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Abstract

Genome-wide association studies (GWAS) with hundreds of z_thousands of single nucleotide polymorphisms (SNPs) are popular
strategies to reveal the genetic basis of human complex diseases. Despite many successes of GWAS, it is well recognized that
new analytical approaches have to be integrated to achieve their full potential. Starting with a list of SNPs, found to be
associated with disease in GWAS, here we propose a novel methodology to devise functionally important KEGG pathways
through the identification of genes within these pathways, where these genes are obtained from SNP analysis. Our
methodology is based on functionalization of important SNPs to identify effected genes and disease related pathways. We have
tested our methodology on WTCCC Rheumatoid Arthritis (RA) dataset and identified: i) previously known RA related KEGG
pathways (e.g., Toll-like receptor signaling, Jak-STAT signaling, Antigen processing, Leukocyte transendothelial migration and
MAPK signaling pathways); ii) additional KEGG pathways (e.g., Pathways in cancer, Neurotrophin signaling, Chemokine signaling
pathways) as associated with RA. Furthermore, these newly found pathways included genes which are targets of RA-specific
drugs. Even though GWAS analysis identifies 14 out of 83 of those drug target genes; newly found functionally important KEGG
pathways led to the discovery of 25 out of 83 genes, known to be used as drug targets for the treatment of RA. Among the
previously known pathways, we identified additional genes associated with RA (e.g. Antigen processing and presentation, Tight
junction). Importantly, within these pathways, the associations between some of these additionally found genes, such as HLA-C,
HLA-G, PRKCQ, PRKCZ, TAP1, TAP2 and RA were verified by either OMIM database or by literature retrieved from the NCBI
PubMed module. With the whole-genome sequencing on the horizon, we show that the full potential of GWAS can be achieved
by integrating pathway and network-oriented analysis and prior knowledge from functional properties of a SNP.
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Introduction

Genome-Wide Association Studies (GWAS) – in which

hundreds of thousands of single nucleotide polymorphisms (SNPs)

are tested simultaneously in thousands of cases and controls for

association with a human complex disease - have revolutionized

the search for genetic basis of these diseases [1]. The success of

GWAS can be summarized with the published 600 genomewide

association studies covering 150 distinct diseases and traits,

explaining 800 SNP-trait associations (P,561028). These studies

not only identified novel common genetic risk factors, but also

confirmed the importance of previously identified genetic variants.

However, in a typical GWAS, only a minority of DNA sequence

variations that modulate disease susceptibility and their neighbor-

ing genes with the strongest evidence of association is explained.

Whereas, in this ‘‘most-significant SNPs/genes’’ approach, genetic

variants that confer a small disease risk but are of potential

biological importance are likely to be missed. Hence, it is

recognized that GWAS data is undermined in most cases and

concentrating on a few SNPs and/or genes with the strongest

evidence of disease association is not enough to exploit underlying

physiological processes and disease mechanisms [2]. For instance,

PPARG variants are known to be associated with type 2 diabetes

(T2D) [3]. Whereas, this true association is missed by the four out

of five GWA studies designed to replicate the initial finding, due to

its modest effect on disease susceptibility (odds ratio 1.2) [4,5]. A

similar situation was recently observed regarding the association of

IL7R variants with multiple sclerosis [5]. Especially in complex

diseases, which are intrinsicly multifactorial, rather than identify-

ing single genes, the identification of affected pathways would shed

light into understanding of disease development mechanism.

Pathway-based approaches thought to complement the most-

significant SNPs/genes approach and provide additional insights

into interpretation of GWAS data on complex diseases [2,5,6,7].

These pathway-based GWASs are based on the hypothesis that

multiple genes in the same biological pathway contribute to disease

etiology, wheras common variations in each of these genes make

mild contributions to disease risk. The use of prior knowledge in the

form of pathway databases is demonstrated in GWAS of diseases

such as Parkinson’s disease, age-related macular degeneration,

bipolar disorder, rheumatoid arthritis, and Crohn’s disease [8,9,10,

11,12]. While the concept of pathway analysis for GWAS is attractive,

it is restricted by our limited knowledge of cellular processes.

On the other hand, a limited number of studies have attempted

to incorporate network-based analysis to interrelate positional

candidate genes from disease loci and/or to prioritize candidate
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loci in genetic studies [13,14,15,16]. However, these studies either

do not use actual genetic (genotypic) data or are applied to model

organisms. To the best of our knowledge, the only study to date

that uses both a protein interaction network and pathway analysis

to reveal significant disease related genes and pathways in genetic

association studies is conducted by Baranzini et al. [5] on Multiple

Sclerosis. Since this study is gene centered, it is possible that true

associations with markers that lie in large intergenic regions were

neglected and the analysis is limited to the known functional

properties of genes. Additionally, to improve the power in GWAS,

Roeder et al. developed a method to incorporate linkage data to

weight the association P values [17]; and a weighted multiple

testing procedure that facilitates the input of prior information in

the form of groupings of tests [18]. In this study, they have shown

that the grouped-weighting of prior information often leads to an

increase in power even if many of the groupings are not correlated

with the signal [18].

To further reduce the number of selected SNPs after a GWAS,

here we hypothesize that researchers need to integrate information

from various biological databases, where biologically significant

SNPs, such as those occurring in functional genomic regions such as

protein-coding or regulatory regions; or those located in genes

related to the phenotype are given higher priority. In this light, we

present a pathway and network oriented GWAS analysis (PA-

NOGA) that challenges to identify individually modest genetic

effects by combining nominally significant evidence of genetic

association with current knowledge of biochemical pathways,

protein-protein interaction networks, and functional and genetic

information of selected SNPs. Starting with GWAS data, our

proposed methodology assigns genes into functionally important

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

(http://www.genome.ad.jp/kegg/pathway.html). In addition to the

network and pathway-based analysis, PANOGA incorporates a

regional score, which integrates functional properties of a SNP that

is found to be important in GWAS.

We applied our methodology on a GWAS of Rheumatoid

Arthritis (RA); and identified both previously found RA related

KEGG pathways and additional pathways. We compared our

findings with the known disease genes collected from the OMIM

database (http://www.ncbi.nlm.nih.gov/Omim), NCBI PubMed

module; RA-specific drug target genes obtained from Pharmaccoge-

nomics Knowledge Base website (http://www.pharmgkb.org/in-

dex.jsp); and with their KEGG functional enrichments. Our analysis

highlights the importance of particular genes that have already been

identified as significant in the pathogenesis of RA, gives more insights

into their potential role considering their biological pathways, and

shed light into their ability to affect neighboring pathways (presented

as functional annotation network). The strength of our methodology

stems from its multidimensional perspective, where we combine

evidence from the following 4 resources: i) Genetic association

information obtained through GWAS, ii) SNP functional informa-

tion, iii) Protein-protein interaction data, iv) Biochemical pathways.

