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Abstract
Repeated administrations of anti-cancer drugs to patients often induce drug resistance. P-

glycoprotein (Pgp) facilitates an efficient drug efflux, preventing cellular accumulation of

drugs and causing multi-drug resistance (MDR). In this study, we developed a gold-pacli-

taxel nanoconjugate system to overcome MDR. Gold nanoparticles (GNPs) were conju-

gated with β-cyclodextrin enclosing paclitaxel (PTX) molecules and PEGmolecules. GNP

conjugates were effectively endocytosed by both drug-sensitive human lung cancer H460

cells and Pgp-overexpressed drug-resistant H460PTX cells. Compared with PTX, PGNPs

did not induce the Pgp overexpression in drug-sensitive H460 cells after long-term treat-

ment and also avoided being pumped out of cells by overexpressed Pgp molecules in

H460PTX with a 17-fold lower EC50 compared to PTX. Fluorescent microscopy and flow

cytometry further confirmed that fluorescent labeled PGNPs (f-PGNPs) maintained a high

cellular PTX level in both H460 and H460PTX cells. These results demonstrated that nano-

drug conjugates were able to avoid the development of drug resistance in sensitive cells

and evade Pgp-mediated drug resistance and to maintain a high cytotoxicity in drug-resis-

tant cancer cells. These findings exemplify a powerful nanotechnological approach to the

long-lasting issue of chemotherapy-induced drug resistance.

Introduction
In cancer chemotherapy, repeated administrations of anti-cancer drugs often induce drug
resistance and lead to treatment failure in patients [1, 2]. For example, many effective anti-can-
cer drugs, such as doxorubicin, vincristine, actinomycin-D, and paclitaxel (PTX), could induce
the multi-drug resistance (MDR) [3], a phenotype of cross-resistance to multiple drugs with
both similar and unrelated structures. Although MDR can be caused by various mechanisms,
the overexpression of transporter proteins that pump drugs out of cells is the major mechanism
of MDR [4]. Pgp is one such protein, serves as a membrane pump, binds drugs with diverse
chemical structures and pump them out of the drug resistant cancer cells [5–7]. Furthermore,
previous investigations have shown that a high drug concentration is a prerequisite for trigger-
ing MDR gene expression in drug-sensitive cancer cells [8, 9]. Due to these two obstacles in
chemotherapy, effective cancer treatment has been severely hindered. Therefore, it would be
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desirable to develop chemotherapeutics to both avoid Pgp overexpression and reduce drug
efflux in order to increase the efficacy of anti-cancer drugs.

In the past few years, accumulating evidence showed that nanotechnology has the largest impact
on medicine when solving tough problems for which conventional protocols fail. To date, nanocar-
riers have been explored for a variety of applications such as cancer diagnosis [10, 11], drug delivery
[12], imaging [13], photothermal ablation of tumours [14–17] and radiation sensitizers [18, 19],
offering unique advantages over free drugs [20]. In particular, drug administration by nanocarriers
displayed great perspective in the strategies considered to overcomeMDR through changing the
internalization pathways and/or intracellular release style of drugs, suppressing the activity of the
MDR efflux pump, or inhibiting the expression of genes responsible for the activity of efflux
pumps, detoxification and apoptosis [21–27]. Among all the drug nanocarriers that have been
reported, gold nanoparticles (GNPs) possess excellent characteristics, such as precisely-controlled
size, tunable optical properties, robust stability, biocompatibility and diversified postsynthetic sur-
face modification, which enable their promising use as one of the best drug nanocarriers [28–31].
For examples, PEGylated GNPs binding with recombinant human tumor necrosis factor alpha
(TNF-α) showed potential use in targeting solid tumors in advanced stage cancer patients [32].
GNPs covered with cyclodextrin were useful in antitumor drugs delivery for therapeutic purposes
[33–37]. Recently, GNPs conjugated with anticancer drugs have shown great promise in overcom-
ingMDR [27]. For instance, doxorubicin grafted-PEGylated GNPs overcomeMDR in Doxorubi-
cin-selected P-gp-overexpressing cancer cells [38]. DOX-tethered GNPs could significantly
overcome P-gp-mediated drug resistance by a combination of enhanced doxorubicin cellular entry
and a responsive intracellular release of doxorubicin in acidic organelles [23]. GNPs loaded with
PTXmolecules through DNA linkers increased drug efficacy in Paclitaxel-resistant cell lines [39].

