

Different Drugs for the Treatment of Painful Diabetic Peripheral Neuropathy: A Meta-Analysis

Lian Jingxuan¹, Ma Litian² and Fu Jianfang^{1*}

¹ Department of Endocrinology, Xijing Hospital of Air Force Medical University, Xi'an, China, ² Department of Gastroenterology, Xijing Hospital of Air Force Medical University, Xi'an, China

Objective: To systematically evaluate the effects of different drugs for the treatment of painful diabetic peripheral neuropathy.

Methods: All literature from PubMed, Embase, and Cochrane Central Register of Controlled Trials published over the past 12 years (from January 1, 2008 to June 1, 2020) was searched, and two reviewers independently assessed study eligibility, continuous data extraction, independent assessment of bias risk, and graded strength of evidence. The pain score was used as the main result, and 30 and 50% pain reduction and adverse events were used as secondary results.

OPEN ACCESS

Edited by:

Ghazala Hayat, Saint Louis University, United States

Reviewed by:

Paola Sandroni, Mayo Clinic, United States Ioannis Nikolaos Petropoulos, Weill Cornell Medicine-Qatar, Qatar

> *Correspondence: Fu Jianfang jianff@fmmu.edu.cn

Specialty section:

This article was submitted to Neuromuscular Disorders and Peripheral Neuropathies, a section of the journal Frontiers in Neurology

Received: 18 March 2021 Accepted: 04 October 2021 Published: 29 October 2021

Citation:

Jingxuan L, Litian M and Jianfang F (2021) Different Drugs for the Treatment of Painful Diabetic Peripheral Neuropathy: A Meta-Analysis. Front. Neurol. 12:682244. doi: 10.3389/fneur.2021.682244 **Results:** A total of 37 studies were included. Pregabalin, duloxetine, tapentadol, lacosamide, mirogabalin, and capsaicin were all more effective than placebo in alleviating the pain associated with diabetic peripheral neuropathy, while ABT-894 and gabapentin showed no significant effect. In addition, the efficacy of buprenorphine, tanezumab, fulranumab and others could not be concluded due to insufficient studies.

Conclusion: Pregabalin and duloxetine showed good therapeutic effects on painful DPN, but adverse events were also significant. The analgesic effects of ABT-894 and gabapentin need to be further studied with longer and larger RCTs. As an opioid drug, tapentadol has a good analgesic effect, but due to its addiction, it needs to be very cautious in clinical use. Although lacosamide, mirogabalin, and capsaicin are more effective than placebo, the therapeutic effect is weaker than pregabalin. For the results of our meta-analysis, long-term studies are still needed to verify their efficacy and safety in the future.

Systematic Review Registration: PROSPERO, identifier: CRD42020197397.

Keywords: diabetic peripheral neuropathy, painful, meta-analysis, drugs, treatment

INTRODUCTION

Diabetic peripheral neuropathy (DPN) is the most common cause of neuropathy in developed countries, affecting an estimated 50% of people with diabetes. The most common form is chronic, distal, and symmetric sensorimotor polyneuropathy, while other uncommon forms include asymmetric or focal neuropathy, such as diabetic muscle atrophy, trunk radiculopathy, and compression palsy (1). Recent comprehensive reviews of treatments for DPN have been published by the American Association of Neuromuscular and Electrical Diagnostic Medicine, and the American Academy of Neurology; the American Academy of Physical Medicine and Rehabilitation published an article in 2011 demonstrating that pregabalin is an effective treatment

1

method and noted that other treatments for DPN, such as venlafaxine and amitriptyline, may also be effective (2).

The latest systematic review of randomized controlled trials (RCTs) of drug interventions for DPN pain was published in 2017. However, this review did not include some newer drugs and did not incorporate evidence from patients who reported results such as a 30 or 50% pain reduction. Therefore, we present a systematic review of the benefits and disadvantages of drug regimens in relieving DPN pain and health-related quality of life by including the latest randomized controlled trials.

METHODS

Data Sources and Search Strategy

We performed electronic searches of the following databases: MEDLINE, Embase, and PubMed. We searched each database for nearly 13 years (from January 1, 2008 to June 1, 2020), and the language was limited to English (the complete search strategy is shown in Appendix 1 of the **Supplementary Materials**). The preferred reporting items of the systematic review and metaanalysis guidelines were followed at all stages of the study (the complete protocol is shown in Appendix 2 of the **Supplementary Materials**). Our PROSPERO ID is CRD42020197397.

Inclusion Criteria

We included a double-blind, placebo-controlled RCT of the effects of various analgesics on patients with painful diabetic peripheral neuropathy who were 18 years and older. Studies with an intervention duration <4 weeks or less and extensive pain studies, as well as studies that did not differentiate pDPN patients in the subgroup analysis, were excluded (3). In addition, non-drug treatments such as intravenous injections, physical therapy, over-the-counter drugs and food supplements were excluded. For cross-over RCTs, the carrying effect was taken into account, so we used data from the first phase of the study (4). Our primary outcomes were pain scores (using a validated scale to enhance the reliability of the measurement results) and adverse events. Our secondary outcome was a 30 and 50% pain reduction.

Data Extraction

Two reviewers independently screened and identified the study and resolved their differences through discussion. In addition, a manual search of references in published systematic reviews and meta-analyses was performed to ensure that no studies were missing. Data were independently extracted to an Excel spreadsheet according to predefined standards. For each of the included studies, we extracted data such as the study time, trial design, intervention measures and time, demographics, and baseline characteristics.

Data Synthesis and Analysis

The risk of bias was assessed for each included study using the Cochrane Collaboration Risk Assessment tool. For continuous variables, we used the standardized mean difference (SMD) and 95% CI for analysis, and for dichotomous variables, we calculated the risk ratio of the 95% CI. We used changes before and after the intervention to assess the effectiveness of different

drugs and placebos. P = 0.05 was considered to be statistically significant. Meta-analysis software (RevMan V.5.3) was used for the analyses, heterogeneity was evaluated according to $I^2 = 25\%$, 50 and 75% values were judged as mild, moderate and substantial heterogeneity, respectively, and heterogeneity was solved by subgroup analysis. GRADE Pro (V.3.6) software was used to rate the overall quality of evidence for each outcome based on five evaluation criteria: risk of bias, inconsistency, indirectness, imprecision, and publication bias.

RESULTS

A total of 2,184 articles were identified in our search, among which 138 full-text papers were deemed suitable; then, 101 full-text papers were excluded according to the research exclusion criteria. Thirty-seven RCTs on pDPN published between January 1, 2008, and January 1, 2021, met the inclusion criteria (**Figure 1**) (5–40). Among them, 32.4% evaluated pregabalin, 10.8% evaluated duloxetine, 10.8% evaluated capsaicin, and 8.1% evaluated tapentadol, ABT-894, ABT-594 and clonidine. Treatment lasted from 4 weeks to a year, with most trials were conducted in the US or Europe. Pain outcomes were measured by a numerical rating scale (NRS), visual analog scale (VAS), the Short McGill Pain Questionnaire Visual Assessment Scale (SF-MPQ VAS), and concise pain scale (BPI) (**Supplementary Table 1**).

Through the risk assessment using the Cochrane Collaboration risk assessment tool, the overall risk was found to be moderate (**Supplementary Figures 1, 2**), which was mainly caused by allocation concealment, selective reporting, incomplete data, and unclear blind reporting in most studies.

Pain Score

As shown in the meta-analysis (Figure 2), compared with patients receiving placebo, those receiving pregabalin [SMD $-0.48, -0.11, P = 0.002, I^2 = 80\%$; Summary of Findings (SoF) Supplementary Table 2] and duloxetine [SMD -0.27 $(95\% \text{ CI} - 0.39, -0.15, P < 0.00001, I^2 = 0\%);$ SoF Supplementary Table 3], capsaicin [SMD -0.23 (95% CI -0.36, 0.09, P < 0.0001, $I^2 = 0\%$; SoF Supplementary Table 4], tapentadol [SMD -0.52 (95% CI -0.93, 0.11, P = 0.01, $I^2 = 81\%$; SoF **Supplementary Table 5**], mirogabalin [SMD] -0.17 (95% CI -0.31, -0.04, P = 0.01, $I^2 = 17\%$); SoF Supplementary Table 6], and lacosamide [SMD -0.23 (95% CI $-0.41, -0.04, P = 0.02, I^2 = 0\%$; SoF Supplementary Table 7] had significantly lower pain scores. Patients receiving ABT -894 [SMD 0.04 (95% CI 0.20, 0.27, p = 0.76, $I^2 = 0\%$); SoF Supplementary Table 8] and gabapentin [SMD -0.25 (95% CI $-0.54, 0.04, P = 0.09, I^2 = 52\%$; SoF Supplementary Table 9] had no significant difference in pain scores compared with those receiving placebo (Figure 2). Due to the large number of included studies and high heterogeneity of pregabalin, we conducted a subgroup analysis of pregabalin dose, intervention duration and article quality (Supplementary Figures 3-5). The results showed that pregabalin showed the same direction of effect in terms of drug dose, intervention time and high-quality studies. Only in low-quality studies was no significant difference found. Eleven

studies used a NRS to measure pain, and eight showed that patients in the treatment group had a significant reduction in pain scores compared with those in the placebo group. The results of the three studies showed no significant differences between the two groups. In one study, a VAS pain scale was used, and patient pain scores revealed that pregabalin was superior to placebo. For lacosamide, due to different drug dose gradients in the two studies, we performed a subgroup analysis according to drug dose. The pain scores of patients receiving lacosamide were significantly reduced in both low-dose groups [SMD -0.25 (95% CI -0.44, -0.05, P = 0.02), $I^2 = 0\%$] and the high-dose group [SMD -0.20 (95% CI -0.41, 0.00, P = 0.05), $I^2 = 0\%$], with a significant difference compared with the placebo group (**Supplementary Figure 6**).

30% Pain Reduction

The forest plot (**Figure 3**) showed that six medicines could elicit 30% pain reduction, among which pregabalin [RR 1.10 (95% CI 1.01, 1.21, P = 0.04, $I^2 = 44\%$; SoF **Supplementary Table 2**)], duloxetine [RR 1.32 (95% CI 1.18, 1.47, P < 0.00001, $I^2 = 44\%$; SoF **Supplementary Table 3**)], tapentadol [RR 1.25 (95% CI 1.07, 1.45, P = 0.005, $I^2 = 0\%$; SoF **Supplementary Table 5**)], and lacosamide [RR 1.27 (95% CI 1.03, 1.58, P = 0.03, $I^2 = 0\%$; SoF **Supplementary Table 7**)] elicited a significantly higher 30% pain reduction than placebo, while capsaicin [RR 1.18 (95% CI 0.92, 1.51, P = 0.20, $I^2 = 0\%$; SoF **Supplementary Table 4**)] and ABT-894 [RR 0.83 (95% CI 0.64,1.07, P = 0.15, $I^2 = 0\%$; **Supplementary Table 8**)] showed

no statistically significant difference from placebo. Subgroup analysis of lacosamide showed that there was a significant difference between the high-dose group and the placebo group [RR 1.33 (95% CI 1.06, 1.68, P = 0.01, $I^2 = 0\%$)], while there was no significant difference between the low-dose group and the placebo group [RR 1.22 (95% CI 0.98, 1.53, P = 0.08, $I^2 = 0\%$)] (**Supplementary Figure** 7). Mirogabalin and gabapentin did not elicit a 30% pain reduction.