In summary, we showed that using our technique, a GWAS can be

mined further to identify novel genes and pathways that are

associated with a specific human complex disease. In the following

sections we present our findings and identify areas for further

research. As more biological knowledge and genomic data become

publicly available, we believe that such methodological developments

will better dissect the genetic architecture of human complex diseases.

Methods

Starting with a list of SNPs, found to be associated with disease

in GWAS, we propose a novel methodology to devise the list of

genes included in a functionally important KEGG pathway. In our

study, GWAS results are used in the form of SNP rs ids vs. p-

values, where the p-values refer to the genotypic p-values of

association for each tested SNP. We only focused on SNPs with

nominal evidence of association (P,0.05) in a GWAS, following

the study in [5]. Our system proceeds in three main steps as

outlined in Figure 1. In Step 1a, SNPs are assigned to genes based

on SNP/gene transcript functional properties. In order to

incorporate functional information, a SPOT [19] and F-SNP

[20,21] Pw-values are assigned to each gene as two separate

attributes in Step 1b. This step also checks whether the input SNPs

overlap with known Transcription Factor Binding Sites (TFBS) at

TRANSFAC [22]. These functional properties are assigned as

gene attributes to a human protein protein interaction map in Step

2. Lastly, Step 3 conducts functional enrichment and assigns genes

into functionally relevant KEGG pathways. We further describe

each step below.

Step 1a: Assigning SNPs to genes
It is hypothesized that meaningful combination of genes

harboring markers with only modest evidence of association can

be identified if they belong to the same biological pathway or

mechanism [5]. Therefore, the gene and pathway-based associa-

tion analysis allows us to gain insight into the functional basis of

the association and facilitates to unravel the mechanisms of

complex diseases. However, a SNP may be associated with many

genes, i.e. it can be located in a gene with several known transcripts

due to alternative splicing, or in one gene and very close to another

gene, or at the intersection of different genes on different strands

and hence a SNP may have different functional consequences on

each transcript. To assign SNPs into genes by considering all known

SNP/gene transcript associations, our methodology uses SPOT

program [19] which selects the gene with the highest priority. To

generate those SNP/gene transcript associations, SPOT program

utilizes information from the PolyPhen method of predicting the

effect of an amino acid substitution on the properties of the protein

product. Those effects can be directly detected from DNA and RNA

sequences, like nonsense and missense amino acid substitutions,

untranslated regions, coding regions, and frameshifts. Hence, by

prioritizing all known SNP/gene transcript consequences, propi-

tious association signals found in GWAS, are not lost at the SNP to

gene transition step.

Step 1b: Regional Score Calculations for Genes
In this step, our methodology combines functional, genomic

information of a SNP with P-value of a SNP from a statistical test

for genetic association, and then transfers this weighted P-value

(Pw-value) to the SNP’s associated gene. Among many different

web tools dealing with SNP biological properties, we have decided

to combine the scores of SPOT [19] and F-SNP [20] servers. A

comprehensive comparison of those meta-tools can be found

elsewhere in literature, but notably in a review paper [25].

SPOT score [19] takes into account SNP/gene transcript

functional properties (including nonsense, frameshift, missense and

59 and 39-UTR designations), impact of an amino acid substitution

on the properties of the protein product from PolyPhen server

[26,27], evolutionary conserved regions from ECRbase [28], all

possible LD proxies - SNPs with r2 over a predefined threshold in

a specific HapMap sample [29]. On the other hand, F-SNP score

(FS score) incorporates: functional effects of SNPs, predicted at the

splicing, transcriptional, translational and post-translational level

[20]. The details of the data sources used in our regional score can

be found in Table 1.

A New Methodology to Associate SNPs with Diseases
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Figure 1. Outline of our assessment process. In Step 1, a gene-wise Pw-value for association with disease was computed by integrating
functional information. In Step 2, significant Pw-values were loaded as two separate attributes of the genes in a PPI network and visualized using
Cytoscape [23]. At this step, active sub-networks of interacting gene products that were also associated with the disease, are identified using jActive
Modules plugin [24]. In Step 3, genes in an identified active sub-network were tested whether they are part of functionally important KEGG pathways.
doi:10.1371/journal.pone.0026277.g001

Table 1. Description of data sources used in our regional score.

Functional Category Tool Description Meta-tool

Protein Coding LS-SNP, SNPs3D, SIFT, SNPeffect SNP annotation tool, Impact of nsSNPs on protein function, Prediction
of amino acid substitution effects, SNP annotation with human disease

F-SNP

Protein Coding PolyPhen Prediction of amino acid substitution effects SPOT,
F-SNP

Protein Coding, Splicing Regulation,
Transcriptional Regulation

Ensembl Extensive genomic database including SNPs and gene transcripts F-SNP

Splicing Regulation ESEfinder, ESRSearch, PESX,
RescueESE

Exonic splice sites, Exonic-splicing regulatory (ESR) sequences, Exon
splicing enhancers/silencers, Exonic splice sites

F-SNP

Transcriptional Regulation Consite
TFSearch

Conserved transcription factor binding sites,
Transcription factor binding sites

F-SNP

Transcriptional Regulation SNPnexus Conserved transcription factor binding sites SNPnexus

Transcriptional Regulation,
Conserved Region

GoldenPath MicroRNA, cpgIslands, evolutionary conserved regions F-SNP

Conserved Region ECRBase Evolutionary conserved regions SPOT

Post-translation KinasePhos, OGPET, Sulfinator Phosphorylation sites, Prediction of O-glycosylation sites in proteins,
Tyrosine sulfination sites

F-SNP

Genomic Coordinates dbSNP General SNP/gene transcript properties SPOT

Genomic Coordinates UCSC Extensive genomic database including SNPs and gene transcripts F-SNP

LD estimation HapMap,
Haploview

Dense genotyping on multiple populations, useful for LD estimates
Estimation of r2 LD coefficients for each population

SPOT

doi:10.1371/journal.pone.0026277.t001
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To combine biological information with evidence for genetic

association, the following scoring scheme is proposed in [30]. In

[30], firstly, a non-negative prioritization score (PS) was specified for

each SNP and then, the weighted P-value Pw is defined by Pw = P/

10PS [17,30], where P denotes GWAS p-value for a particular SNP.

In this scheme, smaller values of Pw indicate higher priority.

Following this convention, we have calculated SPOT Pw-value

using SPOT prioritization score and F-SNP Pw-value using F-SNP

prioritization score. Since SNPs are associated with genes in Step 1a

of our method, these two weighted p-values (Pw-values) are

automatically transferred into the SNP’s associated gene as two

separate attributes. Hence each gene has a SPOT Pw-value and a F-

SNP Pw-value for association with RA (gene-wise Pw-values). If

more than one SNP is assigned to the same gene in Step 1a, the SNP

with the lowest weighted p-value (Pw) is chosen and assigned to the

gene. In other words, the SPOT Pw-value of a gene is calculated as

the lowest SPOT Pw-value of the SNP that is assigned to that

particular gene among all the SPOT Pw-values of the SNPs

assigned to the same gene. Same is true for F-SNP Pw-value.

Lastly, SNPnexus [31] checks for possible overlap of a SNP with

conserved TFBSs from TRANSFAC Matrix Database (v.7.0, [22])

and returns the related TF name. If this TF is not already found in

Step 1a, this TF is added to our list by transferring its SPOT and

F-SNP Pw-values from its associated SNP.

Step 2: Active sub-network searches
By using the regional scores, calculated in the previous step for

the genes, this step aims to find out active sub-networks in the

human PPI network. Firstly, a human PPI network was imported

into Cytoscape [23]. Secondly, regional scores (SPOT and F-SNP

Pw-values) were loaded as attributes of the genes in this network.

Lastly, active sub-networks of interacting gene products that were

possibly associated with the disease are identified using jActive

Modules [24,32] in a formal way. Basicly, jActive Modules [24] is

a Cytoscape plugin to identify active sub-networks via incorpo-

rating both the topological properties of a PPI network and the

attributes of the nodes (proteins). In this approach, firstly the

attributes (SPOT and F-SNP Pw-values) are mapped into biological

networks, secondly a statistical measure (as explained below) is used

to score sub-networks based on the attributes, and finally a search

algorithm is used to find active sub-networks with high score.

Biologically speaking, an active sub-network (statistically

significant module) is a sub-network in our PPI network that the

protein products of this set of genes – probably associated to the

disease- also physically interact, thus raises the possibility that they

belong to the same pathway or biological process. To rate the

biological activity of a particular sub-network, jActive Modules

starts by assessing the significance of differential association with

disease for each gene (by comparing the gene-wise Pw-values of

association with the disease). In this procedure, jActive Module

samples p-values from the distribution of p-values loaded into

Cytoscape, and not from a normal uniform distribution. Then, a

network is generated from each node by systematically adding one

neighbor at a time. The aggregate z-score (S) of an entire sub-

network, consisting of k genes is calculated via summing the scores

of all genes zi in the sub-network and then dividing by the square-

root of k. To extend the z-score over multiple conditions

(attributes), jActive Module sorts z-scores for each attribute,

adjusts for rank, maximum score is corrected using the

background score distribution [24]. The scoring system of jActive

Modules ensures that the expected mean and variance of the

subgraph scores are independent of subgraph size [24]. jActive

Modules plugin also corrects for the fact that a bigger sub-network

is more likely to contain nodes with significant p-values by random

chance [24]. When S stops to increase, the sub-network stops

growing and is reported as a module. Next, the test statistic (S) is

compared with an appropriate background distribution to

properly capture the connection between network topology and

association with disease. As a background distribution, we used the

scores of sub-networks randomly selected from the entire human

PPI network, as provided by jActive Modules. In order to make

the background distribution independent of the module size,

jActive Modules creates a background distribution by scoring

10,000 random sub-networks of each size in a Monte Carlo

procedure. In our study, modules with S.3 were reported as

significant (active sub-network), as stated in the original publica-

tion. The sub-network with the highest score is selected for further

functional enrichment.

Step 3: Functional Enrichment of the Sub-networks
Next step following the identification of sub-networks is to

evaluate whether these sub-networks were biologically meaningful.

Our methodology has a functional enrichment component that

computes the proportion of the genes in an identified sub-network

that are also found in a specific human biochemical pathway,

compared to the overall proportion of genes described for that

pathway. For this purpose, ClueGO plugin of Cytoscape [33] is

utilized in this step. ClueGO is an open-source Java tool that

extracts the non-redundant biological information for groups of

genes using GO, KEGG and BioCarta ontologies [33]. Unlike

other functional enrichment analysis tools [34,35,36,37,38] that

present their results as long lists or complex hierarchical trees;

ClueGO facilitates the biological interpratation via visualizing

functionally grouped terms in the form of networks and charts

[33]. To link the terms in the network, ClueGO uses kappa

statistics, in a similar way as described in [35]. Among different

ontologies, since KEGG database primarily categorizes genes into

bona-fide biological pathways; and since biological interpretation

of pathways is more straightforward compared to GO terms, we

report only our functional enrichment results using KEGG

pathways. To determine the statistical significance of an

enrichment of the identified sub-network, two-sided (Enrich-

ment/Depletion) test based on the hypergeometric distribution is

used in our methodology. To correct the P-values for multiple

testing, Bonferroni correction method is applied.

Experiments
Rheumatoid Arthritis (RA, OMIM # 180300) is a systemic

inflammatory disease, primarily affecting synovial joints. As

reported at the 2008 American College of Rheumatology meeting,

about 1% of the world’s population is afflicted by RA and women

affected three times more often than men. Disease onset is most

frequent between the ages of 40 and 50, but people of any age can

be affected. While the earlier stages of the disease appear a

disabling and painful condition, in the later stages it can lead to

substantial loss of functioning and mobility.

Being a complex disease, the etiology of RA depends on a

combination of multiple genetic and environmental conditions,

involving a yet unknown number of genes. The heritability of this

disease is estimated as ,50% based on family studies, including

twin studies [39,40]. In GWASs among RA patients of European

ancestry, multiple risk alleles have been identified in the major

histocompatibility complex (MHC) region, and 25 RA risk alleles

have been confirmed in 23 non-MHC loci [41,42,43,44,45,

46,47,48,49,50,51]. These variants explain about 23% of the

genetic burden of RA [41], indicating that additional variations

remain to be discovered to explain the polygenic etiology of RA.

A New Methodology to Associate SNPs with Diseases
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Genetic Association Data of Rheumatoid Arthritis
We have applied our methodology on Wellcome Trust Case

Control Consortium (WTCCC) Rheumatoid Arthritis (RA)

dataset, in which 500,475 SNPs were tested on 5003 samples

(1999 cases and 3004 controls) using Affymetrix GeneChip

Human Mapping 500 K Array Set. SNP data and the genotypic

P-values of association for each tested SNP were downloaded from

the WTCCC project webpage (www.wtccc.org.uk). In total,

25,027 SNPs were included from WTCCC dataset, showing

nominal evidence of association (P,0.05).

Protein-protein interaction (PPI) data
A human protein-protein interaction (PPI) data was obtained

from the supplementary material of Goh et al. ’s study [52]. This

dataset is composed of two high quality systematic yeast two-

hybrid experiments [53,54] and PPIs obtained from literature by

manual curation [53]. The integrated set of PPIs contains 61,070

interactions between 10,174 genes (22,052 non-self-interacting,

non-redundant interactions).

Results

Starting with 25,176 SNPs, that are found to be significant in a

GWAS (WTCCC RA dataset), PANOGA was performed to

identify RA related genes and functionally important KEGG

pathways. These SNPs were assigned into 4,029 genes using

SPOT webserver [19] by considering all known SNP/gene

transcript associations. As the possible overlap of a SNP with

conserved TFBSs was considered, by using SNPnexus program

[31], we incorporated 65 more proteins (TFs) that bind to the

TFBS, that an RA associated SNP resides in. In order to

incorporate functional information (regional score) to these genes,

SPOT and F-SNP Pw-values were calculated as mentioned in the

methods section. Following these calculations, network oriented

steps of the PANOGA was realized using Cytoscape [23]. SPOT

and F-SNP Pw-values were used as attributes of the nodes (4094

genes) in the curated PPI network. We next searched for active

sub-networks using the Cytoscape plugin jActive Modules. This

plugin combines the network topology with attributes (SPOT and

F-SNP Pw-values in our case) of each gene to extract potentially

meaningful sub-networks. The higher the assigned aggregate z-

score of a sub-network is, biologically more active the sub-network

is. As in the original publication of jActive Modules [24], sub-

networks with a score S.3 (3 SD above the mean of randomized

scores) were considered significant. Hence, our results with scores

around 16 showed that this sub-network is statistically significant.

But the involvement of the genes in this network with RA is further

investigated through comparison with existing RA related

information in databases.

Significant sub-networks for RA
Using both GWAS p-values and regional score, we identified 5

significant sub-networks on the basis of their aggregate degree of

genetic association with RA. Due to the nature of the search

algorithm, several of these sub-networks overlap extensively in their

component genes. Thus, to describe a sub-network representative of

association with RA, we selected the one with the highest score. This

selected active sub-network is composed of 275 genes (our gene set)

and 778 edges, as shown in Figure 2a. Associations between 20

genes from this sub-network (XCL1, VCAM1, TRPV1, TRPC1,

SPP1, RUNX1, RAC1, PRKCZ, NR3C1, NFKB1, MAP2K4,

JUN, ITGB1, ITGAV, HMGB1, HLA-DMB, HLA-C, ERBB2,

EPAS1, CCL21) and RA were verified by literature retrieved from

the NCBI PubMed module and OMIM, as shown in Figure 2b.

Next, we checked the topological parameters of this network.

The distribution of the number of links per node (degree

distribution, P(k)) is an important measure for a network to decide

if it is a random, scale-free or hierarchical network. As shown in

Figure 3a, the degree distribution of our highest scoring sub-

network follows a power-law distribution (P(k) = ax2c, a = 120.03,

c= 1.353, R2 = 0.773, Correlation = 0.891 in log log scale) and

hence it is scale-free, as expected from a biological network

[55,56,57,58]. The unusual properties of scale-free networks are

valid only for c,3 and the smaller the value of c, the more

important the role of the hubs is in the network [59]. Similar to the

degree distribution of the main PPI network (c= 1.617), the degree

distribution of other top 5-scored sub-networks follows a power-law

distribution (c= 1.418, 1.365, 1.406, 1.330). We also randomized

our highest scoring sub-network using Erdos-Renyi algorithm and

observed that its node degree distribution follows a Poisson

distribution as expected from a random network (Figure 3b).

Functionally important KEGG pathways for RA
As a result of the functional enrichment step (Step 3) of our

methodology, we identified 87 KEGG pathway terms. In Table 2,

we represent 20 most significant pathways (determined by their p-

values), which are mostly related to immunity and inflammation,

cell adhesion and cancers. Most of these pathways (Chemokine

signaling, Neurotrophin signaling, Pathways in cancer, Leukocyte

transendothelial migration, T cell receptor signaling, Toll-like

receptor signaling, Allograft rejection, MAPK signaling, Apopto-

sis, Jak-STAT signaling) have been previously found to be

associated with RA experimentally. In Table 2, we formatted

the pathways and genes in italic, bold, both italic and bold,

respectively, if they are computationally found only, experimen-

tally found only, or found both experimentally and computation-

ally. For example, Toll-like receptor (TLR) signaling pathway term

was formatted in both italic and bold since other computational

methods identified this term and it is also experimentally known to

play an important role in the development and progress of RA.

Among the most significant pathways identified by our method-

ology are Focal Adhesion and Cell Adhesion Molecules (CAM)

pathways. These pathways are experimentally shown to play a

critical role in cellular processes such as osteoclass pathology and

angiogenesis, which are known to be important for RA [60].

We compared our findings with previously found RA related

KEGG pathways and with the genes found from those pathways.

Wu et al. [61], created a comprehensive molecular interaction

map for RA by combining the molecules and pathways found to

be associated with RA based on merging all available papers

related to high throughput experiments on RA. Following a

procedure as in [62], they have decomposed their network into 11

modules using the Cytoscape plugin BiNoM [63]. DAVID [35]

pathway analysis on their largest module with 292 nodes for 104

proteins and 334 edges returned 26 different KEGG pathways. In

summary, this module contains 43 proteins from the MAPK

signaling pathway, 36 proteins from focal adhesion, 23 proteins

from the ErbB signaling pathway, and some cancer associated

pathways such as leukemia, prostate cancer and colorectal cancer.

In another study by Martin et al., 2010, the genomic regions

showing low-significance associations in previous GWAS of RA

(WTCCC and NARAC datasets) were further explored. Using

Prioritizer software [13], they have prioritised genes from similar

pathways but located in different regions. This tool searches for

those genes belonging to the same biological pathways or related

biological pathways, based on the assumption that true disease-

causing genes are functionally related. Prioritizer software uses a

Bayesian approach to reconstruct a functional gene network based

A New Methodology to Associate SNPs with Diseases
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on known functional interactions from several databases such as

the KEGG. Martin et al., 2010 reported 18 overrepresented

KEGG pathways; in which Jak-STAT signaling pathway, Glioma,

Calcium signaling pathway, Long-term potentiation, Apoptosis

had the top 5 scores.

Baranzini et al., 2009 conducted a pathway-oriented analysis on

WTCCC GWAS data for RA and another GWAS data by Plenge

and collaborators. 9 KEGG pathways were identified in this study

including Cell adhesion molecules (CAMs), Antigen processing

and presentation, Type I diabetes mellitus. Lastly, the screening

Figure 2. The highest scoring sub-network. a. This sub-network is composed of 275 nodes and 778 edges (as found in Step 2 of PANOGA).
Node size is shown as proportional to the degree of a node. b. Zoomed in view of the highest scoring sub-network. 20 genes known in literature as
associated with RA are shown in green. Blue denotes the genes in our highest scoring sub-network that cannot be associated with RA in literature.
doi:10.1371/journal.pone.0026277.g002

Figure 3. Node degree distributions of our highest scoring sub-network vs. random network. a. Our sub-network follows a power-law
(P(k) = ax2c, a = 120.03, c= 1.353, R2 = 0.773, Correlation = 0.891 in log log scale), showing that our network displays scale-free properties, as expected
from a biological network. b. The random network is obtained via randomization of our highest scoring sub-network using Erdos-Renyi algorithm.
doi:10.1371/journal.pone.0026277.g003
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approach developed by Zhang et al., 2010 to further analyze

GWAS data considers all SNPs with nominal evidence of Bayesian

association, structural and functional similarities of corresponding

genes. Responsible pathways identified in their study include Jak-

STAT signaling pathways, cell adhesion molecules, and MAPK

signaling pathways.

Comparative results with these three studies are shown in

Table 3 in terms of number of genes found in commonly identified

KEGG pathways. While most of these associations are computa-

tional predictions only, the functional relations of five of these

pathways (Jak-STAT signalling, apoptosis, T cell receptor signal-

ling, leukocyte transendothelial migration and cytokine-cytokine

receptor interaction) with RA pathogenesis are known [42,46]. Also,

the effect of Toll-like receptor (TLR) signaling pathway and MAPK

signaling pathway on RA is known. Here it is important to note that

these associations are obtained by different methods on different

datasets. For example, while Wu et al. utilizes text-mining [61],

Martin et al. mines GWAS data from WTCCC and NARAC

studies (including variations on more cases and controls) [64], and

Zhang et al. applies their methodology on GAW16 (Genetic

Analysis Workshop) data [65]. PANOGA identifies previously

found KEGG pathway terms with high statistical significance

(terms shown in italic format for former computational identifica-

tion, in italic and bold for both computational and experimental

identification).

From those previously identified pathways, we identified

additional genes associated with RA within some of these path-

ways (e.g. Antigen processing and presentation, Tight junction).

Table 2. Overrepresented KEGG Pathways found in the highest scoring sub-network as associated with RA.

KEGG Term

Num. of
Genes
Found

Asso-
ciated
Genes (%)

Term
Pvalue Corr.
w/Bonfer. Associated Genes Found

Focal adhesion 30 14,9 9,33E-11 ACTB, ACTG1, AKT1, COL4A4, CRKL, CTNNB1, EGF, EGFR, FLNA, FLNB, FLT4, FYN, GRLF1,
ITGA5, ITGB1, ITGB3, ITGB5, MAP2K1, PAK4, PIK3R2, PTK2, RAC1, RHOA, SHC3, SRC, VASP,
VAV1, VAV3, VTN, ZYX

ErbB signaling pathway 20 22,9 2,13E-10 AKT1, CAMK2D, CAMK2G, CBL, CRKL, EGF, EGFR, ERBB3, ERBB4, HBEGF, KRAS, MAP2K1, NCK2,
NRG1, PAK4, PIK3R2, PTK2, SHC3, SRC, STAT5A

Tight junction 22 16,4 1,80E-08 ACTG1, ACTN2, CASK, CTNNB1, EPB41L1, EPB41L2, EPB41L3, GNAI1, INADL, KRAS, LLGL1,
MAGI1, MAGI3, PARD3, PRKCE, PRKCI, PRKCQ, PRKCZ, RHOA, SPTAN1, SRC, TJP1

Chemokine signaling
pathway

26 13,7 2,31E-08 ADCY2, ADCY5, ADCY8, AKT1, CHUK, CRKL, DOCK2, ELMO1, FGR, GNG2, IKBKB, KRAS,
MAP2K1, NCF1, PARD3, PIK3R2, PRKCZ, PTK2, PTK2B, RAC1, RHOA, SHC3, STAT3, TIAM1,
VAV1, VAV3

Adherens junction 17 22,6 1,16E-07 ACTB, BAIAP2, CREBBP, CTNNB1, EP300, FYN, PARD3, PTPRF, PTPRM, RHOA, SMAD2, SMAD4,
SORBS1, SRC, TCF7L2, TGFBR1, TJP1

Bacterial invasion of
epithelial cells

15 20,5 1,57E-07 ACTB, ACTG1, CBL, CLTC, CTNNB1, CTTN, DNM3, ELMO1, ITGB1, PIK3R1, PTK2, RAC1, RHOA,
SRC, WASL

Neurotrophin signaling
pathway

20 15,8 2,36E-07 ARHGDIB, CALM1, CALM3, CAMK2D, IKBKB, IRS1, JUN, KRAS, MAPK10, MAPK3, NFKB1, NTRK1,
NTRK3, PLCG1, RAC1, RHOA, RPS6KA1, TP73, YWHAE, YWHAH

Long-term potentiation 15 21,4 3,67E-07 ADCY8, CALM1, CALM3, CAMK2D, EP300, GRIA1, GRIN1, GRIN2B, GRM5, ITPR1, ITPR3, KRAS,
MAPK3, PPP1CB, RPS6KA1

Pathways in cancer 32 9,7 1,12E-06 CASP8, CBL, CHUK, COL4A4, CTNNB1, EP300, EPAS1, ERBB2, FOXO1, FZD4, IKBKB, ITGAV,
ITGB1, JUN, KIT, KRAS, MAPK10, MAPK3, NFKB1, NTRK1, PIAS1, PIAS2, PLCG1, PTK2, RAC1,
RHOA, RUNX1, SMAD4, STAT1, STAT5A, TCF7L2, TPM3

Chronic myeloid leukemia 14 19,1 1,44E-06 CBL, CRK, CRKL, HRAS, IKBKB, MAPK3, NFKB1, PIK3R2, SHC1, SMAD3, SMAD4, SOS1, STAT5B,
TGFBR1

Cell adhesion molecules
(CAMs)

18 13,2 1,42E-05 CD226, CD28, CD4, CDH2, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA,
ITGB1, L1CAM, NCAM1, NLGN1, PTPRC, PTPRF, PTPRM, SDC3

Leukocyte transendothelial
migration

17 11 1,72E-05 ACTG1, ACTN2, CTNNB1, EZR, GNAI1, GRLF1, ITGB1, NCF1, PLCG1, PTK2, PTK2B, RAC1,
RHOA, TXK, VAV1, VAV3, VCAM1

T cell receptor signaling
pathway

16 14,8 2,70E-05 CBL, CD247, CD28, CD4, CHUK, FYN, HRAS, IKBKB, LCK, MAP2K1, NCK2, PLCG1, PRKCQ,
PTPRC, RHOA, VAV3

Toll-like receptor signaling
pathway

13 12,7 1,97E-03 CASP8, CHUK, IFNAR1, IFNAR2, IKBKB, JUN, MAP2K4, MAPK10, MAPK3, NFKB1, RAC1, SPP1,
STAT1

Antigen processing and
presentation

11 13,9 2,08E-03 CALR, CANX, HLA-B, HLA-C, HLA-DMB, HLA-DRA, HLA-F, HLA-G, HSPA1L, TAP1, TAP2

Allograft rejection 8 20 2,16E-03 CD28, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA, IL12A

MAPK signaling pathway 20 7,4 6,13E-03 CACNA1A, CHUK, CRKL, DAXX, EGF, FLNA, FLNB, FOS, HRAS, HSPA1L, JUN, MAPK10, MAPK3,
MAPK8, NF1, RAC1, RPS6KA1, RRAS2, SOS1, TGFBR1

Type I diabetes mellitus 8 17,3 6,24E-03 CD28, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2, HLA-DRA, IL12A

Apoptosis 11 12,5 6,84E-03 CAPN1, CASP10, CASP8, CHUK, CSF2RB, FADD, IKBKB, IRAK1, IRAK4, PRKAR2A, PRKAR2B

Jak-STAT signaling pathway 15 9,6 7,41E-03 CBL, CREBBP, CSF2RB, EP300, IFNAR1, IFNAR2, IL12A, IL2RA, IL2RB, JAK1, LIFR, SOCS5, STAT1,
STAT3, STAT5A

Bold formatting denotes experimentally verified RA associated genes and pathways, italic formatting denotes computationally found, RA associated genes and
pathways, bold and italic formatting denotes both experimental and computational verification regarding susceptibility to RA.
doi:10.1371/journal.pone.0026277.t002
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Importantly, within these pathways, the associations between some

of these additionally found genes, such as HLA-C, HLA-G,

PRKCQ, PRKCZ, TAP1, TAP2 (formatted in bold in Table 2)

and RA were also verified by either OMIM database or by literature

retrieved from the NCBI PubMed module.

Different from previous studies, we also identified Chemokine

signaling, Neurotrophin signaling, Pathways in Cancer, Allograft

rejection pathways as significant for RA. While the significance of

these pathways in relation to RA were not thoroughly discussed in

literature, the KEGG functional enrichment of RA-specific drug

target genes, included these terms (whole list of drug target genes

for RA, downloaded from Pharmaccogenomics Knowledge Base

website and whole list of the KEGG functional enrichment of

these genes can be found in Supplementary Tables S1 and S2,

respectively). In this database, 83 genes are associated with drugs

that are used to treat RA. Furthermore, within these pathways, the

associations between some of the genes, such as EPAS1, CD28,

HLA-C (formatted in bold in Table 2) and RA were verified by

either OMIM database or by literature retrieved from the NCBI

PubMed module.

In order to assess the contribution of the found pathways and

associated genes to disease mechanism, we also searched all

identified genes from all found pathways in the Pharmaccogenomics

Knowledge Base website. When we filtered SNPs based on their

significance in GWAS (p-value ,0.05 cutoff is applied) and assigned

into genes, 14 out of 85 drug target genes were found. Whereas, via

considering all the genes in the found KEGG pathways, we

identified 25 out of 85 drug target genes associated with RA (listed in

Supplementary Table S3). Hence, we showed that incorporating

pathway knowledge on top of GWASs provides additional insights

into the pathogenesis of RA.

To emphasize the effect of the regional score in PANOGA, we

have applied our analysis on 4,094 genes firstly by using only

GWAS p-values, secondly by using both SPOT and F-SNP Pw-

values as attributes. As can be seen in Table 3, (PANOGA (w/

regional scores) column vs. PANOGA (only GWAS pvalues)

column), incorporating functional information of a SNP increases

the number of genes identified as associated with RA; and hence

increases the significance of the identified KEGG pathway term.

Functionally grouped annotation network of RA
The diversity and complexity of the identified KEGG pathways

involved in one sub-network confirms that RA is a complex

systemic disease. Since a gene can be present in multiple pathways,

we would like to show the pathway relationship, based on whether

the pathways are sharing same genes. Hence, we generated a

Table 3. Comparison of found KEGG pathways with previous studies in terms of number of genes associated within each KEGG
term.

KEGG Term Number of Genes Found
Term Pvalue
Corrected Bonfer-roni

Baranzini
et.al.

Martin
et.al.

Wu
et.al

Zhang
et.al.

PANOGA (only
GWAS p-values)

PANOGA (w/2 attributes
SPOT Pw and F-SNP Pw)

Focal adhesion 0 0 36 32 22 30 9,33E-11

ErbB signaling pathway 0 0 23 0 18 20 2,13E-10

Tight junction 0 0 0 5 20 22 1,80E-008

Chemokine signaling pathway 0 0 0 0 24 26 2,31E-08

Adherens junction 0 0 0 18 16 17 1,16E-07

Bacterial invasion of epithelial cells 0 0 0 0 15 16 1,57E-007

Neurotrophin signaling pathway 0 0 0 0 20 20 2,36E-07

Long-term potentiation 0 22 0 7 14 15 3,67E-07

Pathways in cancer 0 0 0 0 29 32 1,12E-06

Chronic myeloid leukemia 4 0 21 18 10 14 1,44E-06

Cell adhesion molecules (CAMs) 8 26 0 10 12 18 1,42E-05

Leukocyte transendothelial migration 0 24 14 0 17 17 1,72E-05

T cell receptor signaling pathway 4 21 16 16 13 16 2,70E-05

Toll-like receptor signaling pathway 0 0 22 6 7 13 1,97E-03

Antigen processing and presentation 6 0 0 3 11 11 2,08E-03

Allograft rejection 0 0 0 0 8 8 2,16E-03

MAPK signaling pathway 0 0 43 34 16 20 6,13E-03

Type I diabetes mellitus 5 0 0 1 8 8 6,24E-03

Apoptosis 0 18 12 11 6 11 6,84E-03

Jak-STAT signaling pathway 0 25 0 16 13 15 7,41E-03

Prostate cancer 0 0 22 0 10 11 5,04E-02

Calcium signaling pathway 0 35 0 4 15 16 1,63E-01

VEGF signaling pathway 3 0 15 13 8 9 2,71E-01

Total 30 171 224 194 332 385

Italic formatting denotes computationally found pathways, bold formatting denotes experimentally verified RA associated pathways, bold and italic formatting denotes
both experimental and computational verification.
doi:10.1371/journal.pone.0026277.t003
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functional annotation network from the found KEGG pathways

using ClueGO plugin [33]. While the nodes in a functionally

grouped network in Figure 4 denoted the found KEGG terms

associated to RA, the edges were drawn based on the existence of

shared genes using kappa statistics, in a similar way as described in

[35]. 87 pathway terms that were found to be RA associated in our

analysis were clustered into 9 groups, as can be seen in Figure 4

(according to their kappa scores) and the pathways in the same

group were shown in same color. ClueGO also assigns the most

significant pathway terms with the lowest term p-value (corrected

with Bonferroni) as group leading terms. For our functional

annotation network, Focal adhesion, Adherens junction, Chemo-

kine signaling pathways, T cell receptor signaling, Jak-STAT

signaling were selected as group leading terms, as shown in Figure 5.

Indeed, these group leading terms were either experimentally or

computationally found to be related with RA, as can be seen in

Table 2. This experiment generated the interconnections between

the pathways that were found to be related with RA in our analysis.

To further check for the biological significance of our results, we

compared the functional enrichments of the genes found in the

highest scoring active sub-network with the functional enrichments

of previously determined 331 genes verified by either OMIM

database or by literature retrieved from the NCBI PubMed

module to be associated with RA [61]. While our highest scoring

sub-network with 275 genes enriched for 87 KEGG pathways,

these 331 genes mapped to 88 pathways. Among those, 37

pathways were found in common, showing significant overlap

between pathways coming from our study and the literature. In

Figure 6a, the different proportion of the genes found in KEGG

pathways from two sets was represented with a color gradient from

green for literature verified RA genes, to red for our gene set.

White denoted the pathways found in both sets with equal number

of genes. As shown in Figure 6b (the zoomed in view), Pathways in

cancer, T cell receptor signaling pathway, MAPK signaling

pathway were found in both sets with the contribution of equal

number of genes (shown in white). Whereas, the light green color

in Neurotrophin signaling pathway term indicated that although

most of the RA associated genes in this pathway comes from

literature verified set, some of the genes in our gene set were

assigned to this pathway.

Discussion

Many reports of the genome wide associaton studies emerging

in the literature, and the online GWAS catalog (http://www.

genome.gov/26525384), including 273 published GWAS so far by

National Human Genome Research Institute (NHGRI), are the

clear evidences of the success of GWAS. Unfortunately, using the

traditional approaches in GWAS, only the strongest associations

can be detected; and there are many more SNPs/genes still to be

found as associated with disease [66,67]. Lately, several GWAS

[8,9,10,11,12] have proposed the use of prior knowledge in the form

of pathway databases, such as the KEGG and Biocarta, or gene

ontology databases. On the other hand, Franke et al. [13] suggested

the use of protein interaction network information along with

pathway-based analysis. For Multiple Sclerosis GWAS data,

Baranzini et al. [5] demonstrated the utility of network-based

analysis. On top of these pathway and network based analyses of

GWAS, here we devised a methodology that also integrates the

functional information of a SNP as a third component. As a result

of this multidimensional screening approach, our methodology

generated a comprehensive list of functionally important KEGG

pathways for RA (Table 2). While most of these associations can be

thought as computational predictions, the functional relations of five

of these pathways (Jak-STAT signalling, apoptosis, T cell receptor

signalling, leukocyte transendothelial migration and cytokine-cytokine

Figure 4. Functionally grouped annotation network of our highest scoring sub-network. The relationships between the KEGG terms
(nodes) were based on the similarity of their associated genes. The size of the nodes reflected the statistical significance of the terms (term p-values
corrected with Bonferroni). Edges represent the existence of shared genes. The thickness of the edges is proportional to the number of genes shared
and calculated using kappa statistics, in a similar way as described in [35]. The grouped terms (according to their kappa scores) were shown in same
color.
doi:10.1371/journal.pone.0026277.g004
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receptor interaction) with RA pathogenesis are shown in the reviews

by Raychaudhuri and Plenge et al. [41,42,46].

Additionally, the effect of Toll-like receptor (TLR) signaling

pathway and MAPK signaling pathway on RA is known as

following: TLRs are membrane-bound receptors which are

expressed in innate immune cells, such as macrophages and

dendritic cells. TLRs signaling plays an important role in the

activation and direction of the adaptive immune system by the up-

regulation of co-stimulatory molecules of antigen presenting cells.

The activation of the TLRs signaling pathway can trigger the

Figure 5. Zoomed in view of the entire functional annotation network. The most significant pathway term of the group with the lowest
term p-value (the group leading term) was shown in bold using the group specific color.
doi:10.1371/journal.pone.0026277.g005

Figure 6. Comparison of KEGG pathway terms with literature verified RA genes/our gene set were shown in green/red, respectively.
Nodes represent the identified pathway terms from any one of the two sets. The color gradient showed the gene proportion of each set associated
with the term. White color represented equal proportions from the two comparison sets. The size of the nodes reflected the statistical significance of
the terms (term p-values corrected with Bonferroni). Following the convention in Figure 4, edges represented the existence of the shared genes
between the pathway terms and node border colors mapped to the group colors. Zoomed in view of panel a is shown in panel b.
doi:10.1371/journal.pone.0026277.g006
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activation of the MAPK and NF-kB pathways. Evidence is

emerging that certain TLRs play a role in the pathogenesis of

infectious and/or infammatory diseases. There is considerable

evidence from rodent models that activation of the TLRs can

induce or exacerbate inflammatory arthritis [68].

The role of MAPK signaling pathway in the development and

progress of RA was shown to be related to cartilage damage, which

is a hallmark of RA. Cartilage damage is based on increased

proteoglycan loss as well as attachment and invasion of inflam-

matory tissue into the cartilage, which leads to its structural

disintegration. Production of matrix metalloproteinases (MMPs)

by synovial tissue appears to be a key prerequisite for synovial

tissue to invade and destroy cartilage. MAPK is a crucial signal

transduction pathway for inflammation and carries information

about inflammatory stimuli to the cell nucleus. Synthesis of MMPs

is regulated through multiple MAPK families, suggesting that a

blockade of MAPK might have structural benefit in arthritis

[43,69]. Also, activation of stress kinase pathways ERK, JNK, and

p38 MAPK is a typical feature of chronic synovitis during RA, and

several proinflammatory mediators use the signaling of these stress

kinase pathways [70].

Cytokine-cytokine receptor interaction pathway has been

previously identified by two other studies as RA associated and

included in the KEGG functional enrichment of known disease

genes [64,65]. Even though this term has not been found as

significant in our highest scoring sub-network, it has been

identified in the functional enrichment of our third highest scoring

sub-network. Due to the nature of the search algorithm used by

jActive Modules, several of the identified sub-networks overlap

extensively in their component genes. Since it is complicated and

cumbersome to represent the enrichment analysis of all identified

sub-networks, here we have shown only the results from our

highest scoring sub-network. In future, we aim to visualize the

KEGG enrichment analysis results from all identified 5 top scoring

sub-networks in a comprehensive manner.

To test whether the identified KEGG pathways could be

obtained by chance, we tested the enrichment in KEGG pathways

for 100 randomly generated networks of size 275. The enrichment

of these 100 random networks returned 68 different KEGG

pathways. Among those 68 pathways, only two of the KEGG

pathways (Type I diabetes mellitus and Allograft rejection) overlap

with the pathways shown in the Tables 2 and 3. However, the

statistical significance of these pathways were low (term p-

values = 0,013 and 0,007 respectively). These two pathways are

found only for one random network out of 100 randomly

generated networks and both pathways are found due to the

existence of the following 5 random genes in this network, i.e.

PRF1, HLA-B, FAS, HLA-DQA1, IL2. Whereas in our pathway

analysis (as shown in Table 2), more genes are identified as part of

Type I diabetes mellitus and Allograft rejection pathways (i.e.

CD28, HLA-B, HLA-C, HLA-DMB, HLA-DPA1, HLA-DQA2,

HLA-DRA, IL12A). Hence, our gene list includes different genes

compared to the ones found in random network with higher

significance (term p-values = 6,24E-03 and 2,16E-03 respectively).

The detailed result of this experiment can be found in

Supplementary Table S4.

Since only a couple of KEGG pathways are known to be

associated with RA in literature, for verification purposes we also

compared the genes as part of these pathways with the drug target

genes of RA in Pharmaccogenomics Knowledge Base. To this end,

we tried to find out whether taking the genes in pathway context

would enhance the results of GWA study by identifying additional

target genes. As result of assigning SNPs coming from GWAS to

genes we identified 4094 genes. Only 14 of them were mapped to

83 RA specific drug target genes. Following the application of our

method, we identified KEGG pathways that are affected by the

SNPs, and these pathways contained 25 out of 83 RA specific drug

target genes (listed in Supplementary Table S3). This provided an

added value to GWAS analysis showing that not only the genes

affected by the SNPs may be the drug targets but also other genes

in these affected pathways may also be the drug targets, as shown

by 11 extra genes identified. The analysis of SNP affected genes in

a pathway context provides added value in identification of

potential drug targets.

It is noteworthy to mention that pathway-based analyses, like it

is presented here, are limited to our knowledge of cellular

processes. The biological functions of most of the genes in the

genome are not known. Since network and pathway tools make

use of functional information from gene and protein databases,

they are biased toward the well-studied genes, interactions, and

pathways. Also, variants associated to genes not represented in the

protein-protein interaction network were not evaluated in this

analysis. Nevertheless, there is scope for the development of

related methodologies to increase the power to detect associations

in these genes. By combining information from several sources

(functional properties of SNPs, genetic association of a SNP with

the disease, PPI network), as shown in this paper, such limitations

can be overcome. We also would like to point out that our method

is not intended to be used for tag SNPs which are associated with a

specific phenotype. As a future work, we plan to fully automate our

method and convert to a webserver such that takes GWAS data as

an input and generates disease specific pathway terms.

In summary, in this article we described a network and

pathway-oriented analysis of GWAS data that also incorporates

functional features of a SNP. In order to determine the biological

significance of our results, we compared our findings with RA

associated gene list obtained from OMIM database, or retrieved

from literature using the NCBI PubMed module, or downloaded

from Pharmaccogenomics Knowledge Base website. The main

contributions of this paper can be summarized as follows:

1. We present a novel pathway and network oriented GWAS

analysis that challenges to identify disease associated KEGG

pathways by combining nominally significant evidence of

genetic association with current knowledge of biochemical

pathways, protein-protein interaction networks, and functional

information of selected SNPs.

2. We identified additional KEGG pathways (e.g. Pathways in

cancer, Neurotrophin signaling, Chemokine signaling path-

ways) as associated with RA. Furthermore, the KEGG

functional enrichment of drug target genes included these

terms.

3. Among the previously identified pathways, we identified

additional genes associated with RA (e.g. Antigen processing

and presentation, Tight junction). Importantly, within these

pathways, the associations between some of these additionally

found genes, such as HLA-C, HLA-G, PRKCQ, PRKCZ,

TAP1, TAP2 and RA were verified by either OMIM database

or by literature retrieved from the NCBI PubMed module.

4. Since our method can be easily applied to GWAS datasets of

other diseases, it will facilitate the identification of disease

specific pathways; and hence accelerate the development of

more specific and useful drugs with less side effects.

To conclude, our results show that incorporating SNP functional

properties, protein-protein interaction networks, pathway classifi-

cation tools into GWAS can dissect leading molecular pathways,

which cannot be picked up using traditional analyses. For GWAS
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analysis of complex diseases, novel disease-susceptibility genes and

mechanisms can only be identified by looking beyond the tip of the

iceberg (the most significant SNPs/genes). The development of

pathway and network-based approaches that also integrate prior

biological knowledge for mining the associations of a group of SNPs,

will take us one step closer to unravel the complex genetic structure

of common diseases.

Supporting Information

Table S1 Complete list of drug target genes for RA, downloaded

from Pharmaccogenomics Knowledge Base website is shown in

Table S1.

(TXT)

Table S2 Complete list of the KEGG functional enrichment of

drug target genes for RA is shown in Table S2.

(TXT)

Table S3 List of 25 drug target genes that are found to be

associated with RA when all the genes in the identified KEGG

pathways are considered.

(TXT)

Table S4 KEGG functional enrichment results for 100 ran-

domly generated sub-networks is shown in Table S4.

(XLSX)
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of Notre Dame and Dr. Michael Cusick at Center for Cancer Systems

Biology for providing us PPI dataset; Dr. Gabriela Bindea from Integrative

Cancer Immunology Team of Cordeliers Research Center for her help

with the ClueGO tool; and also to Prof. Christine Nardini, Principal

Investigator at Chinese Academy of Science–German Max Plank Society

and Prof. Sergio Baranