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Abstract

The steroid hormone 20-hydroxyecdysone (20E) controls molting in arthropods. The timing

of 20E production, and subsequent developmental transitions, is influenced by a variety of

environmental factors including nutrition, photoperiod, and temperature, which is particularly

relevant in the face of climate change. Environmental changes, combined with rapid urbani-

zation, and the increasing prevalence of urban heat islands (UHI) have contributed to an

overall decrease in biodiversity making it critical to understand how organisms respond to

elevating global temperatures. Some arthropods, such as the Western black widow spider,

Latrodectus hesperus, appear to thrive under UHI conditions, but the physiological mecha-

nism underlying their success has not been explored. Here we examine the relationship

between hemolymph 20E titers and spiderling development under non-urban desert (27˚C),

intermediate (30˚C), and urban (33˚C) temperatures. We found that a presumptive molt-

inducing 20E peak observed in spiders at non-urban desert temperatures was reduced and

delayed at higher temperatures. Intermolt 20E titers were also significantly altered in spiders

reared under UHI temperatures. Despite the apparent success of black widows in urban

environments, we noted that, coincident with the effects on 20E, there were numerous nega-

tive effects of elevated temperatures on spiderling development. The differential effects of

temperature on pre-molt and intermolt 20E titers suggest distinct hormonal mechanisms

underlying the physiological, developmental, and behavioral response to heat, allowing spi-

ders to better cope with urban environments.

Introduction

Extreme temperature fluctuations associated with global climate change are exposing organ-

isms to an unprecedented level of temperature stress [1–3]. Temperatures exceeding optimum

can have multiple negative consequences including, but not limited to, immune system dys-

function [4], increased mortality rates [5–8], decreased fertility [9, 10], developmental delays
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[7, 8], and slower growth rates [10–12]. Compounding the effects of climate change is the phe-

nomenon of urbanization [10]. Approximately 55% of humans live in cities and that number

is expected to increase to 68% by 2050 [13]. Urban development can affect organisms in several

different ways. Urbanization causes habitat fragmentation or loss and the introduction of non-

native species [14]. In addition, the Urban Heat Island (UHI) effect, which is caused by built

structures (e.g. concrete and asphalt) within urban cities capturing heat during the day and

retaining it throughout the night, results in warmer temperatures in developed areas in com-

parison to the surrounding rural environment [15, 16]. While the intensity of the thermal envi-

ronment varies from city to city and between seasons and can be influenced by numerous

factors such as 3D architecture and urban ventilation, elevated UHI temperatures and other

factors associated with urbanization negatively affect many animals, contributing to an overall

decrease in biodiversity in urban areas when compared to surrounding non-urban areas [17–

26].

Some organisms, termed urban exploiters, thrive in urban environments, where they are

often found at high densities in developed areas compared to surrounding nonurban regions

[27]. Herring gulls (Larus argentatus), blackbirds (Turdus merula), house mice (Mus muscu-
lus), brown rats (Rattus norvegicus), and feral pigeons (Columba livia) are just some examples

of vertebrate urban exploiters [28–34]. The effects of urbanization observed in vertebrates is

mirrored in invertebrates, with urban populations being less diverse than those in rural envi-

ronments while urban exploiters thrive in the face of urban change [35, 36]. For example,

under urban conditions (increased temperature and decreased humidity), the wall brown but-

terfly (Lasiommata megera) demonstrates increased larval survival and the production of

larger adults [37]. Similarly, urban humped golden orb-weaving spiders (Nephila plumpipes)
are larger and produce more offspring than their rural counterparts [38].

One urban exploiter, the western black widow spider (Latrodectus hesperus), is flourishing

in the face of urbanization [39, 40]. Black widows are found throughout the desert southwest

including the Sonoran Desert and thrive in urban areas even though urban centers are signifi-

cantly warmer than the surrounding non-urban desert [40]. Previous research has shown in

the summer, during which females can produce several egg sacs, the average temperatures for

arthropod microclimates in urban Phoenix, Arizona to be elevated by 6˚C compared to aver-

age desert temperatures (urban = 33˚C vs desert = 27˚C; [7]). Even with these elevated urban

temperatures, L. hesperus is found at densities that are 30 times more concentrated than their

rural counterparts [40]. Despite this apparent success, we have recently shown that urban tem-

