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Purpose: To evaluate the volumetric change of COVID-19 lesions in the lung of

patients receiving serial CT imaging for monitoring the evolution of the disease

and the response to treatment.

Materials and methods: A total of 48 patients, 28 males and 20 females,

who were confirmed to have COVID-19 infection and received chest CT

examination, were identified. The age range was 21–93 years old, with a mean

of 54 ± 18 years. Of them, 33 patients received the first follow-up (F/U) scan,

29 patients received the second F/U scan, and 11 patients received the third

F/U scan. The lesion region of interest (ROI) was manually outlined. A two-step

registration method, first using the A�ne alignment, followed by the non-rigid

Demons algorithm, was developed to match the lung areas on the baseline

and F/U images. The baseline lesion ROI was mapped to the F/U images using

the obtained geometric transformation matrix, and the radiologist outlined the

lesion ROI on F/U CT again.

Results: The median (interquartile range) lesion volume (cm3) was 30.9 (83.1)

at baseline CT exam, 18.3 (43.9) at first F/U, 7.6 (18.9) at second F/U, and 0.6

(19.1) at third F/U, which showed a significant trend of decrease with time.

The two-step registration could significantly decrease the mean squared error

(MSE) between baseline and F/U images with p < 0.001. The method could

match the lung areas and the large vessels inside the lung. When using the

mapped baseline ROIs as references, the second-look ROI drawing showed a

significantly increased volume, p < 0.05, presumably due to the consideration

of all the infected areas at baseline.

Conclusion: The results suggest that the registration method can be applied

to assist in the evaluation of longitudinal changes of COVID-19 lesions on

chest CT.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic,

caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), poses a great threat to global public health (1).

The number of people infected by COVID-19 is increasing

rapidly all over the world. To date, more than 260 million

confirmed cases have been reported, resulting in over five

million deaths (1). The original strain of SARS-CoV-2 was

identified at the end of 2019 in Wuhan, China. Since then, the

virus has been evolving continuously, and several variants have

emerged. As of 2022, five major variants of concern (VOC) have

been reported, including Alpha (B.1.1.7), Beta (B.1.351), Gamma

(P.1), Delta (B.1.617.2), and the latest Omicron (B.1.1.529) (2).

The earlier variants caused severe lung infections as a major

symptom, which could be examined by imaging using X-ray and

CT (3–6). Studies have reported that chest CT shows abnormal

imaging features in nearly all the patients with COVID-19,

thus it is a very sensitive diagnostic modality (7, 8). Therefore,

from the time of the initial outbreak in late 2019 to early

2020, before the PCR test became widely available, CT was

used as an alternative method for the diagnosis of COVID-19.

The possible pathological mechanism in the lung infection is

caused by diffuse alveolar damage and inflammatory exudation,

which is similar to histologic findings seen in SARS-CoV-2

pneumonia (9, 10). Since CT has a high spatial resolution, it

can be used to evaluate the morphology of lesions, the dynamic

changes during the disease, and the response to treatment. The

COVID-19 lesions were mainly located in the peripheral zone

and close to the pleura, presenting as ground-glass opacity

(GGO), consolidation, GGO mixed with consolidation, as well

as vascular enlargement, interlobular septal thickening, and air

bronchogram (11). The presence of GGOwith single or multiple

lesions suggests that the disease is in an early stage, while the

bilateral multifocal consolidation can be seen in an advanced

stage (12).

At the peak time of the global pandemics, many patients

had severe symptoms and needed urgent medical care, resulting

in high demand for hospital beds. Some patients died due

to the lack of timely medical attention. To predict the need

for medical resources, several studies have applied artificial

intelligence (AI) algorithms to analyze the features of the

COVID-19 lesions on CT. The results were combined with

the clinical factors to predict the progression of patients that

require more care, e.g., the need for mechanical ventilation

and the admission to intensive care unit (ICU) (13–16).

Although X-ray was not as sensitive as CT, it was also

used to build models and achieved good results (17–

20).