50% Pain Reduction

Six medicines could also elicit a 50% pain reduction (**Figure 4**), among which pregabalin [RR 1.32 (95% CI 1.10, 1.58, P = 0.003, I² = 44%; SoF **Supplementary Table 2**)], duloxetine [RR 1.43 (95% CI 1.01, 2.02, P < 0.04, I² = 76%; SoF **Supplementary Table 3**)], and tapentadol [RR 1.38 (95% CI 1.12,1.71, P = 0.003, I² = 0%; SoF **Supplementary Table 5**)] had a significantly higher 50% pain reduction than placebo, while capsaicin [RR 0.99 (95% CI 0.73,1.36, P = 0.97, I² = 0%; SoF **Supplementary Table 4**)], mirogabalin [RR 1.02 (95% CI 0.69, 1.51, P = 0.92, I² = 76%; SoF **Supplementary Table 6**)], and gabapentin [RR 2.39 (95% CI 0.57, 10.00, P = 0.23, I² = 87%; SoF **Supplementary Table 9**)] showed no significant difference from placebo. ABT-894 with lacosamide did not elicit a 50% pain reduction.

Other agents: In addition, RCTs on tanezumab, tocotrienols, and other agents for the treatment of pDPN, such as Sativex and nabilone, have also been reported. However, due to the small

Study or Subgroup	a	ruas		C	ontrol			Std. Mean Difference	Std. Mean Difference
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9.1.1 Pregabalin									
Arezzo 2008	-2.74	2.38	82	-1.76	2.39	85	8.5%	-0.41 [-0.72, -0.10]	
Chappell 2014	-2.75	2.21	45	-2.08	2.08	89	7.8%	-0.31 [-0.67, 0.05]	
Huffman 2015	-1.66	1.6	101	-1.23	1.71	102	8.9%	-0.26 [-0.53, 0.02]	
Jiang 2011	-4.32	3.2	20	-2.13	3.56	20	4.8%	-0.63 [-1.27, 0.00]	·
McDonnell 2018	-1.93	1.62	46	-0.51	1.53	45	6.9%	-0.89 [-1.33, -0.46]	←
Mu 2018	-2.2	1.74	313	-1.92	1.77	307	10.3%	-0.16[-0.32, -0.00]	
Raskin 2014	-3.9	1.51	147	-2.5	1.68	147	9 4 %	-0.87 [-1.11 -0.63]	
Rauck 2013	-1.66	1 833	66	-2.00	2 069	120	8.6%	0.22 60 09 0.521	
Satoh 2011	-1.97	1 76	170	-1.21	1 76	126	9.5%	-0.37 [-0.60 -0.15]	
Tollo 2009	.2.22	2.41	207	-1.0	2	001	0.5%	-0.10[0.00, 0.10]	
Vinik 2006	1 70	2.41	207	1 06	2 1 0 2	100	0.10	0.03[0.92,0.03]	
VIIIR 2014 (2)	-1.79	2.27	00	-1.00	2.103	100	0.170	0.03 [-0.30, 0.37]	
Ziegier 2015	-2.09	1.89	00	-2.20	2.04	1242	1.9%	0.09 [-0.27, 0.44]	
Subtotal (95% CI)			1411			1312	100.0%	-0.30 [-0.48, -0.11]	
Test for overall effect: Z = 3	3, Chi= 5 3.17 (P = (4.68, di J.002)	= 11 (i	- < U.UL	1001), 1-	= 80%			
9.1.2 Duloxetine									
GAO 2010	-2.69	1.96	106	-2.31	1.88	109	20.3%	-0.20 [-0.47, 0.07]	
Gao 2015	-2.4	1.99	203	-1.97	1.99	202	38.3%	-0.22 [-0.41, -0.02]	
Rowbotham 2012	-2.8	2.2	54	-2.1	2.1	50	9.7%	-0.32 [-0.71, 0.06]	
Yasuda 2011	-2.47	2.35	171	-1.61	2.33	167	31.6%	-0.37 [-0.58 -0.15]	
Subtotal (95% CI)		2.00	534		2.00	528	100.0%	-0.27 [-0.390.15]	◆
Heteroneneity Tau ² - 0.00	0: Chi ² = 1	43 df-	3 (P -	0.701	² = 0%	520		512. [5100; -0110]	
Test for overall effect: Z = 4	4.38 (P < (.43, ui - J.0001)	- 3 (F =	0.70),1	- 0 %				
9.1.3 Tapentadol									
Niesters 2014	-2.6	2,98	12	-1.7	2.27	12	16.6%	-0.33 [-1.13, 0.48]	
Schwartz 2011	-4	1 74	192	-2.6	211	196	42.0%	-0.81 [-1.01 -0.60]	_ _
Vinik 2014 (2)	-3	216	166	-2.3	2 33	152	41 496	-0.31 [-0.53 -0.00]	
Subtotal (95% CI)	-3	2.10	370	-2.5	2.55	360	100.0%	0.52[0.03, 0.03]	
Hotorogonoity Touž = 0.00	0: Chiz - 1	0.55 44	- 2/0	- 0.004	N- 12 - 04	100	100.070	-0.52 [-0.55, -0.11]	
Test for overall effect: Z = 2	2.50 (P = (0.55, ui 0.01)	= 2 (P	= 0.005), i° = 0	170			
9.1.4 Capsaicin									
Kulkantrakorn 2013	-1.53	2.35	16	-1.54	2.91	17	3.7%	0.00 [-0.68, 0.69]	
Kulkantrakorn 2019	-1.9	2.436	42	-1.73	2.09	42	9.4%	-0.07 [-0.50, 0.35]	
Simpson 2017	-1.8	1.93	186	-1.4	1.95	183	41.0%	-0.21 [-0.41, -0.00]	
Vinik 2016	-2.6	5.06	313	-1.2	4.2	155	45.9%	-0.29 [-0.49, -0.10]	
Subtotal (95% CI)			557			397	100.0%	-0.23 [-0.36, -0.09]	•
Hotorogeneity: Tou? - 0.00	$0^{\circ} Chi^2 = 1$.40, df=	: 3 (P =	0.71);	²=0%				
Test for overall effect: Z = 3	3.37 (P = 0	0.0008)							
Test for overall effect: Z = 3	3.37 (P = (0.0008)							
Test for overall effect: Z = 3	3.37 (P = 1	0.0008)			10.004	192			_
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012	3.37 (P = 1	0.0008) 2.01	170	-2.1	2.12	50	55.9%	0.10 [-0.22, 0.41]	_
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2)	3.37 (P = 1 -1.9 -1.8	0.0008) 2.01 2.28	170 58	-2.1 -1.7	2.12 2.4	50 64	55.9% 44.1%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31]	
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI)	3.37 (P = 1 -1.9 -1.8	0.0008) 2.01 2.28	170 58 228	-2.1 -1.7	2.12 2.4	50 64 114	55.9% 44.1% 100.0 %	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27]	-
Preserve and a constraint of the second s	-1.9 -1.8 D; Chi ² = 0 D.30 (P = 0	0.0008) 2.01 2.28 1.34, df=).76)	170 58 228 1 (P =	-2.1 -1.7 0.56);1	2.12 2.4 1 ² = 0%	50 64 114	55.9% 44.1% 100.0 %	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27]	
Preserverall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirographalin	-1.9 -1.9 -1.8 D; Chi ² = 0 0.30 (P = 0	0.0008) 2.01 2.28 .34, df= 0.76)	170 58 228 1 (P =	-2.1 -1.7 0.56); I	2.12 2.4 ² = 0%	50 64 114	55.9% 44.1% 100.0 %	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27]	-
Preceiving an end of the second se	-1.9 -1.8 D; Chi ² = 0 0.30 (P = 0	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026	170 58 228 : 1 (P =	-2.1 -1.7 :0.56);1	2.12 2.4 ² =0%	50 64 114	55.9% 44.1% 100.0 %	0.10 (-0.22, 0.41) -0.04 (-0.40, 0.31) 0.04 (-0.20, 0.27)	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = (0) 9.1.6 Mirogabalin Baba 2019 Vitik 2014 (2)	-1.9 -1.8 D; Chi ² = 0 0.30 (P = (-1.914 -2.40	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026	170 58 228 1 (P = 494 275	-2.1 -1.7 0.56);1	2.12 2.4 ² =0%	50 64 114 330	55.9% 44.1% 100.0 % 68.1%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = (0) 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl)	-1.9 -1.8 D; Chi [≠] = 0 0.30 (P = 0 -1.914 -2.49	2.01 2.28 .34, df= 0.76) 2.026 2.33	170 58 228 1 (P = 494 275 760	-2.1 -1.7 0.56); -1.66 -1.86	2.12 2.4 2=0% 1.965 2.183	50 64 114 330 108	55.9% 44.1% 100.0% 68.1% 31.9%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl)	-1.9 -1.8 0; Chi [≠] = 0 0.30 (P = (-1.914 -2.49	2.01 2.28 1.34, df = 0.76) 2.026 2.33	170 58 228 1 (P = 494 275 769	-2.1 -1.7 0.56); -1.66 -1.86	2.12 2.4 ² =0% 1.965 2.183	50 64 114 330 108 438	55.9% 44.1% 100.0% 68.1% 31.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2	-1.9 -1.8 0; Chi² = 0 0.30 (P = (-1.914 -2.49); Chi² = 1 2.52 (P = (0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01)	170 58 228 1 (P = 494 275 769 = 1 (P =	-2.1 -1.7 0.56); -1.66 -1.86 0.27);	2.12 2.4 r ² = 0% 1.965 2.183 r ² = 17%	50 64 114 330 108 438	55.9% 44.1% 100.0% 68.1% 31.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 2; Chi ² = 1 2.52 (P = (0.0008) 2.01 2.28 0.34, df= 0.76) 2.026 2.33 .21, df= 0.01)	170 58 228 1 (P = 494 275 769 = 1 (P =	-2.1 -1.7 0.56); -1.66 -1.86 0.27);	2.12 2.4 r ² = 0% 1.965 2.183 r ² = 17%	50 64 114 330 108 438	55.9% 44.1% 100.0% 68.1% 31.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013	-1.9 -1.9 -1.8 D; Chi ² = 0 0.30 (P = (-1.914 -2.49 D; Chi ² = 1 2.52 (P = (-2.39	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38	170 58 228 1 (P = 494 275 769 1 (P = 234	-2.1 -1.7 0.56); -1.66 -1.86 0.27);	2.12 2.4 ² = 0% 1.965 2.183 ² = 17% 2.069	50 64 114 330 108 438	55.9% 44.1% 100.0% 68.1% 31.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneily: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneily: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneily: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sanderock 2012	-1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92	170 58 228 = 1 (P = 494 275 769 = 1 (P = 234 96	-2.1 -1.7 -1.66 -1.86 -1.86 (0.27); -2.09 -1.3	2.12 2.4 2.4 1.965 2.183 2.183 2.069 1.96	50 64 114 330 108 438 120 51	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78 -0.00]	