peratures are detrimental to spider development [7]. Elevated temperatures increase spider

mortality, increase the time between molts, and decrease growth rates leading to the produc-

tion of smaller adults [7]. Spiders alter certain behaviors (e.g. decreased web building and

increased aggression) under urban conditions, which, along with increased food availability,

are thought to partially offset the negative effects of UHI temperatures [7, 40, 41]. However,

understanding the physiological responses to urbanization may help us to better understand

the success of these arachnids in urban environments in the face of the negative consequences

of urban temperatures. Understanding the impact of rising temperatures on animal physiology

will be of extreme importance as global temperatures continue to rise, with urban heat models

being an early predictor of viability of organisms in the rapidly changing environment.

Molting in arthropods is regulated primarily by the steroid hormone 20-hydroxyecdysone

(20E), which initiates gene expression cascades leading to the physiological, morphological,

and behavioral changes associated with major developmental transitions such as molting, dur-

ing which the larval cuticle is shed and replaced with a new, larger cuticle allowing for organ-

ism growth [42–49]. Ecdysteroid regulation of molting and metamorphosis has been

extensively studied in a wide variety of insects including Drosophila melanogaster, Bombyx
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mori, andManduca sexta where a steep rise in the hemolymph ecdysteroid titer precedes each

major developmental transition [49–56]. In contrast, while ecdysteroids have been identified

in arachnids, relatively little research has been done to document ecdysteroid titers during spi-

der development [57–61].

Modulation of hormone titers and signaling cascades are thought to modify the timing of

development (e.g. time between transitions such as molts and metamorphosis) in response to

environmental changes including fluctuations in temperature, photoperiod, population den-

sity, and nutrition [62–73]. For example, in the desert toad (Scaphiopus couchii), habitat desic-

cation is associated accelerated metamorphosis due to an increase in cortisol and thyroid

hormone titers [74]. In the fruit fly (Drosophila melanogaster), nutritional shortages and ele-

vated temperatures each lead to developmental arrests in egg development associated with

increased circulating ecdysteroid titers [75–79]. Ectopic ecdysteroid administration in Dro-
sophila suppresses egg development and egg laying [80, 81]. Together, these studies suggest

that in adult flies, stress-induced ecdysteroid production may lead to physiological changes

that shifts energy allocation from reproduction to survival [75–80]. Elevated ecdysteroid titers

induced by thermal stress also regulates a subset of small heat shock proteins such as Hsp23

which is thought to play a neuroprotective role in response to stress [82].

Here we examine how temperatures associated with Urban Heat Islands influence ecdyster-

oid titers during early spider development. We reared spiders under three different tempera-

tures that mimic non-urban desert, urban, and intermediate environments. Because UHI

temperatures are associated with developmental delays, we hypothesized that heat would likely

delay the surge of ecdysteroids that precedes and stimulates molting, hereafter referred to as

the ‘molting peak’. Because thermal stress is also associated with an overall increase in ecdys-

teroids in arthropods, we also hypothesized that high temperatures would result in basal ecdys-

teroid titers, which we refer to as the ‘intermolt ecdysteroid titers’, being increased throughout

spider development. Our results confirm that UHI temperatures have negative effects on

development (e.g. size, growth rate, mortality, time between molts) and are associated with

changes in the ecdysteroid titers throughout spiderling development.

Materials and methods

Ethics statement

This study did not utilize animals requiring approval by an institutional review board or ethics

committee. No field permits were involved. No other permissions were necessary for the

research reported here.

Sample collection

Adult female L. hesperus were collected from six collection sites across the urban Phoenix area

(S1 Fig). Spiders were housed individually at 24˚C and fed one cricket on a weekly basis. For

ten females, 100–250 eggs from their first egg sac were individually reared in 4.13 x 4.13 x 5.56

cm enclosures containing two toothpicks measuring 6.3 cm crossing diagonally to provide a

structure for web building. For the first 30 days of development, eggs were reared at room tem-

perature (24˚C) at a 12:12 photoperiod.

Spider rearing

Starting 30 days after egg sac production each spider was fed two Drosophila melanogaster
twice a week. Each spider was checked daily for molting and survival, which were recorded to

track developmental progression, with shed cuticles being removed from enclosures when
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found. On day 44 of development, which includes 30 days of incubation in the egg sac and 14

days post-hatch, families were divided into environmental chambers (Percival Scientific), sim-

ulating temperature conditions of interest, which included 27, 30 and 33˚C. Temperatures

were chosen based on previous studies that demonstrated that in the summer, the average tem-

peratures for arthropod microclimates in urban Phoenix, Arizona is elevated by 6˚C compared

to average desert temperatures (urban = 33˚C vs desert = 27˚C; [7]). Before day 44 of develop-

ment, spiderlings transferred to higher temperatures after being removed from the egg sac do

not typically survive (C. Moen, unpublished observation). In addition, inconsistencies were

observed in the timing of molts prior to day 44 of development, when competition is highest

between peers. Developmental data [molts, deaths, and mass] were recorded daily until day 75

of development. Data was not collected after day 75 of development as differences between

males and females become noticeably different after day 75 (C. Moen, unpublished observa-

tion). Due to the addition of a 3rd, intermediate temperature (30˚C) during the second year of

this study, only 6 of the 10 spider families were subjected to this temperature.

Hormone extraction

Spiders were individually weighed and preserved in 200 μL of methanol. Samples were homog-

enized using plastic pestles and centrifuged for 20 minutes at 18,000 x g. Supernatants were

collected while remaining insoluble material was again homogenized and centrifuged. The

resulting supernatants were combined and dried using an Eppendorf Vacufuge. Dried samples

(hormone extracts) were resuspended in 200 μL of EIA Buffer (0.4M NaCl, 1 mM EDTA, 0.1%

BSA in 0.1M phosphate buffer), enough for two replicates to be carried out per spider.

Measurement of hormone concentrations

Ecdysteroid concentrations were quantified using a competitive EIA (enzyme immunoassay)

kit (Cayman Chemicals, Inc., USA) according to manufacturer’s instructions. In this assay,

20-hydroxyecdysone (20E) and 20E acetylcholinesterase (AChe), which were used as the stan-

dard and tracer respectively, compete for a limited number of binding sites on a rabbit anti-

20E antibody. Ellman’s Reagent was used as the substrate, which was converted to a yellow

product by AChe. Therefore, the production of product is inversely proportional to the

amount of 20E in the sample. Standard curves were prepared with the 20E EIA Ecdysteroid

Standard (Cayman Chemicals, Inc. USA) using concentrations ranging from 10 to 0.020 ng/μl.

Because the antibody detects 20-hydroxyecdysone and its’ metabolites, we report 20E concen-

trations as 20E equivalents per mg tissue. The absorbance of samples and standards was mea-

sured at 415 nm using an ELX801U Ultra Microplate Reader (Bio-Tek Instruments).

Microsoft Excel was used to analyze all resulting data. Absorbance data were linearized using a

Logit transformation according to the following formula: (B/B0) = ln[B/B0/(1-B/ B0), where B

represents the absorbance of samples or standards and B0 represents maximum binding, the

absorbance obtained in samples containing all assay components except 20E. The standard

curve was generated by plotting the logit-transformed data vs. log concentrations and linear

regression analysis was used to determine the concentration of each spider sample. Resulting

ecdysteroid concentrations were converted to pg 20E Equivalents/mg tissue to account for the

mass of each spider. Ecdysteroid concentrations from 9 spiderlings did not fall within the lim-

its of the 20E standard curve were not included in any subsequent analyses.

Statistics

Data were analyzed via a One-Way ANOVA performed using the ANOVA Shiny web applica-

tion available at istats.shinyapps.io/ANOVA. Shiny apps are interactive online data analysis
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and visualization tools that are created using Rstudio’s Shiny framework [83]. Pairwise com-

parisons were calculated using the Tukey multiple comparison test. Results were considered

statistically significant if p� 0.05 and marginally significant if p< 0.1. Figures were assembled

in PowerPoint (Microsoft) and the GNU Image Manipulation Program (GIMP v2.10.10).

Unless otherwise indicated, statistical data are presented as mean ± SEM.

Results

Assessment of ecdysteroids during development at different temperatures

There was a significant effect of temperature on average ecdysteroid titers during development

of Western black widow (L. hesperus) spiderlings (27˚C: desert = 302 ± 24 vs 30˚C: intermedi-

ate = 259 ± 17 vs 33˚C: urban = 355 ± 29 pg 20E/mg; F2,211 = 3.963, p = 0.0204; See Fig 1).