Based on those progresses [20, 21, 23, 25, 38, 39], we hypothesize that drug molecules asso-
ciated with a nanocarrier would be released slowly in cancer cells, avoiding activation of drug
resistance-related genes. Morever, nanoparticles are also expected to be a poor substrate for
Pgp [40, 41], allowing drugs to remain inside the cells, where their anti-cancer activities are
most effective. Therefore, with a single nanoconjugate design, we may be able to achieve two
important goals simultaneously. In this study, we designed and prepared NP-drug nanoconju-
gates by loading paclitaxel on GNPs modified with β-cyclodextrin (β-CD) and PEG5000. The
gold-paclitaxel nanoconjugates could overcome MDR through simultaneously preventing the
overexpression of Pgp proteins in drug-sensitive cells and evading Pgp-induced drug efflux to
achieve potent cancer cell death in drug-resistant cells.

Materials and Methods

Reagents and cell line
Unless otherwise indicated, all chemical reagents were obtained from Sigma-Aldrich (St. Louis,
MO, USA) and used without further purification. RPMI 1640, fetal bovine serum, penicillin,
streptomycin, and all other tissue culture reagents were obtained from Life Technologies
(Grand island, NY, USA). Pgp low-expressed non-small cell lung cancer (NSCLC) cell line
H460 was provided by Dr. Bingliang Fang (The University of Texas, MD Anderson cancer cen-
ter, USA). The cells were maintained in RPMI-1640 medium supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin. Cells were cultured in a humidified incubator at
37°C with 5% CO2. In all experiments, cell line was used before passage 40.

Preparation of PGNPs
GNPs with 15 nm diameter and sulfhydryl group modified cyclodextrin (SH-β-CD) were
synthesised according to our previous work [42]. 3 mg of NH2-PEG5000-SH was then added to
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300 mL of the above GNPs solution and stirring for 24 hrs. 300 uL of SH-β-CD solution was
added to the mixture and stirred for another 24 hrs. The free sodium citrate, NH2-PEG5000-SH,
and SH-β-CD were removed by six times washing (ultrapure water, 40 mL × 6) using regular
centrifugation (50,000 g) at 4°C for 30 min. The retained nanoparticles were re-suspended in
ultrapure water and the gold content was detected using ICP-AES (Optima 7000DV, Perkin
Elmer, Inc., United States).

To obtain paclitaxel loaded GNPs (PGNPs), 300 μL of PTX-DMSO solution (0.4 mM) was
added into 30 mL of the above GNP solutions. After stirring for 48 hrs at 4°C, the result solu-
tions was allowed to go through syringe driven filter unit (0.22 μm, Millex1GP) to form a ster-
ile PGNPs stock solution.

Determination of PTX loading and releasing
At different time points during the load reaction, 3 mL of the reaction solution was taken out,
centrifuged at 50,000 g for 30 min and washed with PBS (5 mL × 2). The supernatant was
extracted with EtOAc (10 mL× 6). The organic phase was dried with anhydrous MgSO4 and
concentrated to dryness under vacuum at room temperature. Then the retained sediment was
re-dissolved in 30 μL DMSO and the concentration of PTX was determined by HPLC (PTX
standard solutions: 200, 100, 50, 25, 10, 5, 2, 1 μM in DMSO). The detailed HPLC elution con-
ditions were as follows: Waters Xterra MS-C18 column (5 μm, 2.1 mm × 50 mm); The mobile
phases were acetonitrile and water; Gradient elution condition: 0 min, 25% acetonitrile; 1 min,
40% acetonitrile; 2.0 min, 100% acetonitrile; 6.0 min, 100% acetonitrile; 7.0 min, 70% acetoni-
trile; 8.0 min, 70% acetonitrile, and 10 min, 25% acetonitrile. The flow rate was 0.3 mL/min.
Detection wavelength: 254 nm; Column temperature: 25°C.

The release of PTX from PGNPs was determined by a similar method. 10 mL PGNPs stock
solution was centrifuged at 50,000 g for 30 min, washed with PBS for three times and then re-
suspended in 10 mL PBS (pH = 7.5 and pH = 5.5). Then the suspensions were incubated at
37°C. At different time point, the suspensions were centrifuged at 50,000 g for 30 min and the
sediments were washed with PBS and re-suspended in PBS of different pH for further release
experiment. The PTX concentration in the obtained supernatant was also determined by
HPLC.