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl)	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92	170 58 228 1 (P = 494 275 769 1 (P = 234 96 330	-2.1 -1.7 0.56); -1.86 -1.86 0.27); -2.09 -1.3	2.12 2.4 2.4 1.965 2.183 2.183 2.069 1.96	50 64 114 330 108 438 120 51 171	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.43 [-0.78, -0.09]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2018 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2	0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92 09. df=	170 58 228 1 (P = 494 275 769 1 (P = 234 930 31 (P =	-2.1 -1.7 0.56); 1 -1.66 -1.86 0.27); 1 -2.09 -1.3	2.12 2.4 2=0% 1.965 2.183 2=17% 2.069 1.96 2.969	50 64 114 330 108 438 120 51 171	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, 0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect: Z = 1	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92 .09, df= 0.09)	170 58 228 1 (P = 494 275 769 5 1 (P = 234 96 330 5 1 (P =	-2.1 -1.7 0.56); -1.86 0.27); -2.09 -1.3 0.15);	2.12 2.4 r = 0% 1.965 2.183 r = 17% 2.069 1.96 r = 52%	50 64 114 330 108 438 120 51 171	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.43 [-0.78, -0.09]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect: Z = 1 9.1.8 Lacosamide	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (0.0008) 2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92 .09, df= 0.09)	170 58 228 1 (P = 494 275 769 1 (P = 234 96 330 1 (P =	-2.1 -1.7 0.56); -1.86 0.27); -2.09 -1.3 0.15);	2.12 2.4 r = 0% 1.965 2.183 r = 17% 2.069 1.96 r = 52%	50 64 114 330 108 438 120 51 171	55.9% 44.1% 100.0% 88.1% 31.9% 100.0% 60.0% 40.0% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.76, -0.09] -0.25 [-0.54, 0.04]	
Test for overall effect. Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 1 9.1.8 Lacosamide Shaibani 2009	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (-2.08	2.01 2.28 1.34, df = 2.026 2.33 .21, df = 0.01) 2.38 1.92 .09, df = 0.09) 2.65	170 58 228 1 (P = 494 275 769 51 (P = 234 96 330 51 (P = 403	-2.1 -1.7 0.56); -1.66 -1.86 0.27); -2.09 -1.3 0.15); -1.33	2.12 2.4 F = 0% 1.965 2.183 F = 17% 2.069 1.96 F = 52% 2.65	50 64 114 3300 108 438 438 120 51 171	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, -0.04]	
Test for overall effect. Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 3 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect. Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010	-1.9 -1.9 -1.8 0; Chi [#] = 0 0.30 (P = (-1.914 -2.49 0; Chi [#] = 1 2.52 (P = (-2.39 -2.14 2; Chi [#] = 2 1.71 (P = (-2.08 -1.88	2.01 2.28 1.34, df= 0.76) 2.026 2.33 .21, df= 0.01) 2.38 1.92 .09, df= 0.09, df= 2.65 2.34	170 58 228 1 (P = 494 275 769 1 (P = 234 96 330 1 (P = 234 96 330	-2.1 -1.7 0.56); -1.66 -1.86 0.27); -2.09 -1.3 0.15); -1.33 -1.5	2.12 2.4 "= 0% 1.965 2.183 "= 17% 2.069 1.96 "= 52% 2.65 1.73	50 64 114 330 108 438 120 51 171 66 74	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1% 50.9%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, -0.04] -0.28 [-0.54, -0.02] -0.17 [-0.43, 0.09]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI)	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (-2.08 -1.88	2.01 2.28 1.34, df = 0.76) 2.026 2.33 .21, df = 0.01) 2.38 1.92 .09, df = 0.09) 2.65 2.34	170 58 228 1 (P = 494 275 769 1 (P = 234 96 330 1 (P = 403 283 686	-2.1 -1.7 0.56); -1.86 0.27); -2.09 -1.3 0.15); -1.33 -1.5	2.12 2.4 # = 0% 1.965 2.183 # = 17% 2.069 1.96 # = 52% 2.65 1.73	50 64 114 330 108 438 120 51 171 77 66 74 140	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1% 50.9%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, 0.04] -0.28 [-0.54, -0.02] -0.21 [-0.41, -0.04]	
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Subtotal (95% Cl)	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (-2.08 -1.88); Chi ² = 0	2.01 2.28 1.34, df = 0.76) 2.026 2.33 .21, df = 0.01) 2.38 1.92 0.9, df = 0.09) 2.65 2.34 36, df =	170 58 228 51 (P = 494 275 769 51 (P = 234 96 330 51 (P = 403 283 686 686	-2.1 -1.7 0.56); (-1.66 -1.86 0.27); (-2.09 -1.3 0.15); (-1.33 -1.5	2.12 2.4 ^P = 0% 1.965 2.183 ^P = 17% 2.069 1.96 ^P = 52% 2.65 1.73 ^P = n≪	50 64 114 330 108 438 438 51 171 77 66 74 140	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 40.0% 40.0% 50.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, -0.04] -0.28 [-0.54, -0.02] -0.17 [-0.43, 0.09] -0.23 [-0.41, -0.04]	
Test for overall effect. Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 3 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect. Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect. Z = 2	-1.9 -1.9 -1.8 0; Chi [#] = 0 0.30 (P = (-1.914 -2.49 0; Chi [#] = 1 2.52 (P = (-2.39 -2.14 2; Chi [#] = 2 1.71 (P = (-2.08 -1.88); Chi [#] = 0 2.42 (P = (2.01 2.28 1.34, df = 0.76) 2.026 2.33 .21, df = 0.01) 2.38 1.92 0.09, df = 2.34 3.6, df = 0.02)	170 58 228 51 (P = 494 275 769 51 (P = 234 96 330 51 (P = 403 283 686 51 (P =	-2.1 -1.7 0.56); 1 -1.86 0.27); 1 -2.09 -1.3 0.15); 1 -1.33 -1.5 0.55); 1	2.12 2.4 "= 0% 1.965 2.183 "= 17% 2.069 1.96 "= 52% 2.65 1.73 "= 0%	50 64 114 330 108 438 51 171 771 66 74 140	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1% 50.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, -0.04] -0.28 [-0.54, -0.02] -0.17 [-0.43, 0.09] -0.23 [-0.41, -0.04]	
Test for overall effect: Z = 3 9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2	-1.9 -1.9 -1.8 D; Chi ² = 0 0.30 (P = (-1.914 -2.49 D; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (-2.08 -1.88); Chi ² = 0 2.42 (P = (2.01 2.28 1.34, df = 0.76) 2.026 2.33 .21, df = 0.01) 2.38 1.92 0.09) df = 0.09) 2.65 2.34 .36, df = 0.02)	170 58 228 51 (P = 494 275 769 51 (P = 234 96 330 51 (P = 403 283 686 636 636 636 51 (P =	-2.1 -1.7 0.56); -1.66 -1.86 0.27); -2.09 -1.3 0.15); -1.33 -1.5 0.55); 1	2.12 2.4 F = 0% 1.965 2.183 F = 17% 2.069 1.96 1.96 F = 52% 2.65 1.73 F = 0%	50 64 114 330 108 438 51 171 77 66 74 140	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1% 50.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, -0.04] -0.28 [-0.54, -0.02] -0.17 [-0.43, 0.09] -0.23 [-0.41, -0.04]	
9.1.5 ABT-894 Rowbotham 2012 Rowbotham 2012 Rowbotham 2012 Rowbotham 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 0 9.1.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = 2 9.1.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect: Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect: Z = 1 9.1.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Heterogeneity: Tau ² = 0.02 Test for overall effect: Z = 2	-1.9 -1.9 -1.8 0; Chi ² = 0 0.30 (P = (-1.914 -2.49 0; Chi ² = 1 2.52 (P = (-2.39 -2.14 2; Chi ² = 2 1.71 (P = (-2.08 -1.88); Chi ² = 0 2.42 (P = (2.01 2.28 1.34, df = 0.76) 2.026 2.33 .21, df = 0.01) 2.38 1.92 0.09) df = 0.09) 2.65 2.34 .36, df = 0.02)	170 58 228 1 (P = 494 275 769 1 (P = 234 96 330 1 (P = 403 283 686 686 51 (P =	-2.1 -1.7 0.56); -1.86 0.27); -2.09 -1.3 0.15); -1.33 -1.5 0.55);	2.12 2.4 F = 0% 1.965 2.183 F = 17% 2.069 1.96 F = 52% 2.65 1.73 F = 0%	50 64 114 330 108 438 120 51 171 66 74 140	55.9% 44.1% 100.0% 68.1% 31.9% 100.0% 60.0% 40.0% 100.0% 49.1% 50.9% 100.0%	0.10 [-0.22, 0.41] -0.04 [-0.40, 0.31] 0.04 [-0.20, 0.27] -0.13 [-0.27, 0.01] -0.27 [-0.50, -0.05] -0.17 [-0.31, -0.04] -0.13 [-0.35, 0.09] -0.43 [-0.78, -0.09] -0.25 [-0.54, 0.04] -0.28 [-0.54, -0.02] -0.17 [-0.43, 0.09] -0.23 [-0.41, -0.04]	Favours Intervention Favours Placebo

