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ABSTRACT

The Ewing Sarcoma protein (EWS) is a multifaceted
RNA binding protein (RBP) with established roles in
transcription, pre-mRNA processing and DNA dam-
age response. By generating high quality EWS–RNA
interactome, we uncovered its specific and preva-
lent interaction with a large subset of primary mi-
croRNAs (pri-miRNAs) in mammalian cells. Knock-
down of EWS reduced, whereas overexpression en-
hanced, the expression of its target miRNAs. Bio-
chemical analysis revealed that multiple elements in
target pri-miRNAs, including the sequences flank-
ing the stem–loop region, contributed to high affinity
EWS binding and sequence swap experiments be-
tween target and non-target demonstrated that the
flanking sequences provided the specificity for en-
hanced pri-miRNA processing by the Microproces-
sor Drosha/DGCR8. Interestingly, while repressing
Drosha expression, as reported earlier, we found that
EWS was able to enhance the recruitment of Drosha
to chromatin. Together, these findings suggest that
EWS may positively and negatively regulate miRNA
biogenesis via distinct mechanisms, thus providing
a new foundation to understand the function of EWS
in development and disease.

INTRODUCTION

EWS belongs to the TET family of RNA binding pro-
teins (RBPs), consisting of FUS/TLS, EWS, and TAF15
(1,2). These RBPs have been implicated in multiple lay-
ers of regulated gene expression via their roles in modu-
lating transcription (3–6), coupling between transcription

and RNA processing (7) and mediating splice site selection
during pre-mRNA splicing (8–11). Consequently, knockout
of these RBPs causes severe developmental abnormality in
mice (12,13). Importantly, various chromosome transloca-
tion events that involve EWS and mutations in both EWS
and FUS/TLS have been linked to specific human diseases
(14,15).

Given the ability of individual TET family members to
bind RNAs, multiple groups have performed crosslinking
immunoprecipitation coupled with deep sequencing (CLIP-
seq) to characterize their RNA binding profiles on both
cellular and animal models (16,17). The initial analysis by
PAR-CLIP on HEK293 cells showed related, but distinct
RNA binding profiles of FUS/TLS, EWS and TAF15 (18).
This study also revealed a general association of these RBPs
with 3′ splice sites in pre-mRNAs and a preference for both
G-rich and AU-rich sequences. However, the association of
these RBPs with 3′ splice sites was not seen by a separate
CLIP study of EWS on HeLa cells, which instead showed
enriched RNA binding near EWS-regulated 5′ splice sites
(10). Two independent genome-wide analyses of FUS/TLS
in mouse and human brain also found its prevalent coat-
ing on long pre-mRNA transcripts; however, most binding
events detected in these studies did not seem to occur near
induced alternative splicing events in FUS/TLS deficient
cells (8,11). While it has been unclear about the sources of
such discrepancies, the seemly degenerative sequence pref-
erence for the TET family members might be explained by
the observation that FUS/TLS appears to bind certain sec-
ondary structures in RNAs, rather than specific motifs in
exposed single-stranded RNA regions (18). More impor-
tantly, the biological meaning of most detected RNA bind-
ing events has been poorly understood.

We were initially motivated to investigate various in-
consistencies among published genome-wide RNA inter-
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actomes by the TET family members. Instead of relying
on mining the existing datasets, we generated our own
high quality EWS CLIP-seq libraries on HeLa cells and
noted prevalent interaction of EWS with a large number
of expressed pri-miRNAs, reminiscent of FUS/TLS bind-
ing to hairpin-containing RNAs as reported earlier (18).
We therefore decided to focus on this new lead in the cur-
rent study because it has been reported that a large num-
ber of miRNAs were induced while others suppressed in
EWS knockout mouse embryonic fibroblasts (MEFs) (19).
Interestingly, EWS deficiency has also been linked to ele-
vated Drosha expression at both the mRNA and protein
levels, and because Drosha is the catalytic subunit of the
Microprocesssor, which is recruited to chromatin to facil-
itate co-transcriptional pri-miRNA processing in the nu-
cleus (20,21), increased Drosha may therefore account for
the induction of a specific set of miRNAs (19). However,
how EWS deficiency would also cause the repression of
other miRNAs has remained unknown.

We now provide evidence for a direct role of EWS in
enhancing pri-miRNA processing by the Microprocessor,
thus joining EWS to the growing list of RBPs involved in
modulating miRNA biogenesis in mammals (22–24). Un-
like other RBPs involved in modulating miRNA biogene-
sis described earlier, EWS appears to bind and modulate
processing of a large number of pri-miRNAs. Coupled with
EWS-mediated Drosha repression, this RBP appears to be
capable of both stimulating and inhibiting miRNA biogen-
esis, but via distinct mechanisms, which we have dissected
in this study. The newly elucidated function of EWS adds a
new dimension in understanding the mechanisms underly-
ing EWS mutation-induced cancers (5,25,26) and neurode-
generative diseases (27).