Ecdysteroid titers at intermediate temperatures were similar to those measured at desert tem-

peratures. However, urban temperatures were associated with significantly higher 20E titers

than intermediate temperatures (T140 = -2.82, p = 0.01). While we detected a significant effect

of spider family on average 20E titers at desert temperatures (F9,103 = 4.13, p = 0.0001; S2A

Fig), ecdysteroid titers in all families appear to respond in a similar fashion to elevated temper-

atures. With few exceptions, relative to desert temperatures (27˚C), average ecdysteroid titers

in each family were decreased at intermediate temperatures (30˚C) and increased at urban

temperatures (33˚C) (S2B Fig).

Analysis of daily changes in ecdysteroid titers revealed that at 27˚C, a sharp increase in

ecdysteroid titers occurred two days prior to the second molt (Fig 2A). This large ecdysteroid

peak was absent in spiderlings reared at 30˚C (Fig 2B) and 33˚C (Fig 2C). One day after the

second molt, spiderlings from 27˚C and 30˚C treatments both exhibited a small pulse of ecdys-

teroids (Fig 2A and 2B). Additional small ecdysteroid peaks were visible in spiderlings at 30˚C

following the second molt, but these did not occur at the same time as those observed in spi-

derlings from the 27˚C desert temperatures (Fig 2A).

Because increased temperatures are known to alter the timing of the second molt [7], it is

possible that pre-molt ecdysteroid peaks were obscured when spiderlings reared at 30˚C and

33˚C were normalized to molts occurring at 27˚C. We therefore examined ecdysteroid devel-

opmental profiles in spiderlings staged based on the time at which the second molt occurred

for each family at each temperature (Fig 3). Like what was observed at 27˚C, this method

revealed a small ecdysteroid peak occurring two days prior to the second molt in spiderlings

reared at 30˚C (Arrowhead; Fig 3A and 3B). In contrast, the pre-molt peak was not detected in

spiderlings reared at 33˚C (Arrowhead; Fig 3C).

Analysis of ecdysteroid titers measured during two time intervals, one during the peak

observed two days before the second molt (Fig 4, Molt) and the second spanning 2–5 days fol-

lowing the second mole (Fig 4, Intermolt), revealed a significant interaction between tempera-

ture and developmental phase (F2,1 = 10.723, p = 0.025). The molting peak at 27˚C was

significantly higher than that observed at both 30˚C (T4 = 5.52, p = 0.000). and 33˚C (T5 =

6.85, p = 0.000). No significant difference was observed between the molting ecdysteroid peak

at 30˚C and 33˚C. In contrast, basal titers were significantly higher at 33˚C when compared to

27˚C (T53 = -2.68, p = 0.02) and 30˚C (T53 = -3.18, p = 0.01).

Assessment of developmental changes in response to various temperatures

To better understand how different temperatures influence development, which is regulated

by ecdysteroids in arthropods and arachnids, we analyzed several developmental metrics: tim-

ing of the second molt, growth rate, predicted size at the second molt, and mortality (Fig 5).

Consistent with previous reports [7], we determined that spiderlings reared at 33˚C underwent
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Fig 1. Average ecdysteroid titers during spiderling development. Ecdysteroid titers were determined for spiderlings

reared at 27, 30, or 33˚C from 4 days before to 10 days after the second molt that occurred per family at 27˚C. Error

bars represent standard error.

https://doi.org/10.1371/journal.pone.0267398.g001
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the second molt approximately three days later than siblings reared at 27˚C and at 30˚C (Fig

5A). However, the effects of temperature on the timing of the second molt were not statistically

significant.

There was a significant effect of temperature treatments on spiderling growth rate (F2,15 =

5.191, p = 0.0194; Fig 5B). Spiders at 33˚C grew significantly slower than siblings reared at

27˚C (T10 = 3.02, p = 0.02) and marginally slower than 30˚C (T10 = 2.49, p = 0.06).

In some arthropods, organisms much reach a minimum size before molting will begin [70].

We therefore examined the effects of temperature on spider mass and found that temperature

had a significant effect on the size of spiders at the time of the second molt (Fig 5C; F2,15 =

4.284; p = 0.0337). While there was no significant difference between the predicted size for spi-

ders housed at 27˚C (4.37 ± 0.68 mg) and 30˚C (3.99 ± 0.53 mg) at the time of the second

molt, spiders reared at 33˚C were significantly smaller (1.91 ± 0.67 mg) at the time of molt two

than those reared at 27˚C (T10 = 2.72, p = 0.04) and marginally smaller than those at 30˚C (T10

= 2.30, p = 0.09; Fig 5C).

There was a significant effect of temperature on mortality (Fig 5D; F2,15 = 4.103;

p = 0.0379). At 33˚C, 11.0% ± 4.8% of spiders died during the course of the study, which was a

Fig 2. Developmental ecdysteroid profiles at different temperatures. (A-C) Average daily ecdysteroid titers from

spiderlings reared at 27˚C (A), 30˚C (B), and 33˚C (C). Only families that had spiderlings reared at both temperatures

were used for analysis. Spiderling ages are relative to the timing of the second molt for each family, at 27˚C. Error bars

represent standard error.

https://doi.org/10.1371/journal.pone.0267398.g002
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significantly higher mortality rate than siblings reared at 27˚C (T10 = -2.71, p = 0.04), of which

only 4.3% ± 3.2% spiders did not survive the study (Fig 5D). No statistically significant differ-

ences in mortality rates were observed between spiders reared 30˚C (5.6% ± 4.6%) when com-

pared to those at 27˚C, or 33˚C.

Discussion

As reported here and in Johnson et al. [7], despite the apparent success of L. hesperus in urban

Phoenix, UHI conditions are correlated with decreased growth rates, delayed development,

and increased mortality. We have found that these heat-induced developmental changes are

associated with underlying changes in ecdysteroid titers, which respond to increased tempera-

tures in two ways. First, slightly elevated temperatures, from 27 to 30˚C, result in a molting

peak that is delayed and reduced in size, while increasing the temperature to UHI conditions

Fig 3. Normalized developmental ecdysteroid profiles. Average daily ecdysteroid titers from spiderlings reared at

(A) 27˚C, (B) 30˚C and (C) 33˚C. Only families that had spiderlings reared at all three temperatures were used (N = 6

families). Spiderling ages are relative to the timing of the second molt for each family, at each temperature. The

presumptive molt-inducing peak of ecdysone is indicated (arrowhead). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0267398.g003
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(33˚C) appears to completely abolish the molting peak. The second ecdysteroid response to

elevated temperatures occurs during the intermolt period between the second and third molts.

During this time, raising the temperature to intermediate temperatures (30˚C) does not alter

the basal ecdysteroid titers. However, the intermolt ecdysteroid titers are significantly elevated

in response to UHI temperatures (33˚C).

Developmental timing (e.g. time between molts), which is regulated by ecdysteroids, is

highly dependent upon temperature in arthropods [84]. Previous reports, as well as the present

study, have indicated that there is an optimum temperature for development and temperatures

that stray too far outside of this range have negative effects on arthropod growth, developmen-

tal times, and mortality [7, 85]. We have observed this response in L. hesperus and, although

the spiders utilized in this study originated from urban populations, their optimum tempera-

ture for development appears to be 27˚C, the average temperature of spider microclimates in

the non-urban Sonoran Desert [7]. At this temperature, a surge of ecdysteroids initiates molt-

ing, and only low levels of spider mortality is observed. As temperatures move away from this

Fig 4. Phase-specific ecdysteroid titers. Average daily ecdysteroid titers from spiderlings reared at 27˚C, 30˚C and

33˚C were determined at two time points: two days prior to the second molt (Molt) and days 2–5 after the second molt

(Intermolt). Only families that had spiderlings reared at all three temperatures were used (N = 6 families). Spiderlings

were aged relative to the timing of the second molt for each family, at each temperature. Error bars represent standard

error. (�) indicates a significant difference (p<0.05).

https://doi.org/10.1371/journal.pone.0267398.g004
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optimum, from 27 to 30˚C, the 20E surge is reduced and delayed, although these changes do

not appear to have a significant effect on molting times, growth rates, or mortality. In contrast,

raising temperatures to 33˚C, the average summer microclimate temperatures experienced by

urban spiders, the ecdysteroid surge is reduced or missing and spiders exhibit significant molt-

ing delays, slower growth rates, and increased spider mortality. Although our results do not

take into consideration daily fluctuations in temperature, a variable that must be addressed in

future studies, our data suggest that 33˚C exceeds the temperature threshold for development

and any spiders that are able survive to adulthood will be smaller than their counterparts in the

non-urban desert.

