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We introduce a primary thermometer which measures the temperature of a Bose-Einstein Condensate in
the sub-nK regime. We show, using quantum Fisher information, that the precision of our technique
improves the state-of-the-art in thermometry in the sub-nK regime. The temperature of the condensate is
mapped onto the quantum phase of an atomic dot that interacts with the system for short times. We show
that the highest precision is achieved when the phase is dynamical rather than geometric and when it is
detected through Ramsey interferometry. Standard techniques to determine the temperature of a
condensate involve an indirect estimation through mean particle velocities made after releasing the
condensate. In contrast to these destructive measurements, our method involves a negligible disturbance of
the system.

T
emperature is a crucial concept in quantum physics. Paradigmatic phenomena such as superconductivity
and Bose-Einstein condensation only occur below a critical temperature. Bose Einstein Condensates
(BECs)1 allow the study of quantum effects in systems consisting of up to 108 atoms by cooling them to

regimes in which the individual atomic wavefunctions overlap. In this case, the system exhibits quantum beha-
viour at mesoscopic scales.

Very low temperatures are also required to observe quantum field theory effects e.g. Unruh-Hawking radi-
ation2. Quantum field theory predicts that the dynamics of spacetime or the presence of horizons produce
quantum particles from vacuum fluctuations. For example, in the dynamical Casimir effect, a moving boundary
condition gives rise to vacuum excitations. This effect was recently demonstrated in superconducting circuits3.
Currently several experimental groups in the field of analogue gravity attempt to demonstrate cosmological
particle creation, dynamical Casimir effect and Hawking radiation in analogue spacetimes produced in BECs4.
However, in a BEC a thermal background is always present due to unavoidable atomic collisions. In these
experiments, it is crucial to work at low temperatures so that the quantum particles created by effects of emergent
spacetimes can be distinguished from this thermal noise. Recent experiments to demonstrate the dynamical
Casimir effect in a BEC4, have not been able to ensure that the excitations produced are indeed quantum even at
temperatures as low as 200 nK. A new method to accurately determine temperatures in the nK and sub-nK
regime would be of great benefit to these experiments.

The temperature of a BEC is commonly estimated indirectly by comparing the density profile of the atoms with
a velocity distribution1,5–7. This density profile is determined by absorption imaging which is a destructive method
that involves releasing the condensate. Although accuracies of ,1% can be achieved in the 100 nK regime8, the
relative error in the measurement of temperatures considerably grows at very low temperatures. The best
accuracies that have been reported in the nK and sub-nK regime are of ,20%9. Several alternative methods to
measure the temperature of a BEC have been proposed. For instance, phase-contrast imaging10 can be used to
determine the temperature through the phase shift of a probe laser beam that interacts with the sample. However,
at temperatures of a few nK and below this method has low spatial resolution and can only be applied reliably if the
condensate is allowed to freely expand for a given time11. Another example is noise thermometry with two
coupled Bose-Einstein condensates12, which has been implemented in a regime in which quantum fluctuations
are small (50–80 nK). Therefore, absorption imaging is the standard technique for measuring temperatures in the
nK regime9 and, in general, for probing the condensate13.

Recent theoretical and experimental developments in cold atom gases have lead to the experimental demon-
stration of systems consisting of mixtures of two different atomic species or two hyperfine states of the same
species14–18. In particular, it is in principle possible to create an atomic quantum dot by trapping a few atoms in a
tight trap provided by a laser beam20–26. The number of particles in the dot is determined by the interatomic
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interactions which can be modulated experimentally, through a
Feshbach resonance17–19. In this paper we show how an atomic
quantum dot immersed within the condensate can be used to mea-
sure the temperature of the condensate with high precision and a
negligible disturbance of the system. The scheme can be implemen-
ted using an optical lattice with a single atom per site27, where each
atom interacts at a different time with the condensate. This system
constitutes a primary thermometer which measures the tempera-
tures ranging from the sub nK regime to the condensate critical
temperature.