STUDY OF SUBDIFOUD	drugs	S	Placel	00	184-1-1-1	Risk Ratio	Risk Ratio
0.2.4 Dreast -Fire	Events	otal	Events	lotal	weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
J.Z.1 Pregabalin	~~		~~	~~		4 05 10 00 4 041	
Chappell 2014	20	45	38	89	0.2%	1.35 [0.96, 1.91]	10
Huiman 2015	39	101	25	102	0.1%	1.58 [1.04, 2.40]	1.54
MCDONNEII 2018	15	40	100	40	1.7%	2.10 [0.94, 4.65]	10 T
Mu 2018 Deckin 2014	107	313	130	307	33.5%	1.13 [0.96, 1.34]	
Raskin 2014	122	147	116	14/	28.3%	1.05 [0.94, 1.18]	100 million (100 m
Rauck 2013	28	00	57	120	9.9%	0.89 [0.64, 1.25]	Colors and a second
VINIK 2014 (2) Ziawlaw 2015	19	50	45	108	7.0%	0.91 [0.60, 1.39]	
Liegier 2015 Subtatal (05% CI)	25	022	28	075	1.3%	0.78 [0.52, 1.17]	
Subtotal (95% CI)	101	833	150	975	100.0%	1.10[1.01, 1.21]	•
l otal events	431		452	~			
Fest for overall effect: Z =	= 2.10 (P = 0	° = 0.0 1.04)	9); 1- = 44	70			
9.2.2 Duloxetine							
GAO 2010	74	106	67	109	26.2%	1.14 [0.94, 1.38]	
Gao 2015	125	203	99	202	39.4%	1.26 [1.05, 1.50]	
Rowbotham 2012	37	54	26	50	10.7%	1.32 [0.96, 1.82]	
Yasuda 2011	98	171	59	167	23.7%	1.62 [1.27, 2.07]	
Subtotal (95% CI)		534		528	100.0%	1.32 [1.18, 1.47]	
Total events	334		251				
Heterogeneity: Chi² = 5.3 Fest for overall effect: Z =	35, df = 3 (P = 4.91 (P < 0	= 0.15 0.0000); I² = 449 1)	6			
).2.3 Tapentadol							_
Schwartz 2011	105	196	81	192	53.2%	1.27 [1.03, 1.57]	
/inik 2014	92	166	69	152	46.8%	1.22 [0.98, 1.52]	
Subtotal (95% CI)		362		344	100.0%	1.25 [1.07, 1.45]	-
Total events	197		150				
Heterogeneity: Chi² = 0.0 Test for overall effect: Z =	06, df = 1 (P = 2.83 (P = 0	= 0.80 1.005)); I² = 0%				
9.2.4 Capsaicin							
9 .2.4 Capsaicin Kulkantrakorn 2013	9	16	10	17	13.8%	0.96 [0.53, 1.72]	
9 .2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017	9 74	16 186	10 60	17 183	13.8% 86.2%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59]	
9.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI)	9 74	16 186 202	10 60	17 183 200	13.8% 86.2% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51]	-
).2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events	9 74 83	16 186 202	10 60 70	17 183 200	13.8% 86.2% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51]	
0.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 Fest for overall effect: Z =	9 74 83 53, df = 1 (P = 1.29 (P = 0	16 186 202 = 0.47 1.20)	10 60 70); I² = 0%	17 183 200	13.8% 86.2% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51]	
9.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 Fest for overall effect: Z = 9.2.5 ABT-894	9 74 83 53, df = 1 (P = 1.29 (P = 0	16 186 202 = 0.47	10 60 70); I ² = 0%	17 183 200	13.8% 86.2% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51]	
0.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 Fest for overall effect: Z = 0.2.5 ABT-894 Rowbotham 2012	9 74 83 53, df = 1 (P = 1.29 (P = 0 75	16 186 202 = 0.47 0.20) 170	10 60 70); I ^z = 0% 26	17 183 200 50	13.8% 86.2% 100.0% 59.3%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16]	
2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.5 Test for overall effect: Z = 0.2.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2)	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21	16 186 202 = 0.47 0.20) 170 58	10 60); I ² = 0% 26 29	17 183 200 50 64	13.8% 86.2% 100.0% 59.3% 40.7%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23]	
9.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 Fest for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI)	9 74 53, df = 1 (P = 1.29 (P = 0 75 21	16 186 202 = 0.47 0.20) 170 58 228	10 60); I ^z = 0% 26 29	17 183 200 50 64 114	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07]	
0.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 Fest for overall effect: Z = 0.2.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Fotal events	9 74 53, df = 1 (P = 1.29 (P = 0 75 21 96	16 186 202 = 0.47 .20) 170 58 228	10 60 70); I ² = 0% 26 29 55	17 183 200 50 64 114	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07]	
9.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.6 Fest for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.0 Fest for overall effect: Z =	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0	16 186 202 = 0.47 0.20) 170 58 228 = 0.83 0.15)	10 60 70); I ² = 0% 26 29 55); I ² = 0%	17 183 200 50 64 114	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07]	
O.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.6 Fest for overall effect: Z = O.2.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.0 Fest for overall effect: Z = O.2.6 Lacosamide	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0	16 186 202 = 0.47 0.20) 170 58 228 = 0.83 0.15)	10 60 70); ² = 0% 26 29 55); ² = 0%	17 183 200 50 64 11 4	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07]	
	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228	16 186 202 = 0.47 0.20) 170 58 228 = 0.83 0.15) 403	10 60 70); ² = 0% 26 29 55); ² = 0% 30	17 183 200 50 64 114 66	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07]	
	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130	16 186 202 = 0.47 1.20) 170 58 228 = 0.83 1.15) 403 283	10 60 70); ² = 0% 26 29 55 ; ² = 0% 30 26	17 183 200 50 64 114 66 74	13.8% 86.2% 100.0% 59.3% 40.7% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83]	
O.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.5 O.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.0 Fest for overall effect: Z = O.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI)	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130	16 186 202 = 0.47 1.20) 170 58 228 = 0.83 1.15) 403 283 686	10 60 70 26 29 55 55 ; ² = 0% 30 26	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	
9.2.4 Capsaicin Kulkantrakom 2013 Simpson 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.6 Test for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Test for overall effect: Z = 9.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130 358	16 186 202 = 0.477 120) 170 58 228 = 0.83 115) 403 283 686	10 60 70 26 29 55 55 55 55 29 30 26 56	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	
9.2.4 Capsaicin Kulkantrakom 2013 Simpson 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.6 Test for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Test for overall effect: Z = 9.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Fotal events	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130 358 15, df = 1 (P	16 186 202 = 0.477 1.20) 170 58 228 = 0.83 1.15) 403 283 686 = 0.82	10 60 70 ; P = 0% 26 29 55 ; P = 0% 30 26 56 ; P = 0%	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	
9.2.4 Capsaicin Kulkantrakom 2013 Simpson 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.6 Test for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Test for overall effect: Z = 9.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Fotal events Heterogeneity: Chi ² = 0.0 Fotal events Heterogeneity: Chi ² = 0.0	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130 358 05, df = 1 (P = 2.20 (P = 0	16 186 202 = 0.47 .20) 170 58 228 = 0.83 1.15) 403 283 686 = 0.82 .03)	10 60 70 26 29 2); ² = 0% 30 26 55 30 26 56); ² = 0%	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	
9.2.4 Capsaicin Kulkantrakorn 2013 Simpson 2017 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.6 Test for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Test for overall effect: Z = 9.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 Total events Heterogeneity: Chi ² = 0.0 Total events Heterogeneity: Chi ² = 0.0 Total events	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130 358 05, df = 1 (P = 2.20 (P = 0	16 186 202 = 0.47 .20) 170 58 228 = 0.83 .15) 403 283 686 = 0.82 .03)	10 60 70); ² = 0% 26 29); ² = 0% 30 26 56); ² = 0%	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	
9.2.4 Capsaicin Kulkantrakom 2013 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.6 Fest for overall effect: Z = 9.2.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.0 Fest for overall effect: Z = 9.2.6 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0.0 Fotal events Fotal events Heterogeneity: Chi ² = 0.0 Fotal events Fotal events Heterogeneity: Chi ² = 0.0 Fotal events Fotal events Fota	9 74 83 53, df = 1 (P = 1.29 (P = 0 75 21 96 05, df = 1 (P = 1.44 (P = 0 228 130 358 05, df = 1 (P = 2.20 (P = 0	16 186 202 = 0.47 .20) 170 58 228 = 0.83 .15) 403 283 686 = 0.82 .03)	10 60 70 ; ² = 0% 26 29); ² = 0% 30 26 56 ; ² = 0%	17 183 200 50 64 114 66 74 140	13.8% 86.2% 100.0% 59.3% 40.7% 100.0% 55.6% 44.4% 100.0%	0.96 [0.53, 1.72] 1.21 [0.92, 1.59] 1.18 [0.92, 1.51] 0.85 [0.62, 1.16] 0.80 [0.52, 1.23] 0.83 [0.64, 1.07] 1.24 [0.94, 1.64] 1.31 [0.94, 1.83] 1.27 [1.03, 1.58]	

FIGURE 3 | Effect of different drugs on 30% pain reduction in patients with diabetic peripheral neuropathy.

March a see Oash see a see	drug	s	Contr	ol		Risk Ratio	Risk Ratio
study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
9.3.1 Pregabalin							
Arezzo 2008	40	82	20	85	10.8%	2.07 [1.33, 3.23]	
Huffman 2015	24	102	14	101	7.1%	1.70 [0.93, 3.09]	
/IcDonnell 2018	11	46	4	45	2.7%	2.69 [0.92, 7.83]	100 CT
√lu 2018	99	313	74	307	18.5%	1.31 [1.02, 1.70]	
Raskin 2014	92	147	81	147	22.0%	1.14 [0.94, 1.38]	
Rauck 2013	14	66	35	120	8.3%	0.73 [0.42, 1.25]	a terre a second
Folle 2008	134	297	29	96	15.1%	1.49 [1.07, 2.08]	
/inik 2014(2)	14	50	26	108	8.0%	1.16 [0.67, 2.03]	in the second
Ziegler 2015	19	65	15	57	7.6%	1.11 [0.62, 1.98]	•
Subtotal (95% CI)		1168		1066	100.0%	1.32 [1.10, 1.58]	•
Fotal events	447		298				
Heterogeneity: Tau² = Fest for overall effect	= 0.03; Chi ^a Z = 2.93 (² = 14.3 P = 0.00	4, df = 8 03)	(P = 0.1	07); I² = 44	%	
.3.2 Duloxetine							
GAO 2010	57	106	55	109	35.5%	1.07 [0.82, 1.38]	
Gao 2015	85	203	58	202	34.7%	1.46 [1.11. 1.91]	
/asuda 2011	67	171	33	167	29.9%	1.98 [1.39, 2.84]	
Subtotal (95% CI)		480		478	100.0%	1.43 [1.01, 2.02]	◆
Fotal events	209		146				
Heterogeneity: Tau ² = Fest for overall effect	= 0.07; Chi ^a Z = 2.04 (i	² = 8.29 P = 0.04	, df = 2 (F 4)	P = 0.03	2); I² = 76%		
9.3.3 Tapentadol							_
Schwartz 2011	74	196	53	192	53.2%	1.37 [1.02, 1.83]	
/inik 2014	67	166	44	152	46.8%	1.39 [1.02, 1.90]	
Subtotal (95% CI)		362		344	100.0%	1.38 [1.12, 1.71]	-
Fotal events	141		97				
Heterogeneity: Tau* = Fest for overall effect	= 0.00; Chr Z = 2.97 (* = 0.01 P = 0.00	, df = 1 (F 03)	P = 0.9	3); 1* = 0%		
0.3.4 Capsaicin							
9.3.4 Capsaicin Kulkantrakorn 2013	6	16	9	17	16.2%	0.71 (0.33, 1.54)	
9 .3.4 Capsaicin Kulkantrakorn 2013 Kulkantrakorn 2019	6 12	16 42	9 14	17 42	16.2% 23.6%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63]	
9.3.4 Capsaicin Kulkantrakorn 2013 Kulkantrakorn 2019 Simpson 2017	6 12 41	16 42 186	9 14 35	17 42 183	16.2% 23.6% 60.2%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72]	
9.3.4 Capsaicin Kulkantrakorn 2013 Kulkantrakorn 2019 Bimpson 2017 Subtotal (95% CI)	6 12 41	16 42 186 244	9 14 35	17 42 183 242	16.2% 23.6% 60.2% 100.0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36]	
0.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Bimpson 2017 Subtotal (95% CI) Fotal events	6 12 41 59	16 42 186 244	9 14 35 58	17 42 183 242	16.2% 23.6% 60.2% 100.0 %	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36]	
9.3.4 Capsaicin Kulkantrakorn 2013 Kulkantrakorn 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect	6 12 41 59 = 0.00; Chiř Z = 0.04 (16 42 186 244 ² = 1.48 P = 0.97	9 14 35 58 , df = 2 (F 7)	17 42 183 242 P = 0.4	16.2% 23.6% 60.2% 100.0 % 8); I ² = 0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin	6 12 41 59 0.00; Chi ^a Z = 0.04 (i	16 42 186 244 °= 1.48 P = 0.91	9 14 35 58 , df = 2 (F 7)	17 42 183 242 P = 0.4	16.2% 23.6% 60.2% 100.0 % 8); I ² = 0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36]	
9.3.4 Capsaicin Kulkantrakorn 2013 Kulkantrakorn 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019	6 12 41 59 0.00; Chi [*] Z = 0.04 (1 119	16 42 186 244 ² = 1.48 P = 0.9 494	9 14 35 58 , df = 2 (F 7) 64	17 42 183 242 P = 0.4 330	16.2% 23.6% 60.2% 100.0% 8); I ² = 0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 Vinik 2014 (2)	6 12 41 59 0.00; Chi ^a Z = 0.04 (1 119 96	16 42 186 244 ² = 1.48 P = 0.9 494 275	9 14 35 58 , df = 2 (F 7) 64	17 42 183 242 P = 0.4 330 108	16.2% 23.6% 60.2% 100.0 % 8); I ² = 0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64 1 10]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Bimpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI)	6 12 41 59 0.00; Chi ² Z = 0.04 (1 119 96	16 42 186 244 °= 1.48 P = 0.97 494 275 769	9 14 35 58 , df = 2 (F 7) 64 45	17 42 183 242 9 = 0.4 330 108 438	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0 %	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Bimpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI) Fotal events	6 12 41 59 0.00; Chi ² Z = 0.04 (1 119 96 215	16 42 186 244 °= 1.48 P = 0.97 494 275 769	9 14 35 58 , df = 2 (F 7) 64 45 109	17 42 183 242 9 = 0.4 330 108 438	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0 %	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect	6 12 41 59 0.00; Chi ² Z = 0.04 (1 119 96 215 0.06; Chi ² Z = 0.10 (1	16 42 186 244 P = 0.97 494 275 769 ² = 4.11 P = 0.92	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2)	17 42 183 242 P = 0.43 330 108 438 P = 0.03	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.7 Gabapentin	6 12 41 59 0.00; Chi ² Z = 0.04 (1 119 96 215 0.06; Chi ² Z = 0.10 (1	16 42 186 244 ° = 1.48 P = 0.97 494 275 769 ° = 4.11 P = 0.97	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2)	17 42 183 242 9 = 0.4 330 108 438 9 = 0.0	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
 3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau² = Fest for overall effect 3.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau² = Fest for overall effect 3.6 Mirogabalin Fotal events Heterogeneity: Tau² = Fest for overall effect 3.7 Gabapentin Rauck 2013 	6 12 41 59 0.00; Chi ² Z = 0.04 (1 119 96 215 0.06; Chi ² Z = 0.10 (1 87	16 42 186 244 ° = 1.48 P = 0.97 494 275 769 ° = 4.11 P = 0.92	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2) 35	17 42 183 242 2 = 0.4 330 108 438 2 = 0.0 120	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
 3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau² = Fest for overall effect 3.6 Mirogabalin Baba 2019 Ainik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau² = Fest for overall effect 3.6 Mirogabalin Fotal events Heterogeneity: Tau² = Fest for overall effect 3.7 Gabapentin Rauck 2013 Bandercock 2012 	6 12 41 59 0.00; Chi ² Z = 0.04 (l 119 96 215 0.06; Chi ² Z = 0.10 (l 87 39	16 42 186 244 °= 1.48 P = 0.97 494 275 769 °= 4.11 P = 0.92 234 96	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2) 35 4	17 42 183 242 2 = 0.4 330 108 438 2 = 0.0 120 51	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51]	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 Vinik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.7 Gabapentin Rauck 2013 Bandercock 2012 Subtotal (95% CI)	6 12 41 59 0.00; Chi ² Z = 0.04 (l 119 96 215 0.06; Chi ² Z = 0.10 (l 87 39	16 42 186 244 ° = 1.48 P = 0.97 494 275 769 ° = 4.11 P = 0.92 234 96 330	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2) 35 4	17 42 183 242 2 = 0.4 330 108 438 2 = 0.0 120 51 171	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9% 100.0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51] 1.27 [0.92, 1.76] 5.18 [1.96, 13.68] 2.39 [0.57, 10.00]	
	6 12 41 59 0.00; Chi ⁷ Z = 0.04 (l 119 96 215 0.06; Chi ⁷ Z = 0.10 (l 87 39 126	16 42 186 244 ° = 1.48 P = 0.97 494 275 769 ° = 4.11 P = 0.92 234 96 330	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2) 35 4 39	17 42 183 242 2 = 0.4 330 108 438 2 = 0.0 120 51 171	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9% 100.0%	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51] 1.27 [0.92, 1.76] 5.18 [1.96, 13.68] 2.39 [0.57, 10.00]	
	6 12 41 59 0.00; Chi ² Z = 0.04 (l 119 96 215 0.06; Chi ² Z = 0.10 (l 87 39 126 0.94; Chi ² Z = 1.20 (l	16 42 186 244 * = 1.48 P = 0.91 494 275 769 * = 4.11 P = 0.91 234 96 330 * = 7.88 P = 0.21	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 3) 35 4 39 , df = 1 (F 3)	$17 \\ 42 \\ 183 \\ 242 \\ P = 0.43 \\ 330 \\ 108 \\ 438 \\ P = 0.03 \\ 120 \\ 51 \\ 171 \\ P = 0.03 \\ $	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9% 100.0% 05); I ² = 87'	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51] 1.27 [0.92, 1.76] 5.18 [1.96, 13.68] 2.39 [0.57, 10.00] %	
9.3.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect 9.3.7 Gabapentin Rauck 2013 Bandercock 2012 Subtotal (95% CI) Fotal events Heterogeneity: Tau ² = Fest for overall effect	6 12 41 59 0.00; Chi2 Z = 0.04 (119 96 215 0.06; Chi2 Z = 0.10 () 87 39 126 0.94; Chi2 Z = 1.20 ()	16 42 186 244 °= 1.48 P = 0.93 769 °= 4.11 P = 0.93 234 96 330 °= 7.88 P = 0.23	9 14 35 58 , df = 2 (F 7) 64 45 109 , df = 1 (F 2) 35 4 39 , df = 1 (F 3)	17 42 183 242 2 = 0.4 330 108 438 2 = 0.0 51 171 2 = 0.0	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9% 100.0% 05); I ² = 87'	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51] 1.27 [0.92, 1.76] 5.18 [1.96, 13.68] 2.39 [0.57, 10.00] %	
A.4 Capsaicin Kulkantrakom 2013 Kulkantrakom 2019 Simpson 2017 Subtotal (95% CI) Total events leterogeneity: Tau ² = Test for overall effect A.6 Mirogabalin Baba 2019 /inik 2014 (2) Subtotal (95% CI) Total events leterogeneity: Tau ² = test for overall effect A.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events leterogeneity: Tau ² = est for overall effect	6 12 41 59 0.00; Chi ⁷ Z = 0.04 (l 119 96 215 0.06; Chi ⁷ Z = 0.10 (l 87 39 126 0.94; Chi ⁷ Z = 1.20 (l	16 42 186 244 *= 1.48 P = 0.93 494 275 769 *= 4.11 P = 0.93 234 96 330 *= 7.88 P = 0.23	9 14 35 58 , df = 2 (f 7) 64 45 109 , df = 1 (F 2) 35 4 39 , df = 1 (F 3)	$17 \\ 42 \\ 183 \\ 242 \\ 2 = 0.43 \\ 330 \\ 108 \\ 438 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 120 \\ 51 \\ 171 \\ 2 = 0.03 \\ 100 \\ 10$	16.2% 23.6% 60.2% 100.0% 8); I ² = 0% 50.2% 49.8% 100.0% 4); I ² = 76% 55.1% 44.9% 100.0% 05); I ² = 87'	0.71 [0.33, 1.54] 0.86 [0.45, 1.63] 1.15 [0.77, 1.72] 0.99 [0.73, 1.36] 1.24 [0.95, 1.63] 0.84 [0.64, 1.10] 1.02 [0.69, 1.51] 1.27 [0.92, 1.76] 5.18 [1.96, 13.68] 2.39 [0.57, 10.00]	0.1 0.2 0.5 1 2 5 10 Eavours Intervention Eavours Placebo

Drugs	Most frequent adverse events	Numbers/total	Drugs	Most frequent adverse events	Numbers/total
Pregabalin	Somnolence	121/1201	Gabapentin	Nausea	23/330
	Headache	33/688		Somnolence	31/330
	Dizziness	119/1201		Dizziness	47/330
	Nausea	39/754		Muscle spasms	17/234
	Fatigue	33/778	Capsaicin	Application site pain	108/499
	Weight increased	36/584		Burning sensation	71/564
	Edema peripheral	83/999		Application site erythema	33/568
	Diarrhea	20/526		Pain in extremity	39/499
	Constipation	28/816	Tapentadol	Vomiting	34/362
	Muscle spasms	10/182		Nausea	62/362
	Vision blurred	10/309		Diarrhea	27/362
	Asthenia	11/247		Constipation	21/362
	Decreased appetite	11/202		Dizziness	27/362
	Urinary tract infection	15/500		Anxiety	26/362
Duloxetine	Nasopharyngitis	24/171	Lacosamide	Dizziness	37/283
	Dizziness	26/337		Fatigue	27/283
	Somnolence	43/280	Buprenorphine	Nausea	38/89
	Constipation	20/280		Constipation	28/89
	Nausea	46/337	Tanezumab	Arthralgia	7/38
	Diarrhea	17/280		Pain in extremity	4/48
	Fatigue	15/166	LY545694	Nausea	39/139
Mirogabalin	Nasopharyngitis	73/494		Vomiting	27/139
	Somnolence	75/771		Dizziness	19/139
	Dizziness	66/771	Fulranumab	Arthralgia	6/53
	Edema periphera	39/771		Edema peripheral	6/53
	Weight increased	25/771		Diarrhea	5/53
ABT - 894	Headache	27/231	PF-05089771	Constipation	2/44
	Nausea	12/231	Tocotrienols	Injury, poisoning and procedural complications	9/150
	Fatigue	14/231	Nabilone		0/13
	Dizziness	12/231	Citrullus colocynthis		0/30

number of studies, we cannot draw firm conclusions regarding their effectiveness.

Adverse Events

As shown in Table 1, Pregabalin is the most commonly used analgesic. Adverse events such as drowsiness, dizziness, peripheral edema, weight gain, headache, and dizziness have been reported. Among them, drowsiness, dizziness, and peripheral edema are the most common, and almost all studies have reported. Dizziness and drowsiness are most common in duloxetine, mirogabalin, and gabapentin. Headache mainly occurs in ABT-894. Nausea is mainly seen in duloxetine and tapentadol. Pain and burning at the site of application is mainly seen in topical drugs such as capsaicin. Other major adverse events mainly include dizziness and nausea (lacosamide), nausea and constipation (buprenorphine), arthralgia and pain in the extremities (tanezumab), nausea and vomiting (LY545694), arthritis and peripheral edema (fulranumab), constipation (PF-05089771), nausea (venlafaxine and ABT-594), and skin and subcutaneous tissue dysfunction (tocotrienols). No adverse events have been reported for citrullus colocynthis and Sativex. An adverse event was reported for nabilone but it was not specified.