MATERIALS AND METHODS

Cell culture, transfection, antibodies, RT-qPCR of miRNAs

HeLa cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% newborn
bovine serum (Gibco) at 37◦C in 5% CO2. RNAimax
and Lipo2000 (Life Technology) were used for siRNA
and plasmid transfection, respectively, according
to manufacturer’s instructions. The siRNA against
Drosha (5′-AACGAGUAGGCUUCGUGACUU-
3′) was prepared based on published sequences
(28), and two independent siRNAs against EWS
(5′-AUGAUCUGGCAGACUUCUUUA-3′; 5′-
AGCGAGGUGGCUUCAAUAAGC-3′) were according
to the siRNA database (29). Antibodies for specific ex-
periments described in the Results section were purchased
from various vendors: anti-Drosha (Abcam, ab12286),
anti-DGCR8 (Proteintech, 10996-1-AP), anti-EWS (Pro-
teintech, 55191-1-AP), anti-Myc (Proteintech, 60003-2-Ig),
anti-eGFP (Proteintech, 66002-1-Ig), anti-actin (ABclonal,
AC004), anti-FLAG tag (Proteintech, 66008-2-Ig).

The miScript PCR Starter Kit (Qiagen, 218193) was
used to quantify miRNAs. After Trizol extraction of to-
tal RNA, mature miRNAs were polyadenylated by poly(A)
polymerase and reverse transcribed into cDNAs by using an
oligo-dT primer provided in this kit. The oligo-dT primer

contains a 3′ degenerate anchor and a universal tag se-
quence at the 5′ end, allowing quantitative analysis of ma-
ture miRNA by real-time PCR using the universal primer
and a miRNA-specific primer. Quantitative PCR was car-
ried out with 1:100 dilution cDNA, 2× SYBR Green PCR
Mix, 10× miScript universal primers included in the kit, in
combination with 10× miRNA specific primers (listed in
Supplementary Table S1). The U6 snRNA primer from Qi-
agen was used for normalization and �Ct was calculated to
derive relative expression.

Plasmid construction, luciferase assay, protein purification

Myc-tagged EWS cDNA at the N-terminus was generated
by PCR using specific primers (listed in Supplementary Ta-
ble S2) and inserted into pcDNA3.0 between EcoR I and
Xho I sites for EWS overexpression in transfected HeLa
cells.

For MS2-based capture experiments, the MS2 stem–loop
sequence was excised from the plasmid 5U3M described
previously (30) by restriction digestion with Hind III and
Xho I, ligated to PCR-amplified pri-miRNA containing the
Xho I and Not I sites, and then inserted the product into
pcDNA3.0 at Hind III and Not I sites. The plasmid for ex-
pressing the EGFP-MS2 fusion protein was as described
previously (30). The primers used in MS2-Pri-miRNA plas-
mid construction are listed in Supplementary Table S2.

To construct the Renilla luciferase reporters for mea-
suring pri-miRNA processing in transfected cells, individ-
ual pri-miRNA sequences were first PCR amplified by us-
ing specific primers (listed in Supplementary Table S2) and
cloned into psiCHECK™-2 Renilla 3′UTR between the
Xho I and Not I sites.

Pri-miRNAs used for gel shift and in vitro processing as-
says were all transcribed from pcDNA3.0 clones contain-
ing individual pri-miRNAs generated by PCR using spe-
cific primers (listed in Supplementary Table S2). To con-
struct various chimeric pri-miRNA plasmids, individual
fragments were PCR amplified from the pcDNA3.0-pri-
miR-222 or pcDNA3.0-pri-miR-23a plasmid, ligated, and
amplified in transformed bacteria.

For luciferase assays, HeLa cells were seeded in 24-well
plates and co-transfected with 25 ng of luciferase reporter
and/or 300 ng pcDNA3.0-based expression vector. After
48 h, cells were harvested for luciferase assays using the
Luciferase Assay System (Promega, E1500). GLOMAX lu-
minometer was used to collect light generated by Renilla
or Firefly. For knockdown experiments, specific siRNA (20
nM) was transfected into HeLa cells 24 h ahead of the in-
troduction of the luciferase reporter.

For producing recombinant His-tagged EWS in bacte-
ria, EWS cDNA was subcloned into pET-32a between the
EcoR I and Xho I sites. The plasmid was transformed into
the Escherichia coli strain BL21 (DE3), which was induced
with 0.5 mM isopropyl beta-D-1-thiogalactopyranoside
(IPTG) for 3 h at 22◦C. His-tagged EWS was purified on
Ni-NTA beads, concentrated with Centricon (Millipore),
and stored in 14 mM HEPES-pH 7.9, 90 mM KCl, 2.2 mM
MgCl2 and 30% glycerol until use.
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CLIP-seq and RIP-PCR

EWS CLIP-seq was performed according to the published
procedure (31,32). Briefly, HeLa cells cultured in a 150 mm
plate were washed once with PBS followed by UV irradia-
tion at 400 mJ/cm2 under a HL-2000 Hybrilinker. Scrapped
Cells were harvested by centrifugation at 500 g for 5 min at
4◦C. Crosslinked cells were lysed in 500 �l of 1× PBS con-
taining 0.1% SDS, 0.5% deoxycholate and 0.5% NP-40 on
ice for 30 min. 30 �l of RQ1 DNAse I (Promega, M6101)
was added to each tube, and incubated at 37◦C for 2 min
with rotation at 1000 rpm on a Theromixer. After chilling
on ice for 5 min, supernatant was collected by centrifugation
at 12 000 rpm for 20 min at 4◦C. Immunoprecipitation was
carried with 5 �g anti-EWS antibody. After Immunoprecip-
itation, Micrococcal Nuclease (MNase) of various dilutions
was utilized to trim RNA and the reaction was terminated
with EGTA. The 3′ linker labelled by gama-32P-ATP was
ligated to RNA-protein complexes before SDS-PAGE. Af-
ter nitrocellulose transfer, the band above EWS was excised
and treated with Proteinase K. The 5′ linker was then ligated
to isolated RNAs. After PCR amplification for 18 cycles,
the library was subjected to deep sequencing on Illumina
HiSeq-2000.