The outline of the paper is as follows. We start by showing how a
two-level system interacting with a quantum field in a thermal state
through the standard Jaynes-Cummings Hamiltonian can acquire a
dynamical phase that depends on the temperature of the field. This
phase is then read out through Ramsey interferometry. We use the
Quantum Fisher Information to quantify the accuracy in the tem-
perature estimation. We show that with realistic experimental para-
meters, the precision of our thermometer improves on state of the art
thermometry in the nK and sub nK regimes already after a small
number of measurements. Since each dot embedded within the con-
densate provides one measurement, it is important to ensure the
statistical independence of the individual measurements, by making
the dots interact independently with the condensate. By preparing
the dots in an entangled state, it is possible to further improve the
precision and reach the Heisenberg limit28, that is the limit imposed
fundamentally by quantum theory. Finally, we present details of
possible physical implementations of the thermometer using atomic
quantum dots coupled to phonons in a BEC (see Fig. 1).

While the idea of probing several aspects of the condensate with
different two-level systems and interactions has been introduced in
earlier works (see, for instance29,30,) our work represents a step forward
in several directions, which we outline here. We show that with real-
istic experimental parameters the system can be described by a Jaynes-
Cummings model, where the dots are effectively coupled to a single
mode of the quantum phase fluctuations of the condensate. Moreover,
we show that is possible to achieve a regime in which spontaneous
transitions of the dots are negligible (see Methods section) and thus

the time evolution of the system is given simply by dynamical
and geometrical phases. We study both phases and analyse the
advantages of using Ramsey vs. Mach-Zehnder interferometry to
estimate relative phases. We use Quantum Metrology techniques
to quantify the precision in each scenario. We show that the best
precision is achieved when using dynamical phases and Ramsey
interferometry. Furthermore, we show that this precision can
improve on standard methods to determine temperature in the nK
and sub nK regimes.

Results
We now proceed to introduce our methods and results. We consider
the Jaynes-Cummings model that describes the interaction of a two-
level system of frequency gap Vd and one mode of a quantum field
with frequency Va

HJC tð Þ~�hVaa{az�h
Vd

2
szz�hg s{a{eihzszae{ih

� �
, ð1Þ

where a, a{ are creation and annihilation field operators, �h 5 h/(2p)
is the reduced Planck constant, s6 5 (1/2)(sx 6 isy) and sx and sy

are Pauli matrices. The coupling strength between the field and atom
is given by g, the detuning is s 5 jVa 2Vdj and the phase h 5 k x 2 dt
is a function of time and the position x of the atom. As we will explain
in more detail later, with suitable boundary conditions an atomic dot
interacting with the phonon field of a BEC can be described with this
simple interaction in the nK and sub-nK regime.

The temperature of the field will be determined through the phases
acquired by the atom through its evolution under the Hamiltonian
(1), assuming the adiabatic approximation (see Methods). The total
accumulated phase c can be split into a geometric and a dynamical
part. It has been shown that the geometric phase can be used to gain
information about the quantum state of a bosonic scalar field. For
pure field states, the phase encodes information about the number of
particles in the field31. In particular, for initially squeezed states, the
phase depends also on the squeezing strength32. More recently, the
geometric phase was employed to estimate the temperature of a field
inside a cavity33. We will apply Quantum Fisher Information to show

Figure 1 | (a) Sketch of the experimental setup: several atomic quantum dots are embedded within a BEC reservoir. They are coupled at different

times through a Raman transition to the phononic fluctuations of the BEC. The use of many dots allows one to implement many measurements and

improve the accuracy. (b) Ramsey interferometry scheme to measure the relative dynamical phase and hence measure temperature. (c) Ramsey

interferometry scheme with entangled input states. Entanglement can in priciple improve the precision, reaching the Heisenberg limit. (d) Mach-Zehnder

interferometer scheme with entangled input states. (A). Input state, (B). Interaction switched on, (C). Final state (D). Readout.
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here that estimating the dynamical phase is the optimal way for
measuring temperatures. We consider the case where the field is
initially in a thermal state rF~

X
n

pn nj i nh j with temperature T.

