survival rates of
LOXL1, RPL39L, TMEM52 and VILL were significantly higher
(Figure 6; Supplementary Table 4). These findings suggested
that the 6 MDGs all exhibited excellent prognostic values in
discriminating GBM patients based on the gene expression and
DNA methylation.

GSEA of the Six MDGs
GSEA revealed that high expressions of the 6 MDGs that
were significantly enriched in the KEGG pathways were related
to the development, progression and metastasis of tumors,
including pathways in cancer, focal adhesion, cytokine-cytokine
receptor interaction, the chemokine signaling pathway, the
MAPK signaling pathway, and the JAK-STAT signaling pathway
(Figure 6). These findings strongly indicated the potential role
of the MDGs in the tumorigenesis and progression of GBM,
which may provide new evidence for cancer-targeted treatments
for GBM patients.

Validations of the Associations Between
Promoter Methylations and Expressions
of the Six MDGs
To validate whether the expression of the six MDGs was
indeed regulated by the promoter region methylation, BSAS and
qPCR were, respectively, performed to detect their methylation
and expression levels. As shown in Figure 1, there were
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TABLE 1 | Demographics and clinicopathological characteristics of GBM patients in the TCGA training cohort and CGGA validation cohort based on the DNA
methylation-driven gene (MDG) signature.

Variables TCGA cohort (training set) CGGA cohort (validation set)

Total (n = 151) Low risk (n = 76) High risk (n = 75) Total (n = 216) Low risk (n = 108) High risk (n = 108)

Age (years) 59.6 ± 13.7 57.7 ± 12.9 61.5 ± 14.3 48.8 ± 13.9 46.3 ± 14.1 50.2 ± 13.5

Sex

Female 53 23 30 86 50 36

Male 98 53 45 130 58 72

New event

No 64 28 36 85 40 49

Yes 87 48 39 131 68 59

KPS

<80 32 15 17 NA

≥80 81 44 37 NA

NA 38 17 21 NA

Pharmacotherapy

TMZ 64 31 33 40 (No) 18 22

TMZ + BEV 26 12 14 168 (Yes) 85 83

Others (No TMZ) 19 10 9 – – –

No or NA 42 23 19 8 (NA) 5 3

Radiotherapy

No 22 7 15 26 14 12

Yes 122 66 56 183 90 93

NA 7 3 4 7 4 3

Surgery

Biopsy only 16 9 7 NA

Tumor resection 135 67 68 NA

IDH status

Wildtype 147 68 75 182 78 104

Mutant 8 8 0 34 30 4

MGMT promoter status

Methylated 66 26 40 105 37 55

Unmethylated 85 50 35 111 71 53

TERT status

Wildtype 146 74 72 NA

Mutant 5 2 3 NA

BRAF status

Wildtype 146 75 71 NA

Mutant 5 1 4 NA

ATRX status

Wildtype 140 67 73 NA

Mutant 11 9 2 NA

EGFR status

Wildtype 97 48 49 NA

Mutant 54 28 26 NA

1p/19q status

Non-codeletion NA 185 104 81

Codeletion NA 5 4 1

NA NA 26 1 25

GBM, glioblastoma; MDG, DNA methylation-driven gene; NA, not available; KPS, Karnofsky performance score; TMZ, temozolomide; BEV, bevacizumab; PCV,
procarbazine lomustine vinCRISTine. “New event” included progression and recurrence. “Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other
drugs, including avastin, carmustine, and irinotecan.

strong negative correlations between methylation and mRNA
expression levels of the six MDGs. Thus, to assess whether the
changes in promoter methylation status were associated with

gene expression, we applied DAC, a demethylation agent, to
treat GBM cells in vitro. As shown in Figure 7, compared with
the DMSO control group, the methylation levels of the CpG
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TABLE 2 | Univariate and multivariate cox proportional hazards analysis of clinicopathological parameters and MDG signature of GBM patients in the TCGA training
cohort and CGGA validation cohort.