Sequenced tags were mapped to the hg19 genome by
Bowtie2 (33) and peak calling was performed as previ-
ously described (34). The complete set of RefGene from
UCSC Table was used to calculate the tag distribution (35).
Crosslinking-Induced Mutation Sites (CIMS) were identi-
fied as described (36). Local structure forming possibility
was calculated by RNAplfold from ViennaRNA Package
(37) around the peaks with height equal to or greater than 5,
and then averaged by using the peak centre as pivot. PARIS
data were from the published study (38). EWS–RNA inter-
actions with peak height equal to or >5 were intersected
with the PARIS data by BEDTools (39). Background se-
quences were generated by BEDTools shuffle (39).

For RNA immunoprecipitation (RIP), HeLa cells were
treated with UV as in CLIP-seq. After immunoprecipita-
tion and Proteinase K digestion, isolated total RNA was
used for first-strand cDNA synthesis with SuperScript III
reverse transcriptase (Life Technology) followed by N6 ran-
dom priming. The resulting dsDNA was used for real-time
PCR analysis using specific primers (listed in Supplemen-
tary Table S3).

MS2 capture

HeLa cells cultured in 100 mm plate were co-transfected
with 10 �g plasmid expressing the eGFP-MS2 fusion pro-
tein and 15 �g individual MS2-pri-miRNA plasmids. Af-
ter 48 h, cells were harvested and lysed in wash buffer (1×
PBS-pH 7.4, 0.1% SDS, 0.5% deoxycholate, 0.5% NP40, 1
mM PMSF, 1 U/�l RiboLock RNase Inhibitor) on ice for
30 min. Cells were next treated with 30 �l of RQ1 DNase
(Promega) at 37◦ for 2 min. The lysate was clarified by cen-
trifugation at 12 000 rpm for 20 min at 4◦C and collected su-
pernatant was incubated with 5 �g anti-eGFP antibodies on
Protein G Dynabeads (Life Technology) for 5 h at 4◦C with
rotation. The beads were washed three times with 1 ml wash
buffer and three times with high-salt wash buffer (5× PBS-
pH 7.4, 0.1% SDS, 0.5% deoxycholate, 0.5% NP40, 1 mM

PMSF, 1 U/�l RiboLock RNase inhibitor). The captured
product was fractionated by 10% SDS-PAGE followed by
immunoblotting with the anti-EWS antibody.

In vitro transcription of RNA, gel shift, and in vitro pri-
miRNA processing

We used pcDNA3.0-pri-microRNA plasmids to amplify
templates for in vitro transcription of RNA with T7 RNA
Polymerase (Fermentas) for gel shift assays. The primers are
listed in Supplementary Table S4. In vitro transcribed RNAs
(150 fmol) and purified EWS (0–0.24 pmol) were incubated
at 30◦C for 30 min in the reaction mix containing 0.5 �l
RNase inhibitor, 1 �l 0.1% BSA and 1 �l reaction buffer
(70 mM HEPES-pH 7.9, 450 mM KCl, 11 mM MgCl2, 28%
glycerol). At the end of the reaction, 1 �l 0.1% SYBR Green
II was added and RNA–protein complexes were fraction-
ated on 6% native polyacrylamide gel.

For in vitro pri-miRNA processing assays, purified RNA
was incubated with immunoprecipitated Microprocessor
from HEK293 cells expressing FLAG-DGCR8 according
to the previously published protocol (40). Briefly, 15 �l im-
munoprecipitated Microprocessor was incubated in a 30 �l
reaction mix containing 2 �l (0–4 �M) purified EWS, 100
ng RNA, 3 �l 64 mM MgCl2, 1 �l 10 mM ATP, 1 �l RNase
inhibitor at 37◦C for 90 min. After proteinase K (Fermen-
tas) treatment, RNA was extracted with phenol and pre-
cipitated with ethanol. Recovered RNA was fractionated
on 8% denaturing gel and detected by northern blotting by
using the DIG Northern Starter Kit (Roche, 12039672910)
according to manufacturer’s instruction. Briefly, after RNA
fractionation and transfer onto nylon membrane, RNA was
fixed with UV for 1 min, and after rising briefly with dou-
ble distilled water, the membrane was baked at 80◦C for 2
h. Pre-hybridization was performed with DIG Easy Hyb
at 68◦C for 4 h. DIG-labeled probes were generated by us-
ing specific primers (listed in Supplementary Table S4). Af-
ter pre-hybridization, denatured DIG-labeled RNA probe
was added and incubated at 68◦C overnight. After wash-
ing twice, each for 5 min in 2× SSC, 0.1% SDS at 25◦C,
and then twice, each for 30 min in 0.1× SSC, 0.1% SDS at
68◦C, the membrane was developed by the anti-DIG anti-
body. For northern blotting detection of mature miRNAs,
DNA probes (listed in Supplementary Table S5) were la-
beled with DIG at 3′ end. After pre-hybridization, dena-
tured probe was added and the reaction was incubated at
42◦C overnight. After washing twice, each for 5 min in 2×
SSC, 0.1% SDS at 25◦C, and then twice, each for 30 min in
0.1× SSC, 0.1% SDS at 42◦C, the membrane was developed
by the anti-DIG antibody.