In various arthropods, short-term exposure to temperatures above the optimum develop-

mental threshold can lead to a delay in development, with recovery possible after returning to

normal conditions [86–88]. However, UHI conditions are not temporary and studies with

Sonoran Drosophila species suggest that, at least in this case, microhabitats provide little-to-no

respite from extreme temperatures [89]. Results presented here suggest that temperatures asso-

ciated with urban heat islands represent chronic thermal stress that disrupts the ecdysteroid

surge that is essential for molting, resulting in overall negative effects on spider development.

The possibility that a return to lower temperatures could restore the normal developmental

Fig 5. Effects of elevated temperatures on development. (A) Average molt times for spiderlings reared at different

temperatures. (B) Average growth rates were measured from 55–75 days of development for spiderlings reared at

different temperatures. (N = 6 families per treatment) (C) Average spiderling size at time of second molt was predicted

from molt times and growth rates for each family (N = 6 families per treatment). (D) Spiderling mortality at each

temperature was determined from 55–75 days of development for each family. (A-D) Different lowercase letters

indicate significant differences (p<0.05). N = 6 families per treatment.

https://doi.org/10.1371/journal.pone.0267398.g005
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profile, both in terms of ecdysteroid titers and developmental timing, is intriguing, but is out-

side the scope of the present study.

In many arthropods, formation of the molt-inducing ecdysteroid peak occurs in response

to the attainment of a critical weight, a minimal mass which indicates that sufficient nutritional

stores have been attained to support the upcoming molt [47, 70, 90]. While critical weight has

not been reported in spiders, the presence of a size-sensing mechanism that triggers ecdyster-

oid production would further explain why the pre-molt ecdysteroid peak is delayed in spiders

reared at high temperatures, which have significantly slower growth rates than their cooler

counterparts.

A small increase in basal ecdysteroid levels has been reported in arthropods reared under

stressful conditions including chronic intoxication, nutrient shortage, oxidative stress, sleep

deprivation, high population density, injury, and thermal stress [77, 91–94]. A similar endo-

crine response to elevated temperatures has been studied extensively in Drosophila melanoga-
ster, with an increase in ecdysteroid levels being seen within 60 minutes of exposure to heat

stress and, while not attaining the same intensity of the morphogenic peak, intermolt hemo-

lymph ecdysteroid titers are significantly elevated compared to non-stressed controls [77, 94].

Published reports suggest that elevated basal 20E titers may serve a protective role during

stressful conditions, but only if the concentrations are below those that induce molting and

metamorphosis [95–97]. Moderately elevated ecdysteroid titers are associated with increased

resistance to formaldehyde in the blue bottle fly Calliphora vicina and in the silkworm Bombyx
mori [95]. In fruit flies (Drosophila melanogaster) and the greater wax moth (Galleria mello-
nella), moderately elevated basal 20E titers are required for the regeneration of damaged tis-

sues while high 20E concentrations induce developmental transitions (e.g. pupation) but

suppress tissue regeneration [96, 97]. Protective effects of increased basal ecdysteroid titers

have also been reported following bacterial infection, where moderate 20E titers reduce mor-

tality associated with paralyzing toxins and septicemia induced by spore infection [91].

Elevated intermolt ecdysteroid concentrations induced in spiders exposed to extreme heat

might serve a thermoprotective role by altering physiological and behavioral responses so that

any animals that are able to survive to adulthood can better cope with the unfavorable urban

environment. Increased tolerance to high temperatures in city-dwelling arthropods has been

reported for urban leaf-cutter ants, which are more thermotolerant than their rural counter-

parts [98]. While ecdysteroid levels in heat tolerant ants has not been examined, ecdysteroid

have been linked to thermotolerance in other systems [99, 100]. Ecdysteroids can induce

expression of various genes encoding heat shock proteins (Hsps), even in the absence of heat

[99, 100]. Heat shock proteins are chaperones that prevent the aggregation of denatured pro-

teins and are associated with resistance to heat shock and other forms of stress [101, 102].