To determine the number of FITC-PTX per PGNP, 10 mL f-PGNPs stock solution was cen-
trifuged at 50,000 g for 30 min and washed with ultrapure water (5 mL × 3). The FITC-PTX in
the obtained supernatant was determined using fluorescent spectrophotometer (F4500, Hitech,
Japan) (FPTX standard solutions: 200, 100, 50, 25, 10, 5, 2, 1 μM in ultrapure water with 0.4‰
DMSO).

Hydrodynamic size and zeta potential measurement
The hydrodynamic size and zeta potential of GNPs and PGNPs was detected using dynamic
light scattering (Malvern Nano ZS, Malvern, UK). GNPs or PGNPs at concentrations of
500 μg/mL in water or in medium with 10% FBS were used for size analysis. GNPs at a concen-
tration of 2.5 nM was used for zeta potential analysis, and different pHs were selected in order
to reveal the surface charge of the particles.

Cellular uptake of PGNPs
1 mL of PGNPs (stock solution) was centrifuged in centrifugal filter (100,000 MWCO), washed
with PBS (pH = 7.4), and dissolved in 1 mL of PBS before experiments. All cells were cultured
in 12-well plate (50,000 cells/well) and treated with PGNPs at 2.5 nM for 0.5–72 hrs or at a con-
centration range (0.5, 1.0, 2.5, 5.0, 10.0, 20.0 nM) for 24 hrs. After incubation, samples
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including floating cells were harvested, and washed with PBS (1 mL × 3). The harvested cells
were re-suspended in 500 μL of culture medium and cell density was counted. 200 μL of cell sam-
ples were incubated with 400 μL of Aqua Regia at 37°C for 24 hrs. The cell samples were centri-
fuged. 500 μL of supernatant was diluted to 10.0 mL in ultrapure water and used for ICP-MS
measurements (Agilent 7500 series, Agilent Technologies, United States). A series of gold stan-
dard solutions (200, 100, 75, 50, 20, 10, 5 and 2 ppb) were prepared before measurements. The
resulting calibration curve was used to calculate the gold content taken up by different cells.

Transmission electron microscopy (TEM)
1 mL of PGNPs (stock solution) was centrifuged in centrifugal filter (100,000 MWCO), washed
with PBS (pH = 7.4), and dissolved in 1 mL of PBS. Cells were treated with PGNPs (2.5 nM)
for 24 hrs, and washed with PBS twice. The cells were harvested and washed with PBS twice.
The clustered cells were fixed with 2.5% glutaraldehyde in 0.1 M of Sodium Cacodylate buffer
(Tousimis Research Corporation) for 30 min at room temperature. The samples were washed
with PBS again and sectioned. Ultrathin sections were examined using a JEOL 1200 EX trans-
mission electron microscope (JEOL, Tokyo, Japan). The images were acquired using an AMT
2k CCD Camera.

MDR cells screening
The establishments of MDR cell lines were performed by treating H460 cells with PTX or
PGNPs of gradient concentrations (with the PTX concentrations of 10, 20, 40, 80, 100 nM) for
100 days, as reported previously [43]. And each concentration was administrated for two
times. During each administration, cells were treated with PTX or PGNPs for continuous 3
days and then cultured in fresh medium for another 7 days. When it was necessary, cells were
passaged for further culture. We obtained two cell lines in this experiment. PTX-treated cells
named H460PTX and PGNP-treated cells named H460PGNP.

Pgp expression
After screening, the cells were harvested and lysed in RIPA lysis buffer (Beyotime, China)
which contained 1% proteasome inhibitor (P2714, Sigma) and 1 mM phenyl methane sulfonyl
fluoride (PMSF) to detect the expression of Pgp. Equal amounts (25 μg) of protein were loaded
onto SDS-PAGE for separation and then transferred onto a PVDF membrane. The membrane
was blocked with 5% w/v nonfat dry milk (in TBS with 0.05% Tween-20). After incubation
with Mdr-1 Antibody (mouse monoclonal IgG2b, Santa Cruze, USA) (1:1000) at 4°C over-
night, the membrane was washed three times with TBST (TBS with 0.05% Tween-20) solution.
The membrane was then incubated with secondary antibody (1:5000) at room temperature for
1 h followed by three washes with TBST. The protein bands were developed by incubation with
a luminescent reagent. ImageJ was used to quantify the band intensity.