ChIP-qPCR

Cultured HeLa cells in a 100 mm plate were crosslinked with
1% formaldehyde at room temperature for 10 min and then
stopped with 0.125 M glycine for 5 min. Scrapped cells were
harvested by centrifugation at 500 g for 5 min at 4◦C. Cells
were resuspended in 0.3 ml of lysis buffer containing 1%
SDS, 10 mM EDTA, 50 mM Tris–Cl, pH8.1, 1× protease
inhibitor cocktail and sonicated three times for 10 s each
at 150 W on ice. After decrosslinking at 65◦C for 30 min,
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2 �l of sonicated chromatin was taken to check the quality
of chromatin, which should have most signals from 0.5 to
2 kb. Isolated chromatin was suspended in 1:10 (vol/vol) in
dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM
NaCl, 20 mM Tris–Cl, pH8.1, 1× protease inhibitor cock-
tail). Soluble chromatin was incubated at 4◦C with 5 �g
anti-Drosha (Abcam) overnight. DNA-protein complexes
were captured on Protein G Dynabeads (Life Technology)
for 3 h. Beads were sequentially washed for 10 min at 4◦C
with 1 ml of TSE I (20 mM Tris–HCl, pH 8.1, 0.1% SDS,
1% Triton X-100, 2 mM EDTA, 150 mM NaCl), 1 ml TSE
II (20 mM Tris–HCl, pH 8.1, 0.1% SDS, 1% Triton X-100, 2
mM EDTA, 500 mM NaCl), and finally 1 ml TE buffer (10
mM Tris–Cl, pH 7.5, 1 mM EDTA). Complexes were eluted
twice from the beads with 150 �l of 50 mM Tris-pH 8.0, 10
mM EDTA and 1% SDS. Decrosslinking was performed at
65◦C overnight. DNA was purified with phenol and precip-
itated by ethanol in the presence of glycogen. Quantitative
PCR was performed on CFX Connect PCR machine (BIO-
RAD) using a SYBR green mix (TIANGEN) with specific
primers (listed in Supplementary Table S3). The percentage
of immunoprecipitated chromatin was calculated from �Ct
against input chromatin.

RESULTS

EWS binds a large subset of pri-miRNAs in vivo

To perform CLIP-seq for EWS in HeLa cells, we first con-
firmed the specificity of the anti-EWS antibody by west-
ern blotting before and after EWS knockdown with two
independent siRNAs (Supplementary Figure S1A). Using
this highly specific antibody, we carried out immunoprecip-
itation, showing quantitative recovery of endogenous EWS
from HeLa whole cell extracts (Figure 1A, left panel). We
next performed UV crosslinking on HeLa cells followed by
32P-labeling of RNA crosslinked to EWS after immunopre-
cipitation. To obtain optimal RNA length for mapping and
resolution, we treated the immunoprecipitate with increas-
ing doses of MNase (Figure 1A, right panel) and identified
a condition for isolating EWS-bound RNAs of ∼50 nt in
length. The resulting RNA was subjected to linker ligation
followed by PCR amplification according to the standard
CLIP-seq protocol (31,41), yielding a total of 8.8 million
tags, of which 3.8 million were uniquely mapped to the hu-
man genome. Analysis of Crosslinking Induced Mutation
Sites (CIMS) showed the even distribution of deletions, but
not insertions or substitutions, along the sequenced tags
(Supplementary Figure S1B), characteristic of UV-induced
mutation profiles (42), thus validating the general quality of
our CLIP-seq data.

Consistent with early reports (10,18), most EWS–RNA
interactions occurred in introns (57.9%) and intergenic re-
gions (30.6%) (Figure 1B). Although we detected various
GC-enriched sequence tags, we were unable to derive en-
riched consensus motifs, which have been similarly reported
with individual TET family members (18). Instead, we
noted many tags associated with pri-miRNAs, as illustrated
(Figure 1C and Supplementary Figure S1C), suggesting
that EWS may interact with some sort of secondary struc-
tures in RNAs, rather than specific motifs in single-stranded

RNA regions. This prompted us to intersect the EWS CLIP-
seq data with that generated by PARIS, a crosslinking-
based strategy to map RNA duplexes in the genome (38).
Indeed, EWS tags were co-incident with sequences with
high base-pairing potentials (PARIS peaks), as illustrated
(Figure 1D). About ∼40% of EWS peaks overlapped with
PARIS-deduced RNA hairpins, which is significantly above
the random background (Figure 1E). Aided with PARIS
in searching for EWS-bound RNAs with secondary struc-
tures, we noted EWS binding clusters on ∼77 expressed pri-
miRNAs. These data suggest that EWS binds a large subset
of pri-miRNAs in HeLa cells.

Specific interaction of EWS with target pri-miRNAs

To verify the CLIP-seq results, we immunoprecipitated
myc-tagged EWS from transfected HeLa cells and then se-
lected a representative set of EWS target pri-miRNAs for
RT-qPCR analysis in comparison with randomly picked
non-target pri-miRNAs as control. We detected most EWS
target pri-miRNAs we examined in the immunoprecipitate,
although some were more abundant (i.e. miR-34a, miR-122
and miR-222) than others, likely reflecting their expression
levels, but not GAPDH mRNA or various non-target pri-
miRNAs we examined (Figure 2A). We made similar obser-
vation with RNA immunoprecipitation (RIP) assay using
an antibody against endogenous EWS protein (Supplemen-
tary Figure S2A).

To demonstrate specific EWS recruitment to target pri-
miRNAs, we performed a tethering assay by fusing three
MS2 stem–loops with a pri-mRNA and co-expressing an
eGFP-MS2 fusion protein in HeLa cells (illustrated in Fig-
ure 2B). This allowed us to use the anti-GFP antibody to
pulldown the fusion protein and examine whether EWS
could be captured via the MS2 stem–loop containing pri-
miRNA. For this purpose, we selected two representative
target pri-miRNAs (pri-miR-34a and pri-miR-222) and one
negative control (pri-miR-23a). By pulling down eGFP with
anti-GFP antibody, we indeed captured EWS on both pri-
miR-34a and pri-miR-222, but not on control pri-miR-
23a (Figure 2C). We verified this finding by three inde-
pendent experiments (Supplementary Figure S2B). We con-
clude from this tethering experiment that EWS specifically
binds a subset of pri-miRNAs in HeLa cells.

We next selected multiple pri-miRNAs to perform in vitro
mobility shift assays with recombinant His-tagged EWS ex-
pressed and purified from bacteria. Consistent with the in
vivo binding data, we detected specific interactions of EWS
with all of the four target pri-miRNAs we examined, as in-
dicated by the quantified results from three independent gel
shift experiments (Figure 2D, top and middle panels, Sup-
plementary Figure S2C). In contrast, we detected no shift
with any of the five non-target pri-miRNAs we tested un-
der the same conditions (Figure 2D, bottom panels, Sup-
plementary Figure S2D). Together, these data demonstrate
specific EWS binding to its target pri-miRNAs both in vivo
and in vitro.

EWS is required for efficient expression of target miRNAs

To determine the functional impact of EWS binding on
its target pri-miRNAs, we performed both EWS knock-
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Figure 1. EWS binds a large subset of pri-miRNAs in vivo. (A) Western blot and phosphorimage of EWS–RNA complexes on SDS-PAGE. The immunopre-
cipitate was treated with decreasing concentrations of MNase to obtain optimal RNA-protein products that ensure both high mappability and resolution.
The bracket indicates the excised complex for CLIP-seq library construction. (B) The genomic distribution of CLIP tags for EWS. (C) Representative EWS
CLIP-seq binding events are shown on each gene model. (D) Local secondary structure forming possibility at positions relative to the center of EWS peaks.
(E) Intersection of EWS binding events with the PARIS data compared to background to show the binding events correlated to the secondary structure.
To determine the statistical significance, we computationally performed random sampling in the ‘random’ group for 100 times and then compared with
one sample in the EWS group. Based on one sample Student’s t test, we derived P-value < 2.2e–16 and presented the error bar as mean ± SD.

down and overexpression experiments. As previously re-
ported (19), EWS knockdown elevated Drosha expression
to a measurable degree, but had no effect on the expres-
sion of its cofactor DGCR8, as indicated by the quantified
results based on three independent repeats of the experi-
ment (Figure 3A, left panel; Supplementary Figure S3A).
On the other hand, EWS overexpression did not seem to af-
fect the level of either Drosha or DGCR8 (Figure 3A, right
panel; Supplementary Figure S3B), implying that EWS
knockdown-induced Drosha expression may result from an
indirect mechanism. Under these conditions, we examined
the expression levels of multiple EWS target and non-target
pri-miRNAs by both semi-quantitative PCR and real time
PCR and found none of them showed significant change in
response to EWS knockdown or overexpression (Figure 3B
and C). These results indicate that EWS is unlikely involved
in transcriptional control of these pri-miRNAs.

We next performed real time PCR to examine the ex-
pression of mature miRNAs processed from these pri-
miRNAs and found that seven out of nine miRNAs pro-
cessed from EWS target pri-miRNAs were significantly re-
duced in response to EWS knockdown, with the remaining
two miRNAs (miR-423 and miR-484) showing some trend
of down-regulation but without sufficient statistical signifi-
cance (Figure 3D). Conversely, all with one exception (miR-

484) were significantly increased upon EWS overexpres-
sion (Figure 3E). None of miRNAs from non-target pri-
miRNAs showed measurable changes under these condi-
tions (Figure 3D and E). We further confirmed these trends
by performing Northern blotting on four targets and two
non-targets in response to EWS knockdown (Supplemen-
tary Figure S4) or overexpression (Supplementary Figure
S5), all based on three independent experiments. Because
EWS knockdown induced Drosha, we were intrigued by
a possibility that some non-target miRNAs might be en-
hanced. We did not detect any enhancement among the set
of non-target miRNAs we examined, implying that elevated
Drosha might have selective effects on some, but not all ex-
pressed pri-miRNAs. Alternatively, Drosha level might not
be a rate-limiting factor for pri-miRNA processing. There-
fore, while future studies are required to understand how
EWS might repress Drosha expression, our data strongly
suggest that EWS has a positive role in miRNA biogenesis
by selective binding to its target pri-miRNAs.

Conserved EWS function in miRNA biogenesis in HEK293
cells

To verify our observations on HeLa cells in terms of ex-
tensive interactions of EWS with pri-miRNA loci and its
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functional requirement for miRNA biogenesis, we took ad-
vantage of the existing EWS PAR-CLIP data on HEK293
cells (18). The Tuschl group expressed FLAG-HA-tagged
EWS either constitutively (stable) or in an inducible fash-
ion (inducible), generating 2.2M and 1.1M unique reads re-
spectively under these conditions. Although these sequence
depths on HEK293 cells were slightly lower than ours
(3.8M) on HeLa cells, the use of a common anti-tag anti-
body for immunoprecipitation complemented our data gen-
erated using the antibody against the endogenous EWS pro-
tein. Analysis of both stable and inducible EWS data re-
vealed 117 and 114 EWS binding peaks on pri-miRNAs
with 74 in common between the two datasets. The seemly
more prevalent EWS binding to pri-miRNAs in HEK293
cells is likely due to higher sensitivity of PAR-CLIP com-
pared to standard CLIP-seq because of enhanced UV-
crosslinking of 4-thiouridine containing RNAs with pro-
teins (43). Despite cell type differences in pri-miRNA ex-
pression, we found that 36 pri-miRNAs were common tar-
gets for EWS between HeLa and HEK293 cells, demon-
strating the prevalent interactions of EWS with a large num-
ber of pri-miRNAs in human cells.