As the viruses evolved to Omicron, the disease has become

milder, mainly affecting the upper respiratory system (21). The

less severe symptoms of Omicron are in part due to the high rates

of vaccination, which is known to be the key to the suppression

of the viral load and the severe symptoms, e.g., pneumonia in

the lung (22). However, patients are still dying from COVID-

19 today. Lung pneumonia remains a major cause of death, and

CT imaging still plays a key role in the hospital care of severe

patients with COVID-19. Follow-up imaging can provide critical

information related to the progression of the infection and the

response to treatment.

Since CT can detect small areas of GGO (23), it is a

promising imaging tool for longitudinal monitoring of the

disease. Several studies have applied serial CT to assess the

evolution of the COVID-19 lesions during the disease (24–

26). Only qualitative evaluation was performed, e.g., by using

a scoring system of 0–5 in each of 5 lobes in the lung,

with a total score of 0–25. It was found that the peak lesion

happened around 10 days after the onset of the infection (27).

Segmentation methods may provide quantitative information

(28). Although some AI-based segmentation tools have been

developed (29–32), there are limited studies applying them

in serial CT for follow-up evaluations (33). This may be due

to the difficulty in the detection and precise segmentation

of COVID-19 infection on CT at different stages, due to

the high variation in texture, size, and position of infections

on many CT slices. Visual evaluation of changes between

two CT scans is subjective, and its validity may depend on

the radiologists’ experience, which is known to have a high

variation (34).

To address these limitations and provide a solution, the

purpose of this study is to develop a registration method

between the baseline and follow-up (F/U) CT images, so

the COVID-19 lesions can be compared in the co-registered

lung areas. The method includes two steps, first using the

Affine registration based on the body areas for alignment,

and then followed by the nonrigid registration based on the

segmented lung areas. Through the registration, the lesions

at all the locations in the follow-up examinations can be

objectively evaluated with the baseline lesions as references,

to facilitate the quantitative volumetric comparison. The

change in lesion volume at different follow-up times was

reported, and the segmented volumes without and with the

mapped baseline lesion as the reference were compared.

Methods

Subjects and computed tomography
protocol

A total of 48 patients (28 males and 20 females)

with COVID-19, who underwent chest CT in the radiology

department of The First Affiliated Hospital ofWenzhouMedical
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University from 24 January to 3 March 2020, were enrolled

in this retrospective study. The inclusion criteria were those

who had positive SARS-CoV-2 nucleic acid in double swab

tests (within 2 days, tested using real-time RT-PCR), without

confirmation of another viral infection. The age range was 21–93

years old, with a mean of 54± 18 years.

The baseline CT was performed after the patient was

admitted to the hospital, with the median [interquartile range

(IQR)] of 5 (7) days after showing fever or other infection

symptoms. Of them, 33 patients received the first F/U scan at

the median (IQR) of 6 (6) days after the baseline CT. 29 patients

received the second F/U scan at the median (IQR) of 5 (3) days

after the first F/U CT, and 11 patients received the third F/U scan

at the median (IQR) of 7 (2) days after the second F/U CT. All

the patients in this study recovered and were discharged from

the hospital.

This retrospective study was performed in accordance with

the principles of the Declaration of Helsinki and was approved

by the Ethics Committee in Clinical Research (ECCR) of the

First Affiliated Hospital of Wenzhou Medical University (No.

2020008). The need for obtaining written informed consent

from the patients was waived.

Computed tomography protocol and
COVID-19 lesion region of interest
drawing

Non-contrast chest CT examinations were performed using

a GE CT scanner (GE LightSpeed VCT 64-Slice, GE Healthcare,

USA). The patients were scanned in the supine position during

inspiratory breath-hold. The scanning range was from the apex

to the base of the lungs. The parameters were as follows: tube

voltage 120 kVp, tube current 50–350mA, pitch 1.375mm,

matrix 512× 512, and slice thickness 5mm. Reconstruction was

performed with a slice thickness of 1.25mm, a lung windowwith

a width of 1,500 Hounsfield units (HUs) and a level of−750 HU,

and a mediastinal window with a width of 350 HU and a level of

40 HU.

All the 48 patients showed positive lesions on CT. The

region of interest (ROI) of the pneumonia lesions was manually

outlined. The drawing was done by three radiologists using the

ImageJ software (https://imagej.nih.gov/ij/index.html) based on

the consensus through discussion and cross-check. The outlined

lesion areas included GGO, consolidation, or a mixture of GGO

and consolidation. The radiologist carefully traced the boundary

of all the infected areas on every CT slice containing the lesions

inside both the lungs. Then, the segmented ROI results were

examined by a senior radiologist with 9 years of experience

interpreting chest CT for verification, and if needed, further

modification was made. The total lesion volume in each patient

was calculated by summing the outlined areas on all the slices.