Pgp function assay
Pgp function in H460, H460PTX and H460PGNP were measured using a Rhodamine 123
(Rh123) assay. Cells were treated with Rh123 (2.5 μM) in the absence or presence of Pgp inhib-
itor Reversan (Life Technology, USA) at 10 μg/mL for 24 hrs. Then the cells were collected and
washed with ice-cold PBS for three times in order to remove the adsorbed Rh123 on cell sur-
face. The cells were re-suspended in PBS to the final cell concentration of 300,000/mL, placed
in ice and analysed immediately on a Guava Easy Cyte Miniflow Cytometry System (Guava
Millipore, Merck KGaA, Germany).
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Intracellular drug concentration
1 mL of f-PGNPs (stock solution) was centrifuged in centrifugal filter (100,000 MWCO),
washed with PBS (pH = 7.4), and dissolved in 1 mL of PBS. For H460, cells were treated with
fluorescence labeled PTX (f-PTX, 50 nM) or fluorescence labeled PGNPs (f-PGNPs, the total
concentration of PTX was 50 nM) for 24 hrs and then the culture medium was replaced with
fresh medium. After further incubation for 48 hrs, the cells were harvested and washed with
PBS twice for flow cytometry analysis. For H460TaxR, cells were treated with f-PTX, f-PGNPs
or f-PTX/Pgp inhibitor for continuous 72 hrs. After that, cells were harvested and washed with
PBS twice for flow cytometry analysis.

Cytotoxicity assay
The PGNPs in stock solution was washed with PBS in centrifugal filter (100,000 MWCO) at
4°C. The obtained PGNPs was dissolved in the same volume of PBS. Cells in 96-well plates
were cultured with PTX, PGNPs or fresh culture medium for 72 hrs. Cell viability was deter-
mined by CellTiter-Glo1 Luminescent Cell Viability Assay kit (Progema corporation, USA).
The EC50 value was calculated using a four-parameter regression equations (Sigmaplot 12.0,
Systat Software, Inc, UK).

Fluorescent microscopy
1 mL of f-PGNPs (stock solution) was centrifuged in centrifugal filter (100,000 MWCO),
washed with PBS (pH = 7.4), and dissolved in 1 mL of PBS. The cells were cultured in 24-well
plates and treated with f-PTX (50 nM) and f-PGNPs (the concentration of PTX is 50 nM) for
24 hrs. After that, cells were washed with PBS twice and fixed in 4% paraformaldehyde (Alfa
Asar) for 10 min at room temperature. Cells were then treated with 10% DAPI (Beyotime,
China) in dark at 37°C for 5 min. The fluorescent pictures were obtained using a fluorescent
microscope (OLYMPUS TH4-200 Olympus Optical Co Ltd, Tokyo, Japan).

Results and Discussion

Synthesis and characterization of PGNPs
To assemble a nanoconjugate with slow drug release, we attached β-cyclodextrin (β-CD) with
thiol functional groups, and PEG5000 with amino functional groups to the GNPs to provide a
drug-carrying moiety, as named PEG-GNP-CD (Fig 1A). The PEG5000 can not only enhance the
water solubility of GNPs, but also increase the cell affinity due to its positive charge [44–46].
Drug molecules, such as PTX, are trapped in the hydrophobic pocket of β-CD through host-
guest interactions and are then slowly released, likely through competitive host-guest interactions
between β-CD and many cellular molecules, such as amino acids and sugar [42, 47–49].

After nanoconjugates synthesis and loading of PTX molecules, we thoroughly characterized
the final product, PTX-loaded GNPs (PGNPs), using an array of analytical methods. Transmis-
sion electron microscopy (TEM) image showed that the average GNP core diameter was 15 nm
with small aggregations (Fig 1B). After conjugation with PEG5000 and β-CD and loading of
PTX, PGNPs showed similar GNP core diameters as 15 nm, but the water solubility was largely
improved as determined by TEM (Fig 1C). Because the TEM only captured images of the metal
core, we further determined the dynamic diameter of PGNPs in solution using the dynamic
light-scattering (DLS) method. The pictures in Fig 1D indicated PGNPs had good aqueous sol-
ubility in both water and cell culture medium with 10% of fetal bovine serum (FBS). The
hydrodynamic size of each PGNP was ~27 ± 5.3 nm in water. In cell culture medium with 10%
FBS, the hydrodynamic size increased to ~33 ± 6.0 nm, indicating protein adsorption on
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PGNPs. Furthermore, the zeta potential of both GNPs and PGNPs was changed at different
pHs (S1 Fig). The zeta potential of PGNPs was determined to be +18 mV in water as expected,
indicating a positive surface charge. However, the zeta potential of PGNPs changed to -10 mV
in cell culture medium with 10% FBS, which confirmed the protein adsorption on PGNPs (Fig
1D). Additionally, there were in average 28 PTX molecules on each nanoparticle, as determined
by high performance liquid chromatography-mass spectrometry (HPLC) analysis.