Variables TCGA cohort (training set) CGGA cohort (validation set)

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age 1.03 (1.01–1.04) 1.98e–04 1.05 (1.02–1.08) 1.56e–02 1.21 (1.19–1.26) 9.53e–03 1.34 (1.30–1.38) 2.33e–02

Sex 0.92 (0.63–1.34) 0.65 – – 1.29 (0.95–1.77) 0.11 – –

New event 0.56 (0.39–0.82) 2.81e–03 0.63 (0.41–0.98) 4.31e–02 0.79 (0.66–0.92) 1.88e–05 0.85 (0.77–0.93) 3.11e–02

KPS 0.93 (0.69–1.23) 0.59 – – NA NA

Pharmacotherapy 1.27 (1.13–1.42) 6.97e–05 1.16 (1.02–1.32) 2.04e–02 1.55 (1.16–1.94) 1.98e–03 1.49 (1.19–1.79) 3.51e–04

Radiotherapy 0.43 (0.26–0.71) 1.04e–03 0.48 (0.29–0.79) 4.78e–03 0.73 (0.53–0.93) 1.97e–03 0.77 (0.74–0.81) 1.88e–02

Surgery 0.93 (0.52–1.67) 0.82 – – NA NA

IDH status 0.26 (0.09–0.71) 8.91e–03 0.18 (0.04–0.88) 3.42e–02 0.77 (0.63–0.95) 1.23e–02 0.89 (0.86–0.92) 2.88e–02

MGMT promoter status 1.43 (1.13–1.73) 6.84e–03 1.37 (1.07–1.67) 1.39e–02 2.57 (2.04–4.54) 2.48e–05 1.49 (1.31–1.82) 4.21e–02

TERT status 0.91 (0.29–2.86) 0.87 – – NA NA

BRAF status 1.97 (0.72–5.41) 0.19 – – NA NA

ATRX status 0.43 (0.19–0.97) 4.28e–02 2.38 (0.63–9.01) 0.20 NA NA

EGFR status 1.27 (0.87–1.86) 0.21 – – NA NA

1p/19q status NA NA 0.77 (0.24–2.43) 0.65 – –

MDG signature 2.41 (1.64–3.53) 6.27e–06 1.92 (1.29–2.85) 1.25e–04 1.93 (1.42–2.63) 2.38e–05 1.94 (1.39–2.70) 9.05e–05

MDG, DNA methylation-driven gene; GBM, glioblastoma; HR, hazard ratio; CI, confidence interval; KPS, Karnofsky performance score. All statistical tests were two-sided.
Bold type means P < 0.05.

sites in each primer region of each MDG were mostly decreased
in the DAC treatment group, except for ANKRD10, which
demonstrated rather low methylation status in both the DAC
and DMSO groups. Generally, after combing all the CpG sites
located in the promoter region, the overall methylation levels of
the promoter were all significantly decreased after DAC treatment
(all P < 0.001), except for ANKRD10 (P = 0.066). In contrast,
remarkable restorations of gene expression were observed in all
six MDGs (all P < 0.001).

DISCUSSION

Epigenetic alterations have been widely reported to be crucial
components of the oncogenesis and progression of multiple
cancers (Kulis and Esteller, 2010; Wilting and Dannenberg,
2012). Aberrant DNA methylation could cause cell differentiation
disorders and transcriptional disorders, including decreased
expression of genes via high methylation and increased
expression via low methylation, and plays a key role in the
tumorigenesis, recurrence, and drug resistance of GBM (Baylin
and Jones, 2011; Klughammer et al., 2018; Aoki and Natsume,
2019). De Souza et al. (2018) reported a pronounced loss of
DNA methylation during the progression and recurrence of
glioma. Klughammer et al. (2018) reported subtle differences
between primary and recurrent GBM and links between DNA
methylation and the tumor microenvironment. In addition,
altered DNA methylation events could also act as a prognostic
predictor and therapeutic target for GBM. Hegi et al. (2005)
reported that GBM patients with MGMT promoter methylation
exhibited better OS and increased time to progression of

the disease after chemotherapy and/or radiotherapy. DNA
methylation targeted therapies were also reported to be applied
in some clinical and preclinical studies. A phase I study for
5-azacytidine, a DNA methylation inhibitor, is underway for
patients with GBM (Aoki and Natsume, 2019). Thus, DNA
methylation and MDGs can be widely used for early diagnosis,
risk stratification, prognosis prediction, and therapeutic targets
for GBM.