Lung segmentation and co-registration

The matching of the lung between two CT scans was

completed in two steps. The first step was to apply the Affine

registration using the whole-body area between the baseline

images and follow-up images. The second step was to fine-tune

the registration based on the segmented lung areas by using the

non-rigid Demons registration algorithm.

The first task in this process was to perform the lung

segmentation for each case. All the CT slices were combined

to obtain a three-dimensional (3D) volume. Then, the middle

slice in both the axial and coronal directions was determined.

On the middle slices, a threshold of HU was set to identify

the tissues (fat, muscle, heart, and bone) inside the body, and

the remaining low HU regions were the lung areas. With the

contour of the lung on the middle slices determined, the active

contour algorithms were applied to segment the lung areas

in the entire 3D volume. This technique, also called snakes,

is an iterative region-growing image segmentation algorithm

(35). Active contours can be defined as the process to obtain

deformable models or structures with constraints and forces

in an image for segmentation. The models describe the object

boundaries or other features of the image to form a parametric

curve or contour. Deformation is described by a collection of

points that defines the contour of the image, by minimizing the

energy function (35).

To complete the lung registration, the first step is to apply

the Affine registration between the baseline images and follow-

up images based on the entire body area. Then, the second

step is to fine-tune the registration results on the segmented

lung areas by using an intensity-based non-rigid registration,

the Demons algorithm. The method applies a diffusion process

to deform the lesion mask generated from the previous slice

to the current slice, based on the distribution of intensities

by iteratively minimizing the energy function, E, as shown

below (36):

E (u) = ‖F −M ◦ (T + u)‖2 + σn
2 |F −M|2 ‖u‖2

where M, the moving image, is the segmented slice with the

defined rectal mask that is to be deformed to segment F, the

adjacent fixed image slice through an image transformation

represented by the symbol ◦. For each iteration, the deformation

field, T, is updated such that T = T + u, where u is the update

factor and σn is the image noise ratio coefficient. Thus, the lung

mask for the unsegmented slices is obtained by applying the

correct transformation field to themask of themoving image,M,

on adjacent slices. The transformation field was found by solving

for u by minimizing the energy function and given by (37):

u =
(M ◦ T − F)∇F

[

|∇F|2 + (M ◦ T − F)2
]

This process stopped when u was sufficiently small (u < 10−3).
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FIGURE 1

Dynamic changes of CT imaging in a 66-year-old female patient. At each time point, three selected CT slices are shown. (A) The baseline CT is

taken approximately 3 days after the onset of infection. In the lateral and posterior basal segments of the right lower lung, increased

ground-glass density is noted, which also exhibits the reversed halo sign and crazy-paving pattern in the lesion. (B) The first F/U is taken 12 days

after the baseline CT. The lesion shows a higher density of consolidation change compared to the baseline. The overall infection area is

increased, but the arc-shaped clearance near the pleura is noted, which indicates the beginning of the absorption phase. (C) The second F/U is

taken 8 days after the first F/U. The lesion shows an obvious absorption, with smaller areas and a lower density.

FIGURE 2

The box plot of the lesion volume distribution at the baseline

and three follow-up CT examinations. The median (IQR) volume

(cm3) is 30.9 (83.1) at baseline, 18.3 (43.9) at first F/U, 7.6 (18.9)

at second F/U, and 0.6 (19.1) at third F/U. Only 11 patients have

the third F/U, so the paired comparison is only done for the

baseline, the first F/U, and the second F/U, all significantly

di�erent with p < 0.001.

For evaluating the registration performance, the

corresponding mean squared error (MSE) of the lung areas was

calculated as:

MSE =
1

N

∑

N

∥

∥Moving Image− Referece Image
∥

∥

2
2

where N is the total number of lung area voxels in one patient.

After registration, the lesion ROI on the baseline images was

mapped to the follow-up images using the estimated geometric

transformation matrix obtained from the registration, so the

change can be visually compared. Then, by using the mapped

baseline ROI as a reference, the radiologists performed the

second-look ROI drawing on the F/U CT, and the measured

lesion volumes were compared to those done in the first drawing.

Statistical analysis

The descriptive statistics were presented. Since the COVID-

19 lesion volume varied a lot among patients and was not

normally distributed, the median and the interquartile range

(IQR) were reported. For the change of the lesion volumes

at F/U compared to its corresponding baseline value, the
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FIGURE 3

An example from a 52-year-old female patient. (A) Baseline image. (B) The transformed baseline image to match the F/U after completing the

two-step A�ne and Demons algorithms. (C) The first F/U image. (D) Comparison between the transformed baseline image after the first-step

A�ne registration and the first F/U image by the overlay. When the signal intensity on F/U is higher than on B/L, the pixel is labeled using purple

color; when the intensity on F/U is lower than on B/L, it is labeled using green color. (E) Comparison between the final transformed baseline

image and the first F/U image. It can be seen that the di�erence is smaller and the lung areas are better matched. (F) Overlay of the transformed

B/L lesion (red contour) and the labeled first F/U lesion (green contour) on the F/U image, showing matching locations.

FIGURE 4

An example from a 57-year-old male patient. (A) Baseline image. (B) The transformed baseline image to match the F/U after completing the

two-step A�ne and Demons algorithms. (C) The first F/U image. (D) Comparison between the transformed baseline image after the first-step

A�ne registration and the first F/U image by the overlay. When the signal intensity on F/U is higher than on B/L, the pixel is labeled using purple

color; when the intensity on F/U is lower than on B/L, it is labeled using green color. (E) Comparison between the final transformed baseline

image and the follow-up image. It can be seen that the di�erence is smaller and the lung areas are better matched. (F) Overlay of the

transformed B/L lesion (red contour) and the labeled first F/U lesion (green contour) on the F/U image. The size of the small lesion visible on the

baseline has increased, and a new lesion close to the pleura is noted.
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Wilcoxon signed-rank test was applied, and p < 0.05 was

considered statistically significant. The registration quality after

applying the Affine and the Affine + Demons algorithms were

evaluated using the mean squared error (MSE) of the lung

areas, compared using the Wilcoxon signed-rank test. The

difference of the lesion ROI volume measured without and

with the transformed baseline lesion as the reference was also

compared using the Wilcoxon signed-rank test, with p < 0.05 as

statistically significant.

Results

Change of the COVID-19 lesion volumes

Figure 1 shows one case example. The affected lesion area

increased from the baseline to the first F/U, and then decreased

at the second F/U scan. The total lesion volume in each patient

was calculated, and the results from 33 patients who had the

baseline and first F/U are shown in Figure 2. The median (IQR)

volume (cm3) is 30.9 (83.1) at baseline, 18.3 (43.9) at first

F/U, 7.6 (18.9) at second F/U, and 0.6 (19.1) at third F/U. The

results of the other 15 patients who did not have F/U could not

be compared, so they were not further analyzed. Overall, the

volume is showing a significant decrease trend from baseline

to the first F/U to the second F/U, with p < 0.001 for each

paired comparison. But, depending on the timing of the CT, if

the patient had the baseline scan during the early course of the

disease, the volume might increase and then decrease, as shown

in the case in Figure 1.

Co-registration of the lung areas
between follow-up and baseline

The co-registration was applied to all the patients who

received follow-up scans, using the MSE as the index for the

evaluation of the registration quality. Figures 3, 4 show the co-

registration results from two patients. Between the first F/U

and baseline CT, the MSE calculated within the lung areas of

33 patients had a median value of 7,939 (IQR 5,841) after the

Affine registration, which was decreased to 6,480 (IQR 5,821)

after completing the second step of non-rigid registration using

Demons algorithm. The box plot of MSE is shown in Figure 5,

showing a significantly decreasedMSE after completing the two-

step Affine + Demons registration compared to using Affine

registration (p < 0.001). The registration of baseline CT to

the 2nd and 3rd F/U images also showed similar results with

significantly decreased MSE. Most areas inside the lungs can

be matched satisfactorily, as noted in the matching of the large

vessels shown in Figure 6, suggesting that the proposed two-step

registration method works satisfactorily.