The meta-analysis (Figure 5) showed that patients taking pregabalin [RR 1.29 (95% CI 1.07, 1.55, P = 0.008, $I^2 = 78\%$); SoF Supplementary Table 2], duloxetine [RR 1.16 (95% CI 1.08, 1.26, P = 0.00002, $I^2 = 0\%$; SoF Supplementary Table 3], capsaicin [RR 1.55 (95% CI 1.23, 1.97, P = 0.0002, $I^2 = 51\%$); SoF Supplementary Table 4], and tapentadol [RR 1.33 (95% CI 1.19, 1.48, P < 0.00001, $I^2 = 0\%$); SoF Supplementary Table 5] were more likely to report adverse events than the placebo group. In addition, ABT-894 [RR 0.94 (95% CI, 0.77, 1.16, p = 0.56, $I^2 = 0\%$); SoF **Supplementary Table 8**], gabapentin (RR 1.12 95% CI 0.97, 1.29, p = 0.11, $I^2 = 0\%$; SoF Supplementary Table 9), and lacosamide (RR 1.03, 95% CI 0.89, 1.19, P = 0.69, $I^2 = 34\%$; SoF Supplementary Table 7) showed no statistically significant difference in terms of the risk of adverse events compared with placebo. The subgroup analysis showed that patients taking pregabalin had a higher risk of adverse events in terms of drug dose (Supplementary Figure 8),

	Evente	Total	Evente	Total	Moinht	M H Bandom 05% Cl	M H Pandom 05% Cl
9.4.1 Dregabalin	Events	TUTAL	Lvents	rotar	weight	m-n, Ranuom, 95% CI	
9.4. TPTegabalin	60	00		05	12.00	1 00 10 00 1 061	
Arezzu 2008	09	82	50	00	12.9%	1.08 [0.93, 1.20]	
Chappen 2014	31	45	53	89	11.0%	1.16 [0.89, 1.50]	
Huffman 2015	94	198	78	186	11.7%	1.13 [0.91, 1.42]	
Jiang 2011	3	20	0	20	0.4%	7.00 [0.38, 127.32]	
McDonnell 2018	11	46	5	45	2.9%	2.15 [0.81, 5.70]	A DECEMBER OF A
Mu 2018	118	314	98	308	11.8%	1.18 [0.95, 1.47]	
Raskin 2014	51	147	52	147	10.1%	0.98 [0.72, 1.34]	
Rauck 2013	47	66	79	120	12.1%	1.08 [0.89, 1.32]	
Satoh 2011	112	179	49	136	11.2%	1.74 [1.35, 2.23]	
Tolle 2008	153	297	10	96	5.7%	4.95 [2.72, 8.98]	$ \longrightarrow $
Ziegler 2015	38	65	33	57	10.3%	1 01 0 75 1 371	
Subtotal (95% CI)		1459		1289	100.0%	1.29 [1.07, 1.55]	•
Total events	727		523				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	06; Chi ² = 4 = 2.66 (P = 0	5.18, df).008)	= 10 (P	< 0.000	001); I² = 7	8%	
9.4.2 Duloxetine							
GAO 2010	86	106	78	109	28 1%	1 13 0 98 1 321	
Gao 2015	94	202	72	202	11 7%	1 31 [1 03 1 65]	
Rowhotham 2012	42	57	22	51	0.2%	1 17 [0 00 1 60]	
Vocudo 2014	42	174	102	107	5.270	1.17 [0.90, 1.93]	
Yasuda 2011	145	171	123	107	51.5%	1.15[1.03, 1.29]	
Subtotal (95% CI)	(Second	536		529	100.0%	1.16 [1.08, 1.26]	•
Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	367 00; Chi² = 1 = 3.76 (P = 0	.25, df =).0002)	305 3 (P = 0	.74); I²	= 0%		
9.4.3 Tapentadol							
Schwartz 2011	139	196	100	193	45.3%	1.37 [1.16 1.61]	
Vinik 2014	132	166	93	152	54 7%	1 30 [1 12 1 51]	
Subtotal (95% CI)	102	362	00	345	100.0%	1 33 [1 19 1 48]	•
Total events	271	502	102	040	100.070	100 [1110, 1140]	
Latarevenus	2/1	22 46	195	C 41. 17	- 001		
Test for overall effect: Z =	: 5.10 (P < ().00001)	.04), 1	- 0 %		
9.4.4 Capsaicin							
Kulkantrakorn 2013	26	33	15	33	20.2%	1.73 [1.15, 2.62]	
Kulkantrakorn 2019	18	36	4	36	5.2%	4.50 [1.69, 11.99]	• • • •
Simpson 2017	87	186	62	183	33.2%	1.38 [1.07, 1.78]	
Vinik 2016	215	313	75	155	41.3%	1.42 [1.19, 1.70]	
Subtotal (95% CI)		568		407	100.0%	1.55 [1.23, 1.97]	•
Total events	346		156				
Hotorogonoity: Touz - 0.1	03; Chi² = 6	.07, df =).0002)	3 (P = 0	.11); I²	= 51%		
Test for overall effect: Z =	= 3.68 (P = (
Test for overall effect: Z = 9.4.5 ABT-894	= 3.68 (P = (
Test for overall effect: Z = 9.4.5 ABT-894 Rowbotham 2012	= 3.68 (P = (108	172	32	51	73.8%	1.00 [0.79, 1.27]	-
Test for overall effect: Z = 9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2)	= 3.68 (P = (108 23	172 59	32 32	51 65	73.8% 26.2%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19]	±
Test for overall effect: Z = 9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI)	= 3.68 (P = (108 23	172 59 231	32 32	51 65 116	73.8% 26.2% 100.0 %	1.00 (0.79, 1.27) 0.79 (0.53, 1.19) 0.94 (0.77, 1.16)	
Test for overall effect: Z = 9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Total events	= 3.68 (P = (108 23 131	172 59 231	32 32 64	51 65 116	73.8% 26.2% 100.0 %	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect. Z =	= 3.68 (P = (108 23 131 00; Chi ² = 1 : 0.58 (P = (172 59 231 .00, df=).56)	32 32 64 1 (P = 0	51 65 116 .32); I ²	73.8% 26.2% 100.0 % = 0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16]	•
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (172 59 231 .00, df = 0.56)	32 32 64 1 (P = 0	51 65 116 .32); I ²	73.8% 26.2% 100.0 % = 0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169	172 59 231 0.0, df = 0.56) 234	32 32 64 1 (P = 0 79	51 65 116 .32); I [≠] 120	73.8% 26.2% 100.0 % = 0% 86.9%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50	172 59 231 .00, df=).56) 234 96	32 32 64 1 (P = 0 79 20	51 65 116 .32); I [≠] 120 50	73.8% 26.2% 100.0% = 0% 86.9% 13.1%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl)	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50	172 59 231 .00, df=).56) 234 96 330	32 32 64 1 (P = 0 79 20	51 65 116 .32); I ² 120 50 170	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219	172 59 231 .00, df= 0.56) 234 96 330	32 32 64 1 (P = 0 79 20 99	51 65 116 .32); I ² 120 50 170	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1	= 3.68 (P = (108 23 131 00; Chi [≢] = 1 = 0.58 (P = (169 50 219 D0: Chi [≇] = 0	172 59 231 .00, df=).56) 234 96 330 .68, df=	32 32 64 1 (P = 0 79 20 99 1 (P = 0	51 65 116 .32); I ² 120 50 170 .41): I ²	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 J0; Chi ² = 0 : 1.60 (P = (172 59 231 .00, df= 0.56) 234 96 330 .68, df= 0.11)	32 32 64 1 (P = 0 79 20 99 1 (P = 0	51 65 116 .32); I ² 120 50 170 .41); I ²	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.4.8 Lacosamide	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 : 1.60 (P = (172 59 231 0.00, df= 0.56) 234 96 330 .68, df= 0.11)	32 64 1 (P = 0 79 20 99 1 (P = 0	51 65 116 32); I ² 120 50 170 41); I ²	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.4.8 Lacosamide Shaibani 2009	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 = 1.60 (P = (331	172 59 231 .00, df= .56) 234 96 330 .68, df= .11) 403	32 32 64 1 (P = 0 79 20 99 1 (P = 0 55	51 65 116 .32); I ² 120 50 170 .41); I ² 66	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.8 Lacosamide Shaibani 2009 Ziegier 2010	= 3.68 (P = (108 23 131 00; Chi [#] = 1 = 0.58 (P = (169 50 219 00; Chi [#] = 0 = 1.60 (P = (331 174	172 59 231 .00, df= 0.56) 234 96 330 .68, df= 0.11) 403 283	32 32 64 1 (P = 0 79 20 99 1 (P = 0 55 40	51 65 116 .32); I ² 120 50 170 .41); I ² 66 74	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI)	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 = 1.60 (P = (331 174	172 59 231 .00, df= 0.56) 234 96 330 .68, df= 0.11) 403 283 686	32 32 64 1 (P = 0 79 20 99 1 (P = 0 55 40	51 65 116 32); I ² 120 50 170 41); I ² 66 74 140	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6% 100.0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43] 1.03 [0.89, 1.19]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 Rowbotham 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 = 1.60 (P = (331 174 505	172 59 231 .00, df= .56) 234 96 330 .68, df= .11) 403 283 686	32 32 64 1 (P = 0 79 20 99 1 (P = 0 55 40 95	51 65 116 .32); P 120 50 170 .41); P 66 74 140	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6% 100.0%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43] 1.03 [0.89, 1.19]	
Prest for overall effect: $Z =$ 9.4.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: $Z =$ 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: $Z =$ 9.4.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Total events	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 : 1.60 (P = (331 174 505 D0; Chi ² = 1 : 0.39 (P = (172 59 231 .00, df = .56) 234 96 330 .68, df = .11) 403 283 686 52, df = .69)	32 32 64 1 (P = 0 99 1 (P = 0 55 40 95 1 (P = 0	51 65 116 .32); ² 120 50 170 .41); ² 66 74 140 .22); ²	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6% 100.0% = 34%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43] 1.03 [0.89, 1.19]	
9.4.5 ABT-894 Rowbotham 2012 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 = 1.60 (P = (331 174 505 D0; Chi ² = 1 : 0.39 (P = (172 59 231 .00, df = 96 330 .68, df = 1.11) 403 283 686 .52, df = 0.69)	32 32 64 1 (P = 0 99 1 (P = 0 55 40 95 1 (P = 0	51 65 116 .32); ² 120 50 170 .41); ² 66 74 140 .22); ²	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6% 100.0% = 34%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43] 1.03 [0.89, 1.19]	
Test for overall effect. Z = 9.4.5 ABT-894 Rowbotham 2012 (2) Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect. Z = 9.4.7 Gabapentin Rauck 2013 Sandercock 2012 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z = 9.4.8 Lacosamide Shaibani 2009 Ziegler 2010 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0.1 Test for overall effect: Z =	= 3.68 (P = (108 23 131 00; Chi ² = 1 = 0.58 (P = (169 50 219 00; Chi ² = 0 : 1.60 (P = (331 174 505 00; Chi ² = 1 : 0.39 (P = (172 59 231 .00, df = 96 330 .68, df = 1.11) 403 283 686 .52, df = .69)	32 32 64 1 (P = 0 79 20 99 1 (P = 0 55 40 95 1 (P = 0 40 95	51 65 116 .32); * * 120 50 170 .41); * 66 74 140 .22); *	73.8% 26.2% 100.0% = 0% 86.9% 13.1% 100.0% = 0% 69.4% 30.6% 100.0% = 34%	1.00 [0.79, 1.27] 0.79 [0.53, 1.19] 0.94 [0.77, 1.16] 1.10 [0.94, 1.28] 1.30 [0.88, 1.92] 1.12 [0.97, 1.29] 0.99 [0.88, 1.11] 1.14 [0.90, 1.43] 1.03 [0.89, 1.19]	0.2 0.5 1 2 5 Favours Intervention Favours Placebo

longer intervention time (**Supplementary Figure 9**), and highquality studies (**Supplementary Figure 10**). However, in terms of intervention duration < 8 weeks and low-quality studies, there was no significant difference between the two groups. Lacosamide showed no significant difference with placebo for either a high dose [RR 1.05 (95% CI 0.96, 1.15, 0 = 0.26, $I^2 = 12\%$)] or low dose [RR 1.01 (95% CI 0.89, 1.14, P = 0.94, $I^2 = 0\%$)] (**Supplementary Figure 11**).