In the present study, a multiomic analysis based on
transcriptomic and DNA methylation profiles was performed
to develop global DNA methylation patterns, which has never
been realized in GBM before in the literature. First, we identified
199 aberrantly methylated and differentially expressed MDGs by
using the MethylMix algorithm. Pathway enrichment analysis
indicated that MDGs were mainly involved in cancer-related
pathways, which indicated that abnormal DNA methylation and
aberrant MDGs could play a vital role in the tumorigenesis and
progression of GBM. Then, we developed a novel molecular
classification of GBM patients based on the expression patterns
of MDGs, which was then validated by the CGGA cohort.
The patients in the Cluster 1 subgroup, with high expression
patterns of the MDGs and older age, commonly exhibited poor
prognosis. Our findings demonstrated that GBM patients from
different populations can be reliably classified into two subgroups
based on the 199 MDGs, and different survival outcomes and
clinicopathological patterns can be clearly discriminated by
our novel molecular classifications. TIDE and SubMap analysis
demonstrated that Cluster 1 patients were more sensitive to
anti-CTLA4 and anti-PD1 therapies. Thus, for those GBM
patients in Cluster 1 with a poor prognosis, immunotherapy
may be applied more aggressively and earlier to improve
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FIGURE 5 | Prognostic nomogram used to predict the 0. 5-, 1–, and 3–year survival probability of GBM patients. (A) Nomogram model used to predict the survival
of GBM patients based on the TCGA training cohort. Calibration plots of the nomogram for predicting survival at 0.5, 1, and 3 years in the TCGA training cohort
(B–D) and CGGA validation cohort (E–G). The actual survival is plotted on the y-axis; the nomogram-predicted probability is plotted on the x-axis. (H–J) The
prognostic performances of the nomogram demonstrated by the ROC curve for predicting the 0. 5-, 1–, and 3–year OS rate compared with other clinicopathological
factor-based prognostic models. (K–M) The clinical benefit and the scope of applications of the nomogram evaluated by the DCA curves at 0.5, 1, and 3 years. The
net benefit is plotted on the y-axis, and the threshold probabilities of patients having 1–, 3– and 5–year survival is plotted on the x-axis.

the prognosis of those patients more effectively. Compared
with the traditional molecular subtyping of GBM, dividing
patients into 4 subgroups based on the whole transcriptomic
data, the novel MDG-based subtyping was based on only
199 genes, and can well distinguish 2 groups with distinct
expression patterns, which is more convenient for its clinical
application. In addition, the MDG-based classification was
strongly correlated to OS and immunotherapy response, which
were unique advantages that traditional molecular classification
did not have. Then, univariate, LASSO and multivariate Cox
regression analysis were, respectively, applied to identify the
prognosis-associated MDGs. The integrated survival analyses
demonstrated that the 6 MDGs all exhibited excellent prognostic
values in discriminating low methylation/high expression groups
and high methylation/low expression groups in GBM. GSEA
also revealed that high expressions of the 6 MDGs were
significantly enriched in the KEGG pathways related to
the development, progression and metastasis of tumors. All
these findings strongly indicated the promising values of the
MDGs in survival prediction and cancer-targeted treatments
for GBM.