Loading and release profiles of PGNPs
The loading and release of the PTX on the PGNPs were also investigated by HPLC (Materials
and Methods). PGNPs were prepared by adding 300 μL of PTX (0.4 mM) into 30 mL of
PEG-GNP-CD solution (100 nM). The mixture was shaked at room temperature for different
time. The equilibrium was reached after 24 hrs incubation (Fig 2A). Approximately 2.8 μM
PTX was loaded to GNPs at equilibrium for 24 hrs, indicating a loading of 70%. The PTX
release profile was then studied at pH 7.0 and 5.5. At pH 7.0, only 25% of the PTX molecules
were spontaneously released from the PGNPs within 15 hrs. However, approximately 80% of
the PTX molecules were released within the same time period at pH 5.5, suggesting that the
drug molecules could more easily escape the nanoconjugates when located within endosomes
or lysosomes inside cancer cells (Fig 2B).

Fig 1. Preparation and characterization of PGNPs. (A) Preparation of PGNPs. (B, C) TEM images of GNPs and PGNPs. The scale bars are 50 nm. (D)
Photographs showing that the PGNPs were well dispersed in water and in cell culture medium with 10% of FBS. The nanoparticles’ hydrodynamic size and
zeta potential (ZP) are also shown.

doi:10.1371/journal.pone.0160042.g001
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The suppression of drug resistance in H460 cells by PGNPs
Considering that lung cancer is still the deadliest cancer [50] and the development of severe
drug resistance during chemotherapy as one of the key roadblocks to its treatment [51], the
NSCLC cell line H460 was used in our study. Pgp overexpression always occurs after a period
of chemotherapy. During this process, a higher drug dose always induces more drug resistance
[52]. To investigate this drug resistance induction, we incubated drug-sensitive H460 cells with
PTX or PGNPs at the equivalent drug concentration, which was progressively increased from
10 nM to 100 nM over the course of 100 days (Fig 3A; see the Experimental section for further
details). The resulting H460 sub-lines H460PTX (treated with PTX) and H460PGNP (treated
with PGNPs) were characterized for their Pgp expression levels and their sensitivity to PTX
treatment. Compared with the parent H460 cells, H460PGNP exhibited an increased Pgp expres-
sion level (Fig 3B and 3C) and EC50 value of PTX on H460PGNP cells was 28.8 nM (Fig 3D),
indicating the acquirement of a slight drug resistance. By contrast, H460PTX exhibited a signifi-
cant increase in Pgp expression level (Fig 3B and 3C) and EC50 value of PTX on H460PTX was
346.3 nM (Fig 3D), which was 54-fold higher than that of H460, indicating that much higher
resistance was induced by PTX.

The cytotoxicity of PTX and PGNPs in H460 cells and H460PTX was also examined. In
H460 cells, the cytotoxicity of PGNPs was not so different from that of PTX (EC50 of 6.4 and
10.3 nM, Fig 4A). However, in drug-resistant H460PTX cells, PGNPs was much more potent
compared to PTX with a 17-fold lower EC50 value (EC50 20.1 vs 346.3 nM, Fig 4B), indicating
that PGNPs were able to avoid being pumped out of cells by Pgp. This result is consistent with
previous works, which showed the enhanced anticancer activity of PTX when conjugated to
GNPs. Chen et al. showed that cancer-targeting GNPs loaded with PTX exhibited a better anti-
cancer activity in human ovarian cancer cell line SKOV-3 compared to free PTX [53]. How-
ever, its anticancer activity in drug resistance cells was not studied. PTX has a IC50 value above

Fig 2. Loading and release profiles of PTXmolecules on PGNPs. (A) Encapsulation of PTX onto GNPs with different incubation time. (B) Drug
release from PGNPs at different pHs. Each data point was measured in triplicate. Data are mean±s.d.

doi:10.1371/journal.pone.0160042.g002
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1 μM in resistant MES-SA/Dx5 cells, whereas GNPs loaded with PTX molecules through DNA
linkers exhibited an IC50 value of 104.5 nM [39].