We next selected a set of target and non-target pri-
miRNAs (Figure 4A) to determine the production of ma-
ture miRNAs from these loci in response to EWS knock-
down or overexpression. We found no effect on two clear
non-targets (miR-133a and miR-204) and significant re-
sponses on 6 targets (miR-16, miR-34a, miR-122, miR-222,
miR-423 and miR-484) in EWS knockdown cells, although
two of these miRNAs (miR-16 and miR-122) did not reach
to the standard statistical significance cut-off at P-value
<0.05 (Figure 4B and C). Importantly, we observed two tar-
gets (miR-23a and miR-206) that did not robustly respond
to EWS knockdown or overexpression in HEK293 cells.
These observations, while largely consistent with our obser-
vations on HeLa cells, also imply that in certain cases, EWS
binding does not necessarily lead to enhanced pri-miRNA
processing.

Direct role of EWS in enhancing pri-miRNA processing

To determine a potential role of EWS in enhancing pri-
miRNA processing, we designed a reporter-based assay by
inserting individual pri-miRNA sequences in the 3′UTR
of the Renilla luciferase reporter (Figure 5A). In this sys-
tem, compromised pri-miRNA processing would increase
Renilla expression relative to the Firefly reporter driven by
a separate promoter, and enhanced pri-miRNA process-
ing would produce the opposite effect, as described earlier
(44–47). We verified this reporter system by knocking down
Drosha, showing that all pri-miRNA reporters we tested el-
evated Renilla activities relative to Firefly activities (Sup-
plementary Figure S6). We therefore utilized this reporter
system to compare several EWS target pri-miRNAs with
non-targets in HeLa cells. As expected, EWS knockdown
enhanced the processing of the target pri-miRNAs, but not
non-targets (Figure 5B), and conversely, EWS overexpres-
sion repressed the processing of the targets, but no non-
targets (Figure 5C). These data strongly suggest a critical
role of EWS in facilitating pri-miRNA processing.

To substantiate such direct role, we next performed in
vitro pri-miRNA processing by using immunoprecipitated
Microprocessor from HeLa cells expressing FLAG-tagged
DGCR8 (48,49), and tested recombinant His-tagged EWS
for its activity in enhancing the reaction. By Northern blot-
ting, we found that purified EWS was indeed able to en-
hance the processing of its target pri-miR-222 in a dosage-
dependent manner (Figure 5D), but had no effect on a
representative non-target pri-miR-23a (Figure 5E), which
were further evidenced by the quantified data (bottom pan-
els) from three independent pri-miRNA in vitro process-
ing experiments (Supplementary Figure S7). Together with
the results of the reporter-based assays in transfected cells,
these data demonstrated a direct role of EWS in enhancing
miRNA biogenesis at the pri-miRNA level.

Sequences flanking the stem–loop confer to the responsive-
ness to EWS

To understand how EWS might achieve its targeting speci-
ficity, we prepared various mutation or deletion constructs
based on pri-miR-222 and tested in vitro transcribed RNAs
for EWS binding by gel mobility shift. Comparing to na-
tive pri-miR-222 (Figure 6A, panel 1), we found that dis-
ruption of the stem–loop by replacing the ‘star’ strand of
pri-miR-222 with the complementary strand dramatically
reduced EWS binding (Figure 6A, panel 2). We similarly
observed greatly compromised EWS binding with pri-miR-
222 derived mutant RNAs in which either the loop region
was deleted (Figure 6A, panel 3) or both flanking sequences
removed (Figure 6A, panel 4). These data imply that mul-
tiple regions in pri-miR-222 contributed to EWS binding,
reminiscent of some binding events that could not be linked
to the functional requirement for EWS in HEK293 cells.
It is also possible that drastically altered RNA secondary
structure might underlie the reduced the affinity for EWS.

Because deletion of the flanking sequences was not ex-
pected to change RNA secondary structure, yet the mu-
tation greatly diminished EWS binding, this suggests that
compromised EWS binding may not necessarily be linked to
altered RNA secondary structure. We next took advantage
of pri-miR-23a, which seemed to be a non-target for EWS
in HeLa cells (see Figure 2D and E), but clearly bound by
EWS yet unable to respond to either EWS knockdown or
overexpression in HEK293 cells (see Figure 4), to determine
which sequence element(s) decisively contributes to the re-
sponsiveness to EWS. We therefore made two hybrid pri-
miRNAs, one containing the stem/loop of pri-miR-222 but
with the flanking sequences of pri-miR-23a (Figure 6B) and
the other carrying the stem/loop of pri-miR-23a but with
the flanking sequences of pri-miR-222 (Figure 6C). Gel shift
with purified EWS showed that both hybrid RNAs bound
EWS with comparable affinities (Figure 6B and C).