The probability distribution is given by pn 5 (e2F)n (1 2 e2F) where

F~
�hVa

kB T
, and kB is Boltzmann’s constant. Here we have used the

number state basis spanned by jnæ 5 (a{)n j0æ, where n is the number
of phonons of frequency Va. We find (see Methods), that the geo-
metric phase is

c{
G ^

g2

d2 eF{1ð Þ
ð2Þ

and the dynamical phase

c{
G ^

4tg2

d eF{1ð Þ : ð3Þ

As explained in Methods, in order to compare the phases we consider
t 5 2p/d, since cyclic evolution is necessary to compute the geometric
phase given in Eq. (2). We find that the dynamical phase is always
larger than its geometric counterpart

c{
G ^

c{
G

8p
: ð4Þ

In Fig. 2a) we plot the dynamical and geometric phases for realistic
experimental parameters. One observes that for temperatures in the
sub nK regime, the geometric phase is negligible in comparison to the
dynamical phase. Furthermore, we will show that the precision
obtained through the dynamical phase in the measurement of the
temperature is higher than the precision attainable with the geomet-
ric one.

Since the phases acquired by the system are global and cannot be
measured directly, it is necessary to setup an interferometric scheme
that will allow us to measure relative phases. In particular, the geo-
metric phase can only be detected using a Mach-Zehnder interfero-
meter. In this type of interferometer the qubit is split into two
different trajectories and is made to interact with a thermal field in
one arm of the interferometer acquiring a relative phase that can be
measured at the interferometer’s output. Now we will use standard
techniques of phase estimation in Quantum Metrology to estimate
the precision of the temperature measurement in this experiment
(see Methods) and determine which type of phase (geometrical or
dynamical) is more convenient.

We consider that in one arm of the Mach-Zehnder interferometer
the qubit, initially in state jgæ, interacts with a field in state rT. In the
second arm we assume that the qubit in state jeæ does not interact

with the field. Since, up to the first order in g/d the state
gj i gh j6rT^

X
Pn n{j i n{h j, the relative phase at the output will

therefore be given by c{~c{
D zc{

G . For the sake of comparison, we
first assume that the dynamical phase can be cancelled34 and we
calculate the quantum Fisher information to estimate the precision
on the temperature measurement through the geometrical phase.

Since in this case F rTð Þ~ LTc{
G

� �2
, the Cramer-Rao bound in the

geometric case employing Mach-Zehnder interferometry, denoted
by dTG

M , yields

dTG
M§

1ffiffiffiffiffi
M
p

LT c{
G

w

Td2 eF{2ð Þffiffiffiffiffi
M
p

F g2
: ð5Þ

Here the bound is obtained using a series expansion in g/d. Following
the same procedure we find bounds to the quantum Fisher informa-
tion for the case where the temperature is measured using the
dynamical phase. We find that:

dTG
Mƒd0;

T d2 eF{1ð Þ2ffiffiffiffiffi
M
p

8 p F g2 eF
vd0v

Td2 eF{1ð Þ2ffiffiffiffiffi
M
p

4 p F g2 eF
: ð6Þ

From Eq. (5) and (6) it follows that the error in estimating the
temperature using the dynamical phase is smaller dTD

MvdTG
M .

Furthermore, using the dynamical phase allows us to simplify the
setup by using Ramsey rather than Mach-Zehnder interferometry.
Ramsey interferometry does not involve spatial splitting the atomic
wave function to undergo different trajectories and therefore is less
demanding from the experimental viewpoint.

In Ramsey interferometry the two-level system is prepared in a
superposition state, j"æ 5 jgæ 1 jeæ, and is allowed to interact
with the quantum field in a thermal state rT during a time t.
After the interaction, the probability of finding the two-level
system in the excited state depends on the dynamical relative
phase, CD, picked up by it. Under weak adiabatic evolution the state
:j i :h j6rT^

X
Pn n{j iz nzj ið Þ n{h jz nzh jð Þ acquires the

relative phase, CD~cz
D {c{

D , which is very sensitive to the temper-
ature in an ultralow regime such as nK and sub-nK. Here, cz

D , c{
D are

the dynamical phases acquired by j1æ and j2æ respectively (see
Methods section). The Fisher information in this case is given by

F rTð Þ~ LT cz
D {LT c{

D

� �2
~4 LT c{

D

� �2
. Therefore, the achievable

precision in the temperature measurement is increased by a factor
of 2 for Ramsey interferometry, i.e. dTD

R ~ 1=2ð ÞdTD
M .