FIGURE 5

The box plot of the MSE between the baseline and the first F/U

images. The first column is the di�erence calculated using the

original images. The second column is calculated after the

A�ne alignment, and the third column is after the completed

A�ne + Demons registration. The MSE is decreased after the

A�ne, and further decreased after the Demons registration, and

the di�erence is significant using the Wilcoxon signed-rank test

(p < 0.001).

After the registration was completed and the transformation

matrix was obtained, the lesion contour drawn on the

baseline images was mapped to the F/U images by using the

transformationmatrix obtained from the registration procedure.

The mapped baseline lesion ROI is overlaid on the F/U images,

so the lesions can be easily compared, as given in Figures 3, 4, 6.

Region of interest redrawing using
transformed baseline computed
tomography as references

After the registration was completed, the baseline ROI

was mapped to the F/U images to serve as the reference for

the second-look ROI redrawing. The volume in the second-

look drawing was compared to the original drawing, and the

difference is shown in Figure 7. The second-look ROI has a

significantly higher volume, p < 0.05, by using the Wilcoxon

signed-rank test.

Discussion

In this study, we used a unique dataset of patients with

COVID-19 receiving serial CT scans during hospitalization

to perform the quantitative analysis of the lesion volume for

evaluation of the dynamic changes. Depending on the timing

of the initial CT from the onset of infection, some lesions

may show regression at the first F/U, and some lesions may

show progression first followed by regression at later times.

All the patients in this study recovered and were discharged

from the hospital. The chest CT features are known to be
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FIGURE 6

Dynamic changes of CT imaging in a 42-year-old male patient. (A) Baseline image. (B) The transformed baseline image to match the F/U after

completing the two-step A�ne and Demons algorithms. (C) The first F/U image. In (B,C), it is noted that the vascular structures are better

matched (yellow arrows). (D) The baseline CT with original lesion ROI. (E) The transformed CT with the mapped lesion ROI serves as the

reference for the second-look ROI redrawing. (F) The original ROI on the first F/U CT.

related to the course of the COVID-19 disease, and dynamic

scans have been applied to monitor the patients’ condition

and response to treatment (11, 38). The typical COVID-19

pneumonia lesions present as the multiple ground-glass opacity

(GGO), consolidation, and interstitial inflammation on chest CT

(39, 40), which are consistent with our findings in this study.

Although several studies have applied CT to follow the

change of the COVID-19 lung lesions, all of them are qualitative

based on visual evaluation, which is subjective with a high

variation. Second, although some AI-based detection and

segmentation tools have been developed; they could not be

applied to precisely segment the COVID-19 GGO lesions, due

to the lack of clear tissue contrast. Therefore, these limitations

motivated us to develop a registration method to match the

lungs, so that the lesions on two CT scans could be directly

compared. The images could then be further segmented to

measure the volume of the COVID-19 lesions. We have shown

that the two-step registration method using Affine + Demons

algorithms could co-register the lung areas on the CT of the

same patients taken at different times. The registration could

significantly minimize the mean squared error. As demonstrated

in the illustrated case examples, the transformed baseline images

could match the lung areas and the large vessels inside the lung

on the follow-up CT, which could provide more intuitive and

objective views of the lesions for comparison. When using the

transformed baseline images as references, the redrawn lesion

ROI in the second-look ROI showed a significantly increased

volume, which was likely due to the consideration of all the

infected areas at baseline.

Coronavirus disease 2019 is a devastating disease that has

spread all over the world. Although the gradual evolution to

the much milder and more transmissible Omicron variant has

drastically decreased the severe symptoms and the death rate,

patients are dying from the disease today. Lung pneumonia

remains a major complication that can lead to death, and CT is

still the imaging modality commonly used for the management

of hospitalized patients with COVID-19. During the initial

outbreak in late 2019 to early 2020, CT played an important role.