We next examined whether any of the hybrid pri-miRNAs
responded to EWS-enhanced pri-miRNA processing in
vitro. We found that the pri-miR-222 stem/loop linked with
the pri-miR-23a flanking sequences was now processed in
an EWS independent manner (Figure 6D), and in contrast,
the fusion of the pri-miR-222 flanking sequences to the
pri-miR-23a stem/loop rendered responsiveness to EWS
(Figure 6E). These data were verified with three indepen-
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panels B and C.

dent in vitro pri-miRNA processing experiments (Supple-
mentary Figure S8). We next tested both WT and chimeric
pri-miRNA constructs in transfected HeLa cells to deter-
mine the importance of specific flanking sequences to con-
fer EWS responsiveness in vivo (Figure 6F). We found that
WT pri-miR-222 and the chimeric pri-miR-23a containing
the flanking sequence of pri-miR-222 responded to EWS
knockdown or overexpression whereas WT pri-miR-23a
and the chimeric pri-miR-222 containing the flanking se-
quence of pri-miR-23a lacked the response. Together, these
data demonstrate that EWS binding alone may not be suf-
ficient to confer EWS-dependent pri-miRNA processing,

and the flanking sequences in pri-miR-222 provides both
binding specificity for and functional response to EWS in
pri-miRNA processing by the Microprocessor.

EWS-dependent co-transcriptional recruitment of Drosha to
target pri-miRNAs

Previous studies provided strong evidence for co-
transcriptional pri-miRNA processing by the Micro-
processor in vivo (20,21,50). It has also been shown that
FUS/TLS facilitates co-transcriptional recruitment of
Drosha to pri-miRNAs (50); however, it has been unclear
whether such co-transcriptional recruitment of Drosha
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depends on the ability of FUS/TLS to bind to DNA or
RNA or both. To determine whether EWS functions in a
similar fashion, we examined potential co-transcriptional
recruitment of EWS to both its target and non-target
pri-miRNAs by ChIP-qPCR. In this set of experiments,
we first determined whether EWS could be detected on
chromatin, finding that this was indeed the case, but EWS
appeared to interact with chromatin underlying both target
and non-target pri-miRNAs (Figure 7A).

We next investigated Drosha recruitment to the same
chromatin regions in mock-treated or EWS-depleted HeLa
cells. Because of slightly induced Drosha in EWS-depleted
cells, we used relatively reduced cells from EWS knock-
down cells to obtain roughly equal levels of Drosha in
the immunoprecipitate, as indicated by western blotting
(Figure 7B), and by ChIP-qPCR, we found that Drosha
could be detected on chromatin of both EWS targets and
non-targets (Figure 7C, black bars). Interestingly, such co-
transcriptionally recruited Drosha appeared to be modestly
enhanced on two out of four non-target pri-miRNAs (al-
though the enhanced recruitment on pri-miR-181a did not
meet the minimal P-value of 0.05) in response to EWS
knockdown. This, coupled with de-repressed Drosha, might
be responsible for induced miRNA expression in EWS
knockdown mice (19), even though we have so far been un-
able to detect increased mature miRNAs from those non-
target pri-miRNAs in HeLa cells (see Figure 3D). In any
case, these data imply that EWS might indirectly suppress
Drosha recruitment onto some non-target pri-miRNAs, al-
though with an unknown mechanism at this point.

In control to non-target pri-miRNAs, Drosha recruit-
ment to all EWS target pri-miRNAs we examined was re-
duced to various degrees in EWS knockdown cells, despite
the fact that 3 out of 6 target pri-miRNAs did not reach the
minimal P-value of 0.05 (Figure 7C). These data strongly
suggest that EWS binding on its target pri-miRNAs stim-
ulates co-transcriptional recruitment of Drosha to chro-
matin, thereby facilitating Drosha-mediated pri-miRNA
processing, which may benefit from the direct interaction
of EWS with its target pri-miRNAs.

DISCUSSION

Enhancing Microprocessor activity and specificity by RBPs

Key machineries for miRNA biogenesis at individual
steps have been well elucidated. The Microprocessor
Drosha/DGCR8 is responsible for releasing individual pre-
miRNAs from pri-miRNA transcripts; upon export to the
cytoplasm, pre-miRNAs are further processed into mature
miRNAs by Dicer/TRBP, which are finally incorporated
into the RNA-induced silencing complex (RISC) for func-
tional execution on target mRNAs (24). Importantly, each
of these processing steps has been shown to subject to mod-
ulation by various RBPs (24) as well as by post-translational
modification of the core machineries (51,52). Relevant to
our current study, multiple RBPs have been implicated in
the regulation of the Microprocessor-mediated conversion
from pri-miRNA to pre-miRNA, including positive regu-
lators, such as DDX5/17 (aka p68/p72) (53–56), hnRNP
A1 (57,58), and KSRP (59), and negative regulators, such
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ment of Drosha. (A) Anti-EWS ChIP-qPCR on chromatin regions of rep-
resentative EWS target (orange) and non-target (blue) pri-miRNAs. HeLa
cells were immunoprecipitated with anti-EWS antibodies. EWS-bound
DNA was detected by qPCR. The percentage of immunoprecipitated pri-
miRNA DNA was calculated from �Ct against input. Data are presented
as mean ± SEM based on three independent experiments. (B) Western
blotting of Drosha, showing efficient immunoprecipitation of Drosha in
both control and EWS knockdown cells. (C) Anti-Dosha ChIP-qPCR on
chromatin regions of target (Orange) and non-target (Blue) pri-miRNAs
before (black bars) and after (Orange/Blue bars) EWS knockdown. Statis-
tical significance of the quantified data was determined by two-tailed Stu-
dent’s t test based on three independent experiments and error bars were
presented as mean ± SEM. *P < 0.05. P-values that did not meet the mini-
mal level of 0.05 were specifically labelled on individual experiments shown
in panel C.