In Fig. 2b we plot the dependence of CD on the detuning d and the
coupling strength g for the relevant experimental regime that we
consider below. Note that the phase is sensitive to g/d and is essen-

Figure 2 | (a) Comparison of geometrical (dahed, blue) c{
G vs. dynamical c{

D (solid, red) with Va 5 2 p 3 10 Hz, g 5 2 p 3 0.2 Hz, d 5 2 p 3 2 Hz and

c 5 5 mm/s. c{
D ^8p c{

G . The dynamical phase is much more sensitive to the temperature in the sub-nK regime. (b) Dependence of the dynamical

phaseCD on g and d at T 5 0.5 nK.CD is sensitive to the ratio g/d. (c)CD (green, solid) and relative error dT/T after 1000 (blue, dashed), 3000 (red, dotted)

and 10000 (yellow, dash-dotted) measurements. The parameters are the same as in (a). The precision in the best case is around 1% and can be improved by

increasing the number of measurements and using entangled input states.
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tially determined by this ratio and Va. In Fig. 2c we plot the relative
error dTD

R

�
T after 1000, 3000 and 5000 measurements. In the best

scenario, the relative error achieved is around 1% in the range 0.3–
1 nK, which improves the 20% of the current state of the art ther-
mometry in the sub nK regime9.

Experimental Implementation
We now consider a realistic implementation of the above results. We
will consider a system consisting of a BEC superfluid reservoir in a
shallow confining trap interacting with an array of atomic quantum
dots20,35. Each dot is created by applying a localised steep potential
that traps atoms of a different hyperfine state of the same atomic
species as the BEC. As we will see below this system obeys the Jaynes-
Cummings Hamiltonian where the coupling is mediated by a Raman
transition. We would like to point out that two-level systems can also
be implemented using a deep double-well optical lattice loaded with
cold atoms in a single-occupancy regime36. This system also obeys
the JC Hamiltonian. However, in this paper we will discuss in more
detail the atomic dot implementation20,35.

In the absence of atomic collisions, the BEC can in principle reach
absolute zero temperature. Under this assumption, the condensate is
commonly described by a classical density function. In realistic scen-
arios, collisions are always present and therefore, in the superfluid
regime, the condensate is better described by a mean field classical
background plus quantum fluctuations. The fluctuations, for fre-
quencies lower than the so-called healing length, are given by a
phononic quantum field operator P(x), which can be expanded in
terms of Bogoliubov modes. Now we proceed to describe the
quantum dots and their interaction with the phononic field. Each
dot is created by applying a localised steep potential which traps
atoms of a different hyperfine state of the same atomic species as
the BEC. Alternatively, in36 the two-level systems are created by
loading cold atoms of a different species in an optical lattice consist-
ing of double well potentials where only single occupancy of each site
is allowed. Focusing on the former, we choose a large collisional
interaction strength gaa inside each dot well, to guarantee that the
occupation number in each site is either 0 or 1, giving rise to an array
of two level systems. We also assume that the wells are deep and
separated enough to neglect direct interaction between different
sites35.

The atoms in the BEC and the dots can be coupled through a
Raman transition using external lasers, giving rise to a phonon-
mediated interaction20. The effective Hamiltonian obtained under
the above assumptions can be written as20,35: H 5 HA 1 HB 1

HAB. Here HA is the free Hamiltonian of an array of M dots, which

is given by HA~
XM

i~1
�hVdsi

z

�
2. The frequency Vd is a function of

the effective Rabi frequency of the Raman transition V and the
number of atoms in the condensate20. HB is the free Hamiltonian
for the phonons HB~

X
k

�hvka{kak, where vk 5 cjkj and c is the

speed of sound. Finally, the interaction Hamiltonian is given by:

HAB~{�hd’
XM

i~1

si
zz�h gab{gbbð Þ

XM

i~1

P xi
� �

si
x ð7Þ

where xi is the position of the dot in the condensate. The coupling
strengths between dot-condensate and condensate-condensate
atoms are given by gab and gbb, respectively. The frequency d9 is a
function of gab, gaa, the effective Rabi frequency and the detuning. We
assume that all the coupling strengths gab, gaa and gbb can be tuned
with Feshbach resonances. In particular, we will consider that the
strengths are tuned such that d9 5 0. In this case the system is
described by the spin-boson Hamiltonian20, in which the structure
of the reservoir is characterised by the spectral density. The ubiquity
of physical systems that can be described by the spin-boson

Hamiltonian directly illustrates that the thermometry technique we
describe can be applied to a range of different physical systems.