DISCUSSION

Summary of Evidence

We conducted a meta-analysis based on the available studies published thus far and identified a large amount of related evidence on the effectiveness of different medicines for the treatment of pain in patients with pDPN. Analysis showed that pregabalin, duloxetine, capsaicin, tapentadol and lacosamide were all more effective than placebo, but the quality of evidence was low. Pregabalin, as a first-line clinical drug, is recommended by the guidelines of the European Neurological Association and the American Academy of Neurology (2, 41). Our study showed significant differences in pain scores and 30 and 50% pain reduction compared with placebo, again demonstrating its effectiveness. Due to the large number of included studies and the inconsistency of research methods and pain test standards in different articles, leading to high heterogeneity of pregabalin. Therefore, we used a subgroup analysis to reduce its heterogeneity, and the results of the subgroup analysis showed that pregabalin is more effective than placebo. In addition, study shows that some patients do not tolerate higher doses of pregabalin well. In this case, the therapeutic effect of the lower dose may be insufficient, although dose escalation might be precluded by side effects. In addition, ethnic factors could also play a role (42). Although gabapentin and pregabalin have a similar mechanism of action, the two drugs are often used interchangeably in clinical treatment, but the results of the study show that gabapentin has no significant effect compared with placebo. The newly developed drug ABT894 also showed no significant difference compared with placebo. Although capsaicin and lacosamide showed significant differences in terms of pain scores compared with the placebo, there was no significant difference in their 30% pain reduction compared with placebo. Therefore, the evidence shows that capsaicin and lacosamide could alleviate pain in pDPN patients, but they may not offer a significant degree of relief. In addition, unlike lacosamide, the risk of adverse events is significantly increased with capsaicin. Mirogabalin was developed specifically for the treatment of peripheral neuropathic pain, and our results showed that mirogabalin could significantly reduce the pain score, but there was no significant difference compared with placebo in terms of the 50% pain reduction. Duloxetine is a selective serotonin and norepinephrine reuptake inhibitor that has been widely used in the clinic.

In terms of adverse events, pregabalin, tapentadol, duloxetine, and capsaicin had a higher risk of adverse events than placebo, while lacosamide, gabapentin, and ABT894 had no significant difference. In addition, evidence shows that the risk of adverse events of tapentadol and capsaicin is significantly higher than

that of pregabalin and duloxetine. According to studies, the tolerability of pregabalin is equal to or slightly worse than that of placebo in clinical trials (43, 44), which are mainly conducted in North America and/or Europe. The researchers compared the safety data of Western RCTs evaluating pregabalin for painful DPN with data from two similar trials in East Asian origin and found that patients of East Asian origin have more common side effects such as dizziness, drowsiness, peripheral edema and weight gain than whites (45). This may be due to the relatively low average weight of patients of East Asian origin and increased exposure to pregabalin, which may lead to reduced tolerance and may lead to a decrease in the average prescribed dose. On the other hand, although race does not seem to have a significant effect on the pharmacokinetics of pregabalin (44), since the vast majority of clinical trials have been conducted in Europe/North America. More high-quality trials are needed in East Asia to further verify the ethnic differences in the pharmacodynamics. Our research shows that duloxetine is better than pregabalin in terms of 30 and 50% pain reduction. In addition, significant differences have been observed in adverse events. Therefore, we comprehensively consider that duloxetine may have a better effect on painful DPN.

In addition, due to the limitation of the number and quality of RCTs on analgesic drugs, Therefore, the efficacy and safety of all the drugs we analyzed need to be verified by high-quality long-term trials.

We also compared our results with those of several published studies evaluating different drug treatments for painful DPN and found that our results were somewhat consistent with those of other studies. In 2008, a meta-analysis on the effect of pregabalin in the treatment of painful DPN was conducted and revealed that pregabalin was more effective than placebo in the treatment of pain associated with painful DPN due to the early study time, lack of risk assessment and quality of evidence in the included studies (46). Zhang et al. showed that pregabalin was significantly more effective than placebo in treating DPN-related pain, but they did not base their findings on the baseline changes between groups (47). Recently, the therapeutic effect of pregabalin on neuralgia was investigated, and pregabalin was found to have a good effect on patients with peripheral neuralgia, but this study included patients with postherpetic neuralgia (PNH) (48). In addition, these studies only examined the efficacy of pregabalin. Waldfogel et al. analyzed pregabalin, tapentadol and capsaicin that both pregabalin and tapentadol had significant therapeutic effects on painful DPN. However, their study revealed that 0.075% capsaicin showed no significant difference compared with placebo, mainly due to the comprehensive analysis of capsaicin at different concentrations (43).

Due to the short intervention time of most studies, the intervention duration was <3 months; only a small number of studies were more than 3 months. Because painful DPN itself requires long-term treatment, these drugs are often used in the clinic as long-term drugs to relieve symptoms in patients with painful DPN. Therefore, we cannot evaluate the long-term effects or adverse events of these medications. In particular, for opioids, tapentadol was found to have a better therapeutic effect on painful DPN. Our study showed that tapentadol had better pain scores and 30% and 50% pain reduction rates than other

medicines; in particular, tapentadol had the greatest reduction in pain scores compared to the placebo group. However, since all of the studies we included were short-term studies, our results showed that tapentadol also significantly increased the risk of adverse events. In addition, the guidelines of the American Academy of Neurology hold that opioids are not recommended for the treatment of chronic pain due to the lack of evidence of long-term efficacy and increasing evidence of the serious risks of opioids, especially addiction and abuse (49).

Strengths and Limitations of This Study

There are many limitations to our analysis and evidence. We excluded studies with mixed populations of painful DPN and other types of peripheral neuropathy, such as PNH, which excluded some relevant data to an extent. In addition, many studies often use multiple estimates to evaluate pain outcomes, and different studies use different tools to report pain, which may also influence our analysis results. Second, the pain scale itself has many limitations because it can only assess pain at a certain time point and cannot reflect other important aspects of pain treatment, such as improvements in patient function. There are few studies on other drugs, such as hemp drugs, tanezumab, and tocotrienols, so meta-analyses cannot be carried out. Because some studies fail to report specific information on blindness and allocation concealment and provide an incomplete reporting of results, we often downgraded trials in the bias risk assessments.

CONCLUSIONS

In summary, our results suggest that pregabalin, duloxetine and tapentadol have good efficacy in the treatment of DPN pain. These three drugs are also the most common drugs for the clinical treatment of painful DPN at present and are also the three drugs approved by the US Food and Drug Administration (FDA) for its treatment. Lacosamide, milobalin, and capsaicin also have a certain effect compared

REFERENCES

- Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. (2019) 5:41. doi: 10.1038/s41572-019-0092-1
- Bril V, England J, Franklin GM, Backonja M, Cohen J, Del Toro D, et al. Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. *Neurology*. (2011) 76:1758–65. doi: 10.1212/WNL.0b013e3182166ebe
- Snedecor SJ, Sudharshan L, Cappelleri JC, Sadosky A, Mehta S, Botteman M. Systematic review and meta-analysis of pharmacological therapies for painful diabetic peripheral neuropathy. *Pain Pract.* (2014) 14:167–84. doi: 10.1111/papr.12054
- Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A. Meta-analyses involving cross-over trials: methodological issues. *Int J Epidemiol.* (2002) 31:140–9. doi: 10.1093/ije/31.1.140
- Arezzo JC, Rosenstock J, Lamoreaux L, Pauer L. Efficacy and safety of pregabalin 600 mg/d for treating painful diabetic peripheral neuropathy: a double-blind placebo-controlled trial. *BMC Neurol.* (2008) 8:33. doi: 10.1186/1471-2377-8-33

with placebo, but there is no significant difference between ABT-894 and gabapentin and placebo. However, due to limitations such as fewer RCTs related to these drugs and shorter follow-up time, it is still necessary to design large sample RCTs with strict criteria and long-term follow-up periods to prove the efficacy of these drugs and to better guide clinical decision-making, patient selection and clinical practice guidelines.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

LJ was mainly involved in electronic retrieval, abstract screening, data extraction, data analysis, and manuscript review, while FJ was mainly involved in method design, electronic retrieval, abstract screening, data extraction, data analysis and interpretation, and manuscript review. ML participated in the revision of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This research was funded by the National Natural Science Foundation of China (81670736).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2021.682244/full#supplementary-material

- Kadiroglu AK, Sit D, Kayabasi H, Tuzcu AK, Tasdemir N, Yilmaz ME. The effect of venlafaxine HCl on painful peripheral diabetic neuropathy in patients with type 2 diabetes mellitus. *J Diabetes Complicat*. (2008) 22:241–5. doi: 10.1016/j.jdiacomp.2007.03.010
- 7. Tolle T, Freynhagen R, Versavel M, Trostmann U, Young JP Jr. Pregabalin for relief of neuropathic pain associated with diabetic neuropathy: a randomized, double-blind study. *Eur J Pain*. (2008) 12:203–13. doi: 10.1016/j.ejpain.2007.05.003
- Rowbotham MC, Duan RW, Thomas J, Nothaft W, Backonja MM. A randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of ABT-594 in patients with diabetic peripheral neuropathic pain. *Pain.* (2009) 146:245–52. doi: 10.1016/j.pain.2009.06.013
- Shaibani A, Fares S, Selam JL, Arslanian A, Simpson J, Sen D, et al. Lacosamide in painful diabetic neuropathy: an 18-week double-blind placebo-controlled trial. J Pain. (2009) 10:818–28. doi: 10.1016/j.jpain.2009. 01.322
- Ziegler D, Hidvegi T, Gurieva I, Bongardt S, Freynhagen R, Sen D, et al. Efficacy and safety of lacosamide in painful diabetic neuropathy. *Diabetes Care.* (2010) 33:839–41. doi: 10.2337/dc09-1578
- 11. Gao Y, Ning G, Jia WP, Zhou ZG, Xu ZR, Liu ZM, et al. Duloxetine versus placebo in the treatment of patients with diabetic neuropathic pain in China. *Chin Med J.* (2010) 123:3184–92.