as Lin28 (60) and ADAR1/2 (61,62). We now provide evi-
dence for a prevalent role of EWS in this process, acting to
stimulate processing of a large number of pri-miRNAs by
the Microprocessor.
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EWS is a member of the TET family, and in fact, the
other TET family member FUS/TLS has been shown to
bind and stimulate processing of multiple pri-miRNAs (50).
A role of EWS in enhancing pri-miRNA processing is con-
sistent with the association of EWS with purified Micropro-
cessor from a published mass spectrometric dataset (63). It
is also interesting to note that FUS/TLS appears to bind
the loop regions of its target pri-miRNAs, and by contrast,
our current study shows that, while the loop region clearly
contributes to high affinity binding of EWS to target pri-
miRNA, it is their flanking sequences that confer the EWS
responsiveness, likely due to EWS-assisted configuration of
pri-miRNA for efficient Drosha cleavage. This is consistent
with initial PAR-CLIP analysis of FUS/TLS (18) and our
current CLIP-seq analysis of EWS, showing their preferen-
tial binding to RNAs with certain secondary structures. Be-
cause the TET family is also known to interact with one an-
other in the cell (18,64–66), we may further speculate that
multiple TET family members may function in a synergis-
tic fashion on a subgroup of pri-miRNAs to enhance their
biogenesis.

EWS regulation of miRNA biogenesis by two separate mech-
anisms

It is interesting to note that, while EWS knockdown induces
Drosha expression (19), knockdown of FUS/TLS lacks
such effect. Therefore, EWS likely modulates pri-miRNA
processing in at least two levels. The induction of Drosha
expression in EWS knockdown cells suggests a repressive
role of this RBP at the level of transcription, which has been
documented with the EWS-FLI1 fusion protein (67). This
mechanism might account for the induction of a set of miR-
NAs in EWS knockout cells (19). However, since EWS over-
expression failed to repress Drosha, it might be possible that
EWS alone is insufficient to repress Drosha. In any case, we
now show that EWS can also positively modulate miRNA
biogenesis at the pri-miRNA level, thereby providing a po-
tential mechanism for down-regulated miRNAs observed in
EWS knockout cells.

Our data suggest that EWS is able to facilitate co-
transcriptional recruitment of the Microprocessor to chro-
matin. Because pri-miRNA processing likely takes place
co-transcriptionally (20,21), this may be a common theme
for many RBPs involved in the regulation of miRNA bio-
genesis. Interestingly, we found that EWS is recruited to
chromatin of both target and non-target pri-miRNAs, in-
dicating that EWS-chromatin interactions likely reflect its
role in transcription, which may take place ahead of co-
transcriptional pri-miRNA processing. They may also ac-
count for EWS binding to some non-targets as we observed
in HEK293 cells. Importantly, we found that chromatin-
bound EWS is required for the enhanced recruitment of
the Microprocessor to its target, but not non-target pri-
miRNAs. Given the ability of EWS to directly interact with
its target pri-miRNAs, we envision a potential synergy be-
tween co-transcriptional recruitment of the Microprocessor
and loading of EWS from chromatin to newly transcribed
pri-miRNAs to enhance their processing.

As discussed above, different TET family members ap-
pear to interact with one another via protein-protein inter-

actions in the cell. This may enable some cross-regulation
where more than one TET family members may similarly
target some common chromatin regions, and such protein
complex(s) may facilitate the recruitment of the Micropro-
cessor to pri-miRNAs via different TET family members.
This would create a network for different TET family mem-
bers to regulate miRNA biogenesis in a combinatorial fash-
ion in mammalian cells. Future studies will test this intrigu-
ing possibility.

EWS-regulated miRNA programs in development and dis-
ease

EWS has been demonstrated to play an important role in
development and disease, such as cancer (15). As miRNAs
are known to be widely involved in these biological pro-
cesses and oncogenic transformation has been linked to re-
pressed miRNA expression (68), such as LMTK3 (69), our
findings provide a potential mechanism for the biological
function of EWS via its role in the regulation of miRNA
biogenesis. In Ewing Sarcoma, the EWS gene is frequently
fused to the FLI1 gene, an ETS family member, to acquire
an oncogenic property (70–72). Although such fusion event
has been widely assumed to affect the transcription activity
of EWS, it will be interesting to investigate in future stud-
ies how such fusion protein may affect chromatin binding,
thereby modulating the Microprocessor recruitment and/or
co-transcriptional pri-miRNA processing, as part of the
oncogenic property of the fusion protein.

A published study has also linked EWS to DNA damage
induced by UV (9). The study provided evidence that UV
irradiation induced EWS translocation to nucleolus, thus
sequestrating EWS from the nucleoplasm, which might ac-
count for various induced alternative splicing events in UV-
treated cells (9). In light of the role of EWS in pri-miRNA
processing, it will be interesting to investigate in future stud-
ies how UV might also alter pri-miRNA processing via in-
duced EWS redistribution in the cell or other mechanisms.
Because EWS has been implicated in a wide range of bio-
logical processes, the newly elucidated function of EWS in
miRNA biogenesis opens new doors to understanding po-
tential disease mechanisms associated with this important
RNA binding protein.
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