With suitable boundary conditions for the condensate trap -e. g.
hard-wall or box potentials37,38-, the energy separation of the pho-
nonic modes can be large enough to ensure that each two-level sys-
tem is only effectively coupled to the mode with closest frequency to
Vd. We denote this frequency by Va and apply the Rotating wave
Approximation (RWA). Notice however that we consider the JC
model only for the sake of mathematical simplicity. Indeed, if the
interaction is given by the more general spin-boson model (Eq. (7))
our results can be extended by using perturbation theory techniques
with the multimode field. Assuming that each dot interacts with the
condensate at different times, the Hamiltonian for each dot is given
by Eq. (1), where now the dot-field coupling strength g is given by:

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ck
2�hV gbb

s
gab{gbbð Þ, ð8Þ

where V is the condensate volume. The RWA holds for weak cou-
plings and small detunings g,df gvvE where E~VazVd . Taking
typical values for the condensate length L 5 500 mm and the speed
of sound c 5 5 mm/s and assuming lf ^L, the frequency of the
phonons is given by Va 5 2p 3 10 Hz. With experimental data
for the Feshbach resonances17–19 the values of g can be tuned within
a broad range from 2p 3 0.1 Hz to 2p 3 10 Hz. Taking g around
0.1 Hz and a detuning of 2p 3 1–2 Hz we are consistent with both
RWA and the adiabatic approximation. This is the range of para-
meters explored in the plots.

Dissipation in this model is characterized by20 a~
rb gab

mc2
{1

� �2
~

gab

gbb
{1

� 	2

. As can be seen in Eq. 8, the weak coupling regime that

we are considering entails that gab is slightly larger than gbb. In par-
ticular, for g 5 0.1 Hz, gab/gbb 5 1 1 1/70 and then a 5 2 ? 1024.
Therefore, we are in the regime avv1, where the damping rate C of
the Rabi oscillations is negligible as compared with the frequency of
the dot Vd, and the dynamics is well described by perfect Rabi oscilla-
tions, as in the Jaynes-Cummings model.

The description of the experiment is the following. The atomic
dots are prepared in a separable superposition of their internal levels,
fli51…M j"iæ. They are then coupled to the phonons through Raman
transitions and allowed to interact with the BEC for some time,
which in our plots is of the order of 0.1 s. The times can be made
significantly shorter by relaxing the cyclicity condition, which we
imposed in order to compare the dynamical phase analysis with
the geometrical phase analysis. However, it is no longer necessary
in this setting. The probabilities of excitation of all the dots are then
measured using standard imaging techniques27. In order to ensure
that the measurements are completely independent, one possibility is
that each dot interact at different times with the condensate.
Moreover, the separation in time between interactions should be
large enough to rule out temporal correlations between the occu-
pation numbers of the considered mode. These temporal correlations
drop to 0 after a few ms for typical parameters39. Note that this
implies that the disturbance of the condensate in each measurement
is negligible. The sequential interactions can be achieved using the
dependence of the coupling strength on the value of the magnetic
field near a Feshbach resonance. For the dot that is interacting with
the condensate, the value of gab is slightly different from gbb, giving
rise to a finite value of g. For the rest of the dots, gab 5 gbb and g 5 0.
When g 5 d 5 0, as discussed in20, an extra term in the Hamiltonian -
which is negligible when the interaction is on- becomes relevant. This
term does not generate transitions in the qubit basis, since it is just a
dephasing interaction. The ratio between the strength of this dephas-

ing and the dot frequency is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hk

8rbcVm

s
^10{4, meaning that deco-
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herence of the dots can be neglected and they can safely be assumed
to remain in the initial superposition state while the other dots are
being sequentially let to interact and measured.