Pgp function in H460PGNP and H460PTX was also examined using a standard Rhodamine
123 (Rh123) efflux assay (Fig 5) [54] After incubation with Rh123 with different cells for 24
hrs, the cellular uptake of Rh123 was determined by flow cytometry. High cellular uptake of
Rh123 was found in H460 (Fig 5A) and H460PGNP (Fig 5C) cells, with only limited amount of
Rh123 found in H460PTX cells (Fig 5B). The results show that H460PTX cells pump Rh123 mol-
ecules out at a much higher rate than in H460PGNP cells. To confirm the low cellular uptake of
Rh123 in H460PTX was caused by high Pgp expression, a Pgp inhibitor, Reversan, was incu-
bated with cells for 4 hrs before incubation with Rh123. A much higher accumulation of Rh123
in H460PTX cells (Fig 5E) was found, with no clear differences in H460 and H460PGNP cells (Fig
5D and 5F).

Fig 3. PGNPs block Pgp overexpression in durg-sensitive H460 cells. (A) Experimental scheme for 100-day treatment of cells with PTX or PGNPs
with progressively increasing the concentration of PTX. (B) Pgp expression in H460, H460PTX, and H460PGNP cells. (C) Quantification of Pgp band
intensities in (B), as determined by ImageJ. *P<0.05, compared with that of H460 under the same condition; ***P<0.001, compared with that of H460
under the same condition. (D) EC50 of PTX on H460PTX and H460PGNP. EC50 (inhibitor), EC50 of PTX on H460PTX and H460PGNP in the presence of a Pgp
inhibitor (Reversan). Each experiment was repeated at least three times. Data are mean±s.d.

doi:10.1371/journal.pone.0160042.g003

Overcoming Multi-Drug Resistance with Nanoconjugates

PLOS ONE | DOI:10.1371/journal.pone.0160042 July 28, 2016 8 / 16



Chemotherapy-induced Pgp overexpression is an important self-protection mechanism for
cancer cells. Although the underlying mechanism is of great complexity and is not yet fully
understood, investigations have suggested that in cancer cells, the MDR-1 gene is activated by
anti-cancer drug treatments [3, 55]. With increasing drug doses, Pgp overexpression and drug
resistance are further exacerbated. As a result, Pgp-overexpressing cancer cells can no longer
be killed by conventional chemotherapy. Sudden exposure to a high drug concentration is a

Fig 4. PTX- or PGNP-induced cytotoxicity in H460 and H460PTX cells. The PTX concentration was determined by HPLC-MS. Cells were incubated
with PTX or PGNPs for 72 hrs and cell viability was determined by CellTiter-Glo1 Luminescent Cell Viability Assay. Each data point was measured in
triplicate. Data are mean±s.d.

doi:10.1371/journal.pone.0160042.g004

Fig 5. Pgp function determined by intracellular Rhodamine123 (Rh123) accumulation in different cell lines. Cells were treated with 2.5 μMRh123
with or without adding Pgp inhibitor. The intracellular accumulation of Rh123 was determined by flow cytometry. Numbers in plots are average
fluorescence intensities of intracellular Rh123. The figure is the representative of results from three independent experiments.

doi:10.1371/journal.pone.0160042.g005
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key factor for inducing Pgp overexpression [52, 56, 57], and regular intermittent drug adminis-
tration may give emerging drug-resistant cells time to survive and proliferate. Recent studies
have thus shown that continuous low-dose drug treatment is somewhat helpful for partially
avoiding Pgp overexpression [58, 59]. In the current study, the nanoconjugate PGNPs showed
sustained slow drug release, and the lower intracellular drug accumulation generated by the
PGNPs compared with free PTX treatment likely explains the lower Pgp overexpression
observed during the long-term drug treatment.

The binding and internalization of PGNPs by H460 and H460PTX cells
With the Pgp high-expressed H460PTX cells in hand, we were able to investigate the cellular
uptake of PGNPs in drug resistant cancer cells and if PGNPs could evade Pgp-induced drug
efflux to achieve potent cancer cell death in drug-resistant cells. The internalization of PGNPs
by H460 and H460PTX cells was first examined by visualizing cell cross-sections using TEM.
The TEM images showed that the nanoparticles entered both H460 and H460PTX cells and
were mainly present in vesicle-like endosomes and lysosomes (Fig 6A and 6B). The Au content
in the cells was then quantitatively analyzed by inductively coupled plasma-mass spectrometry
(ICP-MS). When the cells were treated with PGNPs at 2.5 nM, the cellular Au content
increased with time until reaching a plateau in approximately 24 hrs. Approximately 24,000
and 26,000 GNPs entered each H460 and H460PTX cell, respectively (Fig 6C). PGNPs showed
similar cellular uptake rate in H460 and H460PTX cells, indicating a negative correlation
between the cell binding and internalization of PGNPs and Pgp expression. We then fixed the