- Selvarajah D, Gandhi R, Emery CJ, Tesfaye S. Randomized placebo-controlled double-blind clinical trial of cannabis-based medicinal product (Sativex) in painful diabetic neuropathy: depression is a major confounding factor. *Diabetes Care.* (2010) 33:128–30. doi: 10.2337/dc09-1029
- Jiang W, Ladd S, Martsberger C, Feinglos M, Spratt SE, Kuchibhatla M, et al. Effects of pregabalin on heart rate variability in patients with painful diabetic neuropathy. J Clin Psychopharmacol. (2011) 31:207–13. doi: 10.1097/JCP.0b013e31820f4f57
- Schwartz S, Etropolski M, Shapiro DY, Okamoto A, Lange R, Haeussler J, et al. Safety and efficacy of tapentadol ER in patients with painful diabetic peripheral neuropathy: results of a randomized-withdrawal, placebo-controlled trial. *Curr Med Res Opin.* (2011) 27:151–62. doi: 10.1185/03007995.2010.537589
- Yasuda H, Hotta N, Nakao K, Kasuga M, Kashiwagi A, Kawamori R. Superiority of duloxetine to placebo in improving diabetic neuropathic pain: results of a randomized controlled trial in Japan. J Diabetes Investig. (2011) 2:132–9. doi: 10.1111/j.2040-1124.2010.00073.x
- 16. Satoh J, Yagihashi S, Baba M, Suzuki M, Arakawa A, Yoshiyama T, et al. Efficacy and safety of pregabalin for treating neuropathic pain associated with diabetic peripheral neuropathy: a 14 week, randomized, double-blind, placebo-controlled trial. *Diabetic Med J Br Diabetic Assoc.* (2011) 28:109–16. doi: 10.1111/j.1464-5491.2010.03152.x
- Campbell CM, Kipnes MS, Stouch BC, Brady KL, Kelly M, Schmidt WK, et al. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy. *Pain.* (2012) 153:1815–23. doi: 10.1016/j.pain.2012.04.014
- Rowbotham MC, Arslanian A, Nothaft W, Duan RW, Best AE, Pritchett Y, et al. Efficacy and safety of the alpha4beta2 neuronal nicotinic receptor agonist ABT-894 in patients with diabetic peripheral neuropathic pain. *Pain.* (2012) 153:862–8. doi: 10.1016/j.pain.2012.01.009
- Toth C, Mawani S, Brady S, Chan C, Liu C, Mehina E, et al. An enrichedenrolment, randomized withdrawal, flexible-dose, double-blind, placebocontrolled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. *Pain.* (2012) 153:2073–82. doi: 10.1016/j.pain.2012.06.024
- Sandercock D, Cramer M, Biton V, Cowles VE. A gastroretentive gabapentin formulation for the treatment of painful diabetic peripheral neuropathy: efficacy and tolerability in a double-blind, randomized, controlled clinical trial. *Diabetes Res Clin Pract.* (2012) 97:438–45. doi: 10.1016/j.diabres.2012.03.010
- Kulkantrakorn K, Lorsuwansiri C, Meesawatsom P. 0.025% capsaicin gel for the treatment of painful diabetic neuropathy: a randomized, doubleblind, crossover, placebo-controlled trial. *Pain Pract.* (2013) 13:497–503. doi: 10.1111/papr.12013
- Rauck R, Makumi CW, Schwartz S, Graff O, Meno-Tetang G, Bell CF, et al. A randomized, controlled trial of gabapentin enacarbil in subjects with neuropathic pain associated with diabetic peripheral neuropathy. *Pain Pract.* (2013) 13:485–96. doi: 10.1111/papr.12014
- Chappell AS, Iyengar S, Lobo ED, Prucka WR. Results from clinical trials of a selective ionotropic glutamate receptor 5 (iGluR5) antagonist, LY5454694 tosylate, in 2 chronic pain conditions. *Pain.* (2014) 155:1140–9. doi: 10.1016/j.pain.2014.02.023
- Niesters M, Proto PL, Aarts L, Sarton EY, Drewes AM, Dahan A. Tapentadol potentiates descending pain inhibition in chronic pain patients with diabetic polyneuropathy. *Br J Anaesth*. (2014) 113:148–56. doi: 10.1093/bja/aeu056
- 25. Vinik A, Rosenstock J, Sharma U, Feins K, Hsu C, Merante D, et al. Efficacy and safety of mirogabalin (DS-5565) for the treatment of diabetic peripheral neuropathic pain: a randomized, double-blind, placebo- and active comparator-controlled, adaptive proof-of-concept phase 2 study. *Diabetes Care.* (2014) 37:3253–61. doi: 10.2337/dc14-1044
- 26. Vinik AI, Shapiro DY, Rauschkolb C, Lange B, Karcher K, Pennett D, et al. A randomized withdrawal, placebo-controlled study evaluating the efficacy and tolerability of tapentadol extended release in patients with chronic painful diabetic peripheral neuropathy. *Diabetes Care.* (2014) 37:2302–9. doi: 10.2337/dc13-2291
- Wang H, Romano G, Frustaci ME, Bohidar N, Ma H, Sanga P, et al. Fulranumab for treatment of diabetic peripheral neuropathic pain: a randomized controlled trial. *Neurology.* (2014) 83:628–37. doi: 10.1212/WNL.00000000000686

- Bramson C, Herrmann DN, Carey W, Keller D, Brown MT, West CR, et al. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. *Pain Med.* (2015) 16:1163–76. doi: 10.1111/pme.12677
- 29. Gao Y, Guo X, Han P, Li Q, Yang G, Qu S, et al. Treatment of patients with diabetic peripheral neuropathic pain in China: a double-blind randomised trial of duloxetine vs. placebo. *Int J Clin Pract.* (2015) 69:957–66. doi: 10.1111/ijcp.12641
- Ziegler D, Duan WR, An G, Thomas JW, Nothaft W. A randomized doubleblind, placebo-, and active-controlled study of T-type calcium channel blocker ABT-639 in patients with diabetic peripheral neuropathic pain. *Pain.* (2015) 156:2013–20. doi: 10.1097/j.pain.00000000000263
- Huffman C, Stacey BR, Tuchman M, Burbridge C, Li C, Parsons B, et al. Efficacy and safety of pregabalin in the treatment of patients with painful diabetic peripheral neuropathy and pain on walking. *Clin J Pain*. (2015) 31:946–58. doi: 10.1097/AJP.00000000000198
- Heydari M, Homayouni K, Hashempur MH, Shams M. Topical Citrullus colocynthis (bitter apple) extract oil in painful diabetic neuropathy: a doubleblind randomized placebo-controlled clinical trial. J Diabetes. (2016) 8:246– 52. doi: 10.1111/1753-0407.12287
- Simpson RW, Wlodarczyk JH. Transdermal buprenorphine relieves neuropathic pain: a randomized, double-blind, parallel-group, placebocontrolled trial in diabetic peripheral neuropathic pain. *Diabetes Care*. (2016) 39:1493–500. doi: 10.2337/dc16-0123
- 34. Vinik AI, Perrot S, Vinik EJ, Pazdera L, Jacobs H, Stoker M, et al. Capsaicin 8% patch repeat treatment plus standard of care (SOC) versus SOC alone in painful diabetic peripheral neuropathy: a randomised, 52-week, openlabel, safety study. *BMC Neurol.* (2016) 16:251. doi: 10.1186/s12883-016-07 52-7
- 35. Mu Y, Liu X, Li Q, Chen K, Liu Y, Lv X, et al. Efficacy and safety of pregabalin for painful diabetic peripheral neuropathy in a population of Chinese patients: a randomized placebo-controlled trial. J Diabetes. (2018) 10:256–65. doi: 10.1111/1753-0407.12585
- 36. Simpson DM, Robinson-Papp J, Van J, Stoker M, Jacobs H, Snijder RJ, et al. Capsaicin 8% patch in painful diabetic peripheral neuropathy: a randomized, double-blind, placebo-controlled study. J Pain. (2017) 18:42–53. doi: 10.1016/j.jpain.2016.09.008
- McDonnell A, Collins S, Ali Z, Iavarone L, Surujbally R, Kirby S, et al. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. *Pain.* (2018) 159:1465–76. doi: 10.1097/j.pain.000000000001227
- Baba M, Matsui N, Kuroha M, Wasaki Y, Ohwada S. Mirogabalin for the treatment of diabetic peripheral neuropathic pain: a randomized, doubleblind, placebo-controlled phase III study in Asian patients. *J Diabetes Investig.* (2019) 10:1299–306. doi: 10.1111/jdi.13013
- Kulkantrakorn K, Chomjit A, Sithinamsuwan P, Tharavanij T, Suwankanoknark J, Napunnaphat P. 0.075% capsaicin lotion for the treatment of painful diabetic neuropathy: a randomized, double-blind, crossover, placebo-controlled trial. J Clin Neurosci. (2019) 62:174–9. doi: 10.1016/j.jocn.2018.11.036
- Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. *Eur J Neurol.* (2010) 17:1113–e88. doi: 10.1111/j.1468-1331.2010.02999.x
- Hor CP, Fung WY, Ang HA, Lim SC, Kam LY, Sim SW, et al. Efficacy of oral mixed tocotrienols in diabetic peripheral neuropathy: a randomized clinical trial. *JAMA Neurol.* (2018) 75:444–52. doi: 10.1001/jamaneurol.20 17.4609
- Wang YF, Chen YT, Tsai CW, Yen YC, Chen YC, Shia BC, et al. Persistence of pregabalin treatment in Taiwan: a nation-wide population-based study. J Headache Pain. (2020) 21:54. doi: 10.1186/s10194-020-01123-4
- Waldfogel JM, Nesbit SA, Dy SM, Sharma R, Zhang A, Wilson LM, et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life: a systematic review. *Neurology.* (2017) 88:1958–67. doi: 10.1212/WNL.000000000003 882
- Straube S, Derry S, Moore RA, McQuay HJ. Pregabalin in fibromyalgia: meta-analysis of efficacy and safety from company clinical trial reports. *Rheumatology*. (2010) 49:706–15. doi: 10.1093/rheumatology/kep432

- 45. Ogawa S, Satoh J, Arakawa A, Yoshiyama T, Suzuki M. Pregabalin treatment for peripheral neuropathic pain: a review of safety data from randomized controlled trials conducted in Japan and in the west. *Drug Saf.* (2012) 35:793– 806. doi: 10.1007/BF03261976
- 46. Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. *Diabetes Care.* (2008) 31:1448–54. doi: 10.2337/dc07-2105
- 47. Zhang SS, Wu Z, Zhang LC, Zhang Z, Chen RP, Huang YH, et al. Efficacy and safety of pregabalin for treating painful diabetic peripheral neuropathy: a meta-analysis. *Acta Anaesthesiol Scand.* (2015) 59:147–59. doi: 10.1111/aas.12420
- Onakpoya IJ, Thomas ET, Lee JJ, Goldacre B, Heneghan CJ. Benefits and harms of pregabalin in the management of neuropathic pain: a rapid review and meta-analysis of randomised clinical trials. *BMJ Open.* (2019) 9:e023600. doi: 10.1136/bmjopen-2018-023600
- Franklin GM, American Academy of N. Opioids for chronic noncancer pain: a position paper of the American Academy of Neurology. *Neurology*. (2014) 83:1277–84. doi: 10.1212/WNL.00000000000839

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Jingxuan, Litian and Jianfang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.