Another way to ensure that different measurements are not cor-
related is to couple each dot to a different mode of the field. In this
case, the interactions can be simultaneous, since each dot would
probe a different thermal distribution with the same temperature.
Alternatively, an array of dots with different gaps could be used, for
instance taking advantage of a non-homogenous magnetic field.
Other sources of imperfections- e.g. laser noise- would also change
the details of the dot-condensate interaction -in this case, the coup-
ling strength-, ensuring the statistical independence of the measure-
ments. The only limitation to the number of probes is that the spatial
separation must be larger than the healing length of the condensate in
order to ensure no direct interaction between them35. Moreover,
indirect interaction due to phonon exchange is proportional to g2/
d, and therefore is negligible for times t 5 1/d and g/d= 1. Taking for
instance a realistic separation between the dots of 300 nm and a
condensate length of 500 mm, we can load 1500 impurities in a 1-
D optical lattice. This number would be further increased in 2-D or 3-
D setups. Since the lifetime of the condensate can be larger than 100 s
it seems feasible to perform at least a few measurements on each dot.
Therefore, as can be seen in Fig. 2c) the relative error is well below the
20% state of the art thermometry in the sub nK regime9, and ultra-
high precisions below 1% can be achieved. Moreover, as explained
above, by preparing several dots in an entangled input state22,40 the
precision would be significantly improved reaching the Heisenberg
limit. The initial entangled state can be prepared by using a value of
the magnetic field that strongly couples the dots to the field41. Then
the magnetic field can be varied to decouple the dots and start the
experiment, as explained above. Notice that, once the dots are
decoupled, the local dephasing interaction cannot change the non-
local correlations i. e. entanglement.

Discussion
Our minimally invasive technique is suitable to measure with high
accuracy the very low temperature effects generated in analogue
gravity scenarios. The Unruh temperature can in principle be mea-
sured in our setting by accelerating the dots. The idea of demonstrat-
ing the Unruh effect in BECs was suggested with a different setup
in42. Moreover, the use of a geometric quantum phase as an estimator
of the Unruh temperature was proposed using a challenging experi-
mental setup involving atom Mach-Zehnder interferometry43. We
are currently working on implementing our technique to measure
the Unruh effect in a BEC with higher precision. If a is the accelera-
tion, the Unruh temperature is given by TU 5 �h a/(2p c kB) which in
our setup give rise to TU 5 2.4 nK for an acceleration of g -where g is
the acceleration of gravity on the surface of the Earth. Accelerations
of several g were achieved in recent experiments27. Therefore, with
our method the detection of the Unruh temperature of the phononic
BEC bath is clearly within reach of current technology.

We have shown that the quantum dynamical phase acquired by a
two-level system interacting with a quantum field in a thermal state
under the Jaynes-Cummnigs Hamiltonian can be used to measure
the temperature of the field. Since the Jaynes-Cummings model suc-
cessfully describes a number of different quantum systems, our ideas
can be applied to measure the temperature in a great variety of
physical setups, such as cavity QED, ion traps or circuit QED in a
weak coupling regime. As a specially interesting implementation we
choose to present in this paper a cold atom setup. In particular, an
atomic quantum dot is coupled to the phononic quantum fluctua-
tions of a BEC. We compute the dynamical phase acquired by several
independent dots in a Ramsey interferometry scheme and estimate
the precision by means of the Quantum Fisher Information. We
show that the phase is sensitive to temperatures in the sub nK regime
and that the precision improves on the state of the art thermometry at

those temperatures after a number of measurements that can be
achieved with current technology. Moreover, the precision can in
principle be further improved by preparing entangled input states.

The proposal to infer the temperature of the condensate from the
phase acquired by an interacting probe, is not restricted to the par-
ticular BEC model we present here. We chose as a particular example
a probe coupled to a single mode of a weekly interacting BEC because
of its mathematical simplicity and elegance. In principle, our ideas
can also be applied to different cold atom systems, such as Fermi
gases -where they would be useful in the analysis of magnetic phase
transitions. Moreover, other states of the field might be considered
and therefore the readout of the qubit’s phase could be a tool to
analyse the dynamics of a BEC and other cold-atom systems.

In summary, we have introduced a non-invasive, accurate and
quantum way of measuring ultralow temperatures in a Bose-
Einstein Condensate. In addition to improving on state-of the art
thermometry in the sub nK regime, these techniques provide an
experimentally feasible method of measuring very-low temperatures
arising in analogue gravity scenarios, paving the way for the detection
of analogue Unruh and Hawking temperatures in BECs.