Enhanced expression of Hsps, specificallyHsp30 andHsp70, in desert species of the small

freshwater fish Poeciliopsis is thought to confer thermal resistance, allowing the fish to survive

elevated temperatures found in desert regions of northwest Mexico [103, 104]. Similarly,

increased expression of Hsp genes including Hsp90 and Hsp47 confers thermal resistance to a

population of minnows (Puntius sopher) found in hot spring run-offs in Odisha, India [105].

Increased thermotolerance has also been reported in cultured cells that overexpress Hsp70 or

Hsp27 [106–109]. Although Hsps that are induced in response to thermal stress have been

identified in the wolf spider, Pardosa pseudoannulata, ecdysteroid regulation of Hsps in spi-

ders has not been established [110].

Elevated basal ecdysteroid titers might also mediate behavioral changes in web-building

and aggression that have been reported in urban spiders [7]. Urban males show increased

aggression towards prey when compared to males at lower non-urban desert temperatures

while juvenile urban females have reduced web building behavior and produce smaller webs
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[7]. A link has been shown between ecydsteroid concentrations and web-building behavior in

the orb-weaver spiders, Cyclosa morretes and Cyclosa fililineata [111]. These spiders serve as

hosts for parasitoid wasps, which manipulate web-building behavior of their spider hosts by

injecting ecdysteroids [111]. Parasitized orb-weaver spiders display elevated ecdysteroid titers

and build ‘cocoon webs’ which are thought to protect the wasp’s cocoon as it develops [111]. A

link between ecdysteroids and aggressive behavior has not been examined in spiders but has

been demonstrated in other organisms. In honeybees, dominant workers had significant

higher ecdysteroid titers than lower-ranked workers and presented with higher levels of

aggression [112]. In American lobsters,Homarus americanus, elevated ecdysteroid titers have

also been linked to increased aggression [113–115]. Pre-molt lobsters have high levels of 20E

and are more aggressive than lobsters at different developmental stages [114]. In addition, lob-

sters injected with 20E also display an increase in aggressive behavior [115].

It should be noted that genomic work suggests large genetic variation between urban Phoe-

nix and nearby Sonoran Desert black widow populations [116]. The present study has focused

solely on responses in urban spiders; however, the possibility exists that spiders from desert

lineages would respond differently to UHI temperatures. A natural extension of our work

would be to compare ecdysteroid titers, development, and behavior in urban and desert spider

lineages reared at both desert (27˚C) and urban (33˚C) temperatures. Indeed, we have recently

shown an intriguing interaction in which desert lineages are more cannibalistic than urban

ones, but the UHI temperature of 33˚C makes all spiderlings heighten cannibalism [117].

Conclusion

Despite the apparent success of L. hesperus as an urban exploiter, we find that elevated urban

temperatures significantly delay and reduce the ecdysteroid peak that precedes the second

molt, a finding that is consistent with the developmental retardation observed in urban spiders

[7]. Our studies suggest that current urban temperatures permit limited survival and moving

forward, L. hesperus with less susceptibility to environmental extremes will likely be selected

for as temperatures continue to rise. We also find that urban temperatures are associated with

significantly elevated intermolt ecdysteroid titers which may, at least in part, counteract the

negative effects on developmental progression. The potential thermoprotective effects of ele-

vated basal ecdysteroids, ecdysteroid mediated changes in spider behavior, and other factors

such as increased prey abundance [118] and temperature variation within a 24-hour period,

may serve to counteract some of the negative consequences of increased temperatures, allow-

ing black widows to continue exploiting urban settings.

Supporting information

S1 Fig. L. hesperus collection sites in the Phoenix metropolitan area. Samples were collected

from the following sites FLW (Frank Lloyd Wright), MR (Marshall Ranch), SBF (Sun Burst

Farms), OLI (Olive), AVOW (Avondale West—Wigwam Creek Middle School), and AVOC

(Corte Sierra Middle School). Spider families were named based on collection site.

(TIF)

S2 Fig. Variation in family ecdysteroid titers during spiderling development. (A) A signifi-

cant effect of family on average ecdysteroid titers was observed at 27˚C (F9,103 = 4.13;

p = 0.0001). (B) Most families had lower ecdysteroid titers at intermediate temperatures and

higher ecdysteroid titers at urban temperatures when compared to titers observed at desert

temperatures.

(TIF)
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