It was used to provide an alternative diagnostic method before

the PCR tests became widely available and also used to detect

suspicious infections for evaluation of the severity of pneumonia

in the lung. Many studies have reported imaging findings related

to COVID-19 infection in the lung, and there was an effort to

develop a reporting system for diagnosis, named the COVID-19

Reporting and Data System (CO-RADS) (41), similar to those

for the breast RADS (BI-RADS), prostate RADS (PI-RADS), and

liver RADS (LI-RADS) cancers. The refinement and applicability

of the CO-RADS is still a very active research area.

The longitudinal CT has been applied as a comprehensive,

noninvasive imaging modality, which allows for the evaluation

of lung parenchyma, patency of pulmonary and coronary

arteries, and myocardial damage (42). In a study by Wang et al.

(27) and Pan et al. (43), the volumetric changes in pulmonary

involvement were analyzed based on the radiologist’s reading.
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FIGURE 7

The change of the lesion ROI volume between the original ROI

drawing and the second-look ROI redrawing using the mapped

baseline ROI as the reference. The ROI of some patients with

extensive diseases may show a higher volumetric change.

Overall, the second-look ROI drawing has a significantly higher

volume (P < 0.05) for the first F/U and second F/U CT.

Due to the vague boundaries of the infected areas, the analysis

was subjective and would be heavily influenced by the image

quality and the radiologist’s experience. Chen et al. pointed out

the difficulty of using CT scans in asymptomatic SARS-CoV-2

infections (44). As the COVID-19 lesion was gradually absorbed

in late F/U scans, the ROI delineation became challenging, and

using the prior lesion as the reference would be helpful.

Although our registration method was developed and

tested using serial CT of patients with COVID-19, it can

be applied to all the patients presenting with lung diseases,

including infection, inflammation, and pneumonia from all

the etiologies, as well as for evaluation of benign lesions and

primary and metastasis cancers. For the disease presenting

as a solitary mass, it is easy to assess and compare, but

for those presenting as multiple lung nodules and diffuse

diseases, our registration method may provide a helpful tool

for comparison.

There are some limitations to this study. First of all, the

case number was small. The CT was collected during the initial

outbreak in China when pneumonia was a major symptom that

needed to be closely followed. At that time, a strict lockdown

was imposed by the government to control the spread, and very

soon the infection case dropped to zero. In this study, we only

included patients who were healthy enough to receive serial

CT scans, and all of them were recovered and discharged from

the hospital. Patients who had severe COVID-19 or comorbid

conditions that required mechanical ventilation support or

admitted to ICU were not included. Second, it was difficult to

determine the exact onset time of infection, so we reported

the baseline CT time according to the sign of known first

symptoms, which had a high variation. Third, the lesion ROI was

manually drawn. Although some studies have tried to develop

automatic quantitative analysis methods for the detection and

segmentation of the COVID-19 infected lesions, the methods

are not mature yet for routine use (29–32). Our ROI drawing

was performed by several radiologists with consensus and cross-

check, and the final results were verified by a senior radiologist.

If large datasets are available for training and testing, more

advanced algorithms developed using deep learning neural

networks may provide novel techniques for lesion recognition

and segmentation (45–49). Lastly, organ registration has become

a mature technology, e.g., brain MRI of individual patients

registered to a template for volumetric analysis of different

structures (https://www.cortechs.ai/products/neuroquant/) and

prostate MRI registered to ultrasound for guiding biopsies

(https://koelis.com/fusion-guided-prostate-biopsy/). As long as

the organ can be segmented, which can be done by deep learning,

registration is straightforward, and themethods proposed in this

study have the potential to be implemented for clinical use.

Conclusion

In this study, we analyzed a dataset of patients with

COVID-19 receiving serial CT, to gain more understanding of

the evolution of the disease and the response to treatment.

We developed a registration method using Affine + Demons

algorithms to match the lung areas imaged by CT at different

times, so the baseline lesion ROI could be mapped to the F/U

images to serve as the reference for comparison. Themethod can

allow intuitive and objective views of the lesions for comparison,

and, thus, provide a standardization tool for monitoring the

evolution of the disease and the response to treatment. The

developed methods can be applied to many other lung diseases.

Also, as some patients with COVID-19may have sustained long-

term damage to the lung, the method may provide an objective

evaluation tool.
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