In addition, in vitro BSAS and qPCR analysis demonstrated
that the expression of the six MDGs was negatively regulated

by promoter region methylation in GBM cell lines. Our findings
validated that the six genes were driven by DNA methylation and
strongly suggested that these MDGs deserve further investigation
to clarify their potential roles in the development and progression
of GBM. ANKRD10 is a protein coding gene, which has not
been well studied in the literature. Ji et al. (2018) reported
that morin treatment resulted in anti-tumor activity in vitro
by downregulating the expression of ANKRD10 in tongue
squamous cell carcinoma cells. In our study, ANKRD10 was
highly expressed in GBM and acted as a favorable prognostic
factor. However, no other studies explored the roles of ANKRD10
and its methylation in the development of glioma. BMP2,
which encodes a secreted ligand of the transforming growth
factor-β (TGF-β) superfamily of proteins, is known to promote
differentiation and growth inhibition in GBM cells (Piccirillo
et al., 2006; Pistollato et al., 2009). Persano et al. (2012) reported
that BMP2 can increase GBM responsiveness to temozolomide
by downregulating the HIF-1α/MGMT axis and can serve as
a favorable predictor of survival, which is consistent with our
study. LOXL1, which encodes a matrix cross-linking enzyme,
has been identified as closely associated with the tumorigenesis
of multiple cancers, including non-small cell lung cancer, breast
cancer, and urological cancer (Jeong et al., 2018; Zeltz et al., 2019).
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FIGURE 6 | GSEA and integrated survival analyses based on the expression and methylation of the 6 MDGs in GBM patients. K-M survival analyses of ANKRD10
(A), BMP2 (C), LOXL1 (E), RPL39L (G), TMEM52 (I), and VILL (K). Left panel: Survival analyses based on the expression levels of the 6 MDGs. Middle panel:
Survival analyses based on the methylation levels of the 6 MDGs. Right panel: Integrated survival analyses based on gene expression and methylation of the 6 MDGs
to assess the survival differences between high methylation, low expression patients and low methylation, and high expression patients in the TCGA GBM cohort.
GSEA analyses of the 6 MDGs in the TCGA GBM cohort. Enriched KEGG pathways of the 6 MDGs are listed in the upper right. Exp, gene expression; Meth, DNA
methylation; NES, normalized enrichment score; p, nominal p-value.

Wu et al. (2007) demonstrated that LOXL1 is epigenetically
silenced by promoter hypermethylation and can inhibit the
Ras/ ERK signaling pathway in bladder cancers. In addition,
LOXL1 antisense RNA 1 (LOXL1-AS1) was reported to clinically
serve as a poor prognostic indicator and able to contribute
to aggressive behaviors related to the mesenchymal subtype of
GBM via the NF-κB signaling pathway (Wang et al., 2018).
RPL39L encodes a protein sharing high sequence similarity
with ribosomal protein L39. It was reported to show highly
specific tissue expression patterns in multiple tumors, such as
hepatocellular carcinoma (Wong et al., 2014). Devaney et al.
(2013) found that RPL39L methylation was associated with
inactivation of gene expression in prostate cancer cell lines.
TMEM52 encodes a transmembrane protein and is largely
modified by DNA methylation (Almeida et al., 2018). Both
RPL39L and TMEM52 served as unfavorable prognostic factors
in our study. However, no previous studies have investigated
the roles of RPL39L and TMEM52 in GBM. VILL encodes
proteins belonging to the villin/gelsolin family. Grzendowski
et al. (2010) reported that aberrant methylation of the 5′-CpG

islands contributed to epigenetic down-regulation of VILL in
1p/19q-deleted gliomas. Our study demonstrated that high
expression of VILL was associated with poor prognosis of GBM
patients, which has never been reported in previous studies.
Considering that methylation is potentially reversible, detection
of those aberrant methylated MDGs, including ANKRD10,
BMP2, LOXL1, RPL39L, TMEM52, and VILL, may become
potential molecular therapeutic targets for the treatment of GBM.
Therefore, corresponding drugs can be developed to prevent or
even reverse the tumorigenesis and progression of tumor cells by
correcting abnormal DNA methylation.