Methods
Dynamical and geometrical phases. The time evolution of the system can be found

by writing HJC tð Þ~U hð ÞH0
JCU hð Þ{ where U hð Þ~eiha{a and H0

JC~HJC x~0, t~0ð Þ.
The eigenstates of H0

JC , are given by n{j i~ cos
an

2

� �
nz1ð Þgj i{ sin

an

2

� �
nej i and

nzj i~ sin
an

2

� �
nz1ð Þgj iz cos

an

2

� �
nej i where jn gæ and jn eæ are the eigenstates of

the free Hamiltonian (corresponding to g 5 0) and an~ arctan
2g

ffiffiffiffiffiffiffiffiffiffi
nz1
p

d

� 	
. In this

notation jnæ are field number states and jgæ and jeæ are the ground and excited states of
the qubit. We require that the qubit only acquires phases during its evolution.
Therefore, to ensure that there are no transitions between the U(h) jn6æ states, we

make use of the adiabatic approximation44
X

m

mh j _H nj i


 



Em{En
tvv1. In the Jaynes-

Cummings model transitions are only possible between the eigenstates with same n,

therefore the adiabatic condition yields
nzh j _H n{j i


 



Enz{En{

t^
gt
2

vv1. Notice that with

the values of g and t that we consider in the text the adiabatic condition holds. For
simplicity, we assume that the parameter h undergoes a cycle, therefore the
interaction time is t 5 2p/d. The dynamical phase c+Dn acquired by the state jn6æ
under this condition is given by

c+Dn~{
1
�h

ðt

0
vHwn+dt’~{

E+
n t
�h

~

~{
2p

d
Va n{

1
2

� 	
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2z4g2n

q� 	
:

ð9Þ

The geometric phase c+Gn defined by31: ic+Gn~

ð2p

0
vU{LhUwn+dh, yields

cz
Gn~2p n{ cos2 an

2

� �� �
and c{

Gn~2p n{ sin2 an

2

� �� �
. We are interested in the case

where the field is initially in a thermal state rF~
X

n
pn nf



 �
nf
� 

, where

pn 5 (e2F)n (1 2 e2F), F~
�hVa

kBT
. In the mixed case, the geometric phase is given by

c+G ~Arg
X

n
pne ic+Gnð Þ

� �
45,46, while in the dynamical case, the phase is obtained

through a simpler expression c+D ~
X

n
pnc+Dn . We find, using a series expansion on

g/d, that the geometric phase is given by Equation (2) and the dynamical phase by
Equation (3).

Quantum fisher information. The quantum Cramer-Rao bound47 states that the
error dx in estimating a parameter x with M measurements on a state rx that depends
on x, is bounded by:

dx§

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M F rxð Þ

p , ð10Þ

F(rx) being the Quantum Fisher Information of the state. This inequality assumes
that input states are separable, however, it has been shown that entangled states

improve the 1
. ffiffiffiffiffi

M
p

shot-noise scaling reaching the Heisenberg limit given by a 1/M

scaling where M is the number of entangled particles. F(rx) can be written as48:
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F rxð Þ~2
X
nm

mh jLxrx nj ij j2

rmzrn
ð11Þ

where rm,n are the matrix elements of rx in an orthogonal basis in which rx is
diagonal: rx~

X
n

rn nj i nh j. The terms in which both rm and rn are zero in the sum
in Eq. (11) must be excluded.
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16. Günter, K., Stöferle, T., Moritz, T., Köhl, M. & Esslinger, T. Bose-Fermi Mixtures
in a Three-Dimensional Optical Lattice. Phys. Rev. Lett. 96, 180402 (2006).

17. Simoni, A. et al. Near-threshold model for ultracold KRb dimers from interisotope
Feshbach spectroscopy. Phys. Rev. A 77, 052705 (2008).

18. Tung, S.-K. et al. Ultracold mixtures of atomic 6Li and 133Cs with tunable
interactions. Phys. Rev. A 87, 010702(R) (2013).

19. Chin, C. et al. Precision Feshbach spectroscopy of ultracold Cs2. Phys. Rev. A 70,
032701 (2004).

20. Recati, A., Fedichev, P. O., Zwerger, W., von Delft, J. & Zoller, P. Atomic Quantum
Dots Coupled to a Reservoir of a Superfluid Bose-Einstein Condensate. Phys. Rev.
Lett. 94, 040404 (2005).

21. Diener, R. B., Wu, B., Raizen, M. G. & Niu, Q. Quantum Tweezer for Atoms. Phys.
Rev. Lett. 89, 070401 (2002).
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