Fig 6. Internalization of PGNPs by H460 and H460PTX Cells. (A, B) TEM images of PGNPs internalized by H460 and H460PTX cells. The figure is the
representive of results from three independent expeiments. (C) Time-dependent cellular uptake of PGNPs by H460 and H460PTX cells. Cells were treated
with PGNPs at 2.5 nM for indicated times and cellular uptake of PGNPs was determined by ICP-MS. (D) Dose-dependent uptake of PGNPs by H460 and
H460PTX cells after treatment for 24 hrs. Each data point was measured in triplicate. Data are mean±s.d. *P<0.05, compared with that of H460 under the
same treatment.

doi:10.1371/journal.pone.0160042.g006
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PGNP incubation time as 24 hrs and cells were incubated with PGNPs at various concentra-
tions, the maximal internalization of PGNPs was achieved at a PGNP concentration of 5 nM
for both H460 and H460PTX cells (Fig 6D), with slight higher PGNP internalization in H460
cells than H460PTX cells.

At 4°C, such internalization was heavily inhibited, suggesting that the PGNPs internaliza-
tion was energy dependent (S2 Fig). A GTPase inhibitor, NaN3, also inhibited PGNP internali-
zation. These data demonstrated that the PGNPs were poor Pgp substrates and were
internalized through endocytosis (S2 Fig) through which PGNPs effectively delivered drugs
into cytoplasm, causing cancer cell death and lower expression of P-gp. Based on the amount
of PGNPs in each cell and the original PTX loading of the PGNPs, we calculated the approxi-
mate amount of PTX in each cell. Under the equilibrium condition, approximately 1.12×10−18

or 1.21×10−18 moles of PTX molecules entered H460 and H460PTX cancer cells, respectively, of
which approximately 0.92×10−18 or 1.0×10−18 moles could be released from nanoparticles in
25 hrs as determined based on PTX release profile.

PTX accumulation in H460 and H460PTX cells
Aside from drug-induced Pgp overexpression during long-term drug treatment of drug-sensi-
tive cells, one form of direct resistance to conventional chemotherapy in drug-resistant cells is
quick loss of drug accumulation as a result of Pgp-driven drug efflux. Thus, we next tested
whether the nanodrug could evade drug efflux and maintain the cellular drug concentration
and drug efficacy in drug-resistant cancer cells. We first used fluorescently labeled PTX (f-
PTX) to test this hypothesis in drug-sensitive H460 and drug-resistant H460PTX cancer cells.
Both f-PTX and fluorescence labeled PGNPs (f-PGNP) molecules maintained general cytotox-
icity (S3 Fig) and were highly fluorescent. When drug-sensitive H460 cells were treated with f-
PTX or f-PGNPs at equivalent PTX concentration of 50 nM, the cells quickly became fluores-
cent as drug molecules accumulated inside them (Fig 7A).

We then monitored the accumulation of f-PTX with time by checking the fluorescence
intensity by flow cytometry. f-PTX and f-PGNPs showed similar cellular accumulation in drug-
sensitive H460 cells, with maximal PTX accumulation at 24 hrs of incubation (Fig 7B), which
was consistent with the cellular uptake of PGNPs. After the free PTX and f-PGNPs were removed
from the cell culture medium at 24 hrs of treatment, the cellular drug concentration in the
f-PTX-treated cells was reduced to nearly zero within 48 hrs (Fig 7B). In contrast, a high drug
concentration was maintained with f-PGNP treatment for up to 72 hrs (Fig 7B). These results
showed that when cancer cells were treated with small molecular drugs, the cellular drug concen-
tration was dynamic and could only be maintained at a high level for a short time because of the
strong cell penetrating of the small molecular drugs. Meanwhile, a high drug level could be main-
tained over the entire experimental period with the nanoconjugate delivery system, probably due
to the low clean-up rate of nanoparticles by cancer cells. These contrasting accumulation behav-
iors did not appear to affect the therapeutic effect of the drug in H460 cells (Fig 3).