Then, a novel prognostic prediction model based on
the six MDGs was successfully constructed and validated
in separate patient populations. The MDG signature was
identified to be an independent prognostic factor compared with
other clinicopathological factors and demonstrated favorable
predictive value in discriminating high- and low-risk GBM
patients with significantly different survival outcomes. Thus,
the novel prognostic signature can be used for individualized
survival prediction and development of treatment strategies
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FIGURE 7 | The associations between promoter methylations and expressions of the six MDGs quantified by BSAS and qPCR. The methylation levels of the relative
CpG sites in 3 primer regions (Pair 1, 2, and 3) of each MDG in the DMSO and DAC groups, including ANKRD10 (A), BMP2 (D), LOXL1 (G), RPL39L (J), TMEM52
(M), and VILL (P). The green dots represent the DMSO control group, and the red dots represent the DAC treatment group. Asterisks (*) indicate P < 0.05. The
combined methylation levels of all CpG sites located in one primer region of the MDGs in the DMSO and DAC groups, including ANKRD10 (B), BMP2 (E), LOXL1
(H), RPL39L (K), TMEM52 (N), and VILL (Q). The green boxes represent the DMSO control group, and the red boxes represent the DAC treatment group. The
combined methylation levels of all CpG sites in the 3 primer regions (Left panel) and the relative expression levels (Right panel) of the six MDGs in the DMSO and
DAC groups, including ANKRD10 (C), BMP2 (F), LOXL1 (I), RPL39L (L), TMEM52 (O), and VILL (R).

for GBM patients. More aggressive treatments and closer
follow-ups should be applied in those patients with high
risk scores. Additionally, in this study, we found that most
of traditional molecular biomarkers were not independent
predictors for prognosis. Only IDH mutations and MGMT
promoter methylation status were determined as independent
predictors for OS, and they only showed poor predictive
value with AUC < 0.7, far less than the performances of the
MDG signature. Therefore, compared with those traditional
molecular biomarkers, the MDG-based prognostic models
were much more robust and reliable in predicting survival
of GBM patients.

Due to the intuitive visual presentation of the nomogram
model, it has been widely utilized to construct prediction
models for clinical practice (Harrell et al., 1996; Balachandran
et al., 2015). To the best of our knowledge, this is the
first prognostic nomogram with a global DNA methylation
signature that was constructed by large-scale GBM databases
with long-term follow-up. In this study, we constructed a
nomogram with age, new event, pharmacotherapy, radiotherapy,
IDH mutation status, MGMT promoter methylation status
and MDG signature. The calibration plots and ROC curves
demonstrated the excellent and reliable predictive performance
of the nomogram in both the TCGA training cohort and CGGA

validation cohort. In addition, following the evaluation of clinical
usefulness by DCA curves, our visualized scoring system showed
appreciable reliability in assisting physicians in developing
individualized prognostic prediction and treatment strategies,
which could facilitate better treatment decision-making and
follow−up scheduling.

In conclusion, by performing a combined multiomic analysis
based on transcriptomic and DNA methylation profiles, we
first identified the aberrantly methylated and differentially
expressed DNA MDGs by using the MethylMix algorithm. Then,
we developed and validated a novel MDG-based molecular
classification of GBM, which was associated with prognosis
and immunotherapy response. A reliable MDG-based risk score
model was further identified for risk stratification, survival
prediction, and therapeutic targets for GBM. Furthermore, a
novel promising prognostic nomogram with MDG signature,
age, new event, pharmacotherapy, radiotherapy, IDH mutation
status, and MGMT promoter methylation status was successfully
developed for individualized prognosis prediction to facilitate
the development of better treatment strategies and follow−up
scheduling. In vitro BSAS and qPCR analysis validated that
demethylation in general including the promoter regions of
MDGs would contribute to higher expression of the target
genes. Multicenter, large-scale clinical trials and prospective
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studies are needed to further validate the prognostic prediction
model in this study.
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