In Pgp-overexpressing H460PTX cells, f-PTX molecules were quickly and efficiently pumped
out, resulting in low cellular drug concentration throughout the treatment, as showing in fluo-
rescent microscopy (Fig 7C). Conversely, f-PGNPs successfully evaded Pgp pumps, and the cel-
lular PTX accumulation was much higher than that of f-PTX, at a concentration that was
approximately 4-fold higher than that after free f-PTX treatment for 24 hrs (Fig 7D). After
removal of free f-PGNPs at 24 hrs of treatment, the cellular PTX concentration was maintained
with f-PGNP treatment for up to 72 hrs, with approximately 7-fold higher than that after free
f-PTX treatment. The different PTX concentrations in H460PTX cells after treatment with f-
PTX and f-PGNPs resulted in drastically different cytotoxicities. These results demonstrated
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Fig 7. Cellular drug accumulation of f-PTX and f-PGNPs. Fluorescence images of (A) drug-sensitive H460 cells and (C) drug-resistant H460PTX cells
treated with f-PTX and f-PGNPs. H460 and H460PTX cells were treated with free f-PTX (50 nM) or f-PGNP (the total concentration of f-PTX was 50 nM) for
24 hrs and the photos were captured by fluorescent microscopy. The scale bars are 10 μm. The figure is the representive of results from three
independent expeiments. Intracellular accumulation of f-PTX in (B) drug-sensitive H460 cells and (D) drug-resistant H460PTX cells treated with f-PTX or f-
PGNPs for different times, as measured by flow cytometry. Black arrows indicate removal of free f-PTX and f-PGNPs at 24 hrs of incubation. Each data
point was measured in triplicate. Data are mean±s.d. ***P<0.001 compared with that treated with f-PTX for the same time period.

doi:10.1371/journal.pone.0160042.g007

Fig 8. A workingmodel showing the different effects on cancer cells produced by free PTX and
PGNPs.

doi:10.1371/journal.pone.0160042.g008
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that the nanoparticle-delivered drug was able to evade Pgp-mediated drug resistance and to
remain highly cytotoxic to drug-resistant cancer cells. There are several tentative explanations
as to the result. First, in contrast to free drug, nanoparticle-delivered PTX molecules are mostly
found in endosomes or lysosomes (Fig 6A and 6B), with the nanoconjugates located away from
the membrane-bound Pgp protein. Second, even if PGNPs leak into the cytoplasm, Pgp is
unlikely to bind the nanoparticles efficiently and to pump them out of the cell because the
nanoparticles do not fit into the binding pockets of the Pgp protein. Third, even though PTX
molecules are released into the cytoplasm, there is still strong competition between binding to
tubulin molecules and moving to the cell membrane to bind Pgp protein.

Conclusion
In conclusion, taking advantage of the ease of cell internalization and the slow drug release of
PGNP nanoconjugates, we effectively prevented Pgp overexpression in drug-sensitive cancer
cells after long-term treatment, indicating the possibility of long-term or repeated nanodrug
use without induction of drug resistance. Furthermore, the nanodrug successfully avoids being
pumped out of cells by Pgp protein in Pgp-overexpressing drug-resistant cancer cells, allowing
the nanodrug to maintain its high cytotoxicity (Fig 8). Our findings from this investigation
could be a general strategy against drug resistant cancers because the slow drug release and
cytoplasm drug delivery could be realized using other nano vehicles and similar cytotoxicity
could be induced in other cancer cells. Although significant research efforts are needed, we see
a promising future of this approach.

Supporting Information
S1 Fig. Zeta potential of GNPs and PGNPs at different pHs. Nanoparticle concentrations
were 2.5 nM and culture medium contained 10% of FBS. Each data point was measured in trip-
licate. Data are mean±s.d.
(TIF)

S2 Fig. Endocytosis of PGNPs in cancer cells. (a) Cellular uptake of PGNP (2.5 nM) at 4°C,
37°C or at 37°C with NaN3 (10 mM) in H460 cells. (b) Cellular uptake of PGNP (2.5 nM) at
4°C, 37°C or at 37°C with NaN3 (10 mM) in H460PTX cells. Each experiment was repeated at
least three times. Data are mean±s.d. ���P<0.001, compared with that treated at 37°C for the
same time period.
(TIF)

S3 Fig. Comparison of cytotoxicity of PTX vs f-PTX and PGNP vs f-PGNP. Cells were
treated with PTX, f-PTX, PGNP, f-PGNP, or GNP for 72 hrs and the cell viabilities were deter-
mined by CellTiter-Glo1 Luminescent Cell Viability Assay. Each experiment was repeated at
least three times. Data are mean±s.d.
(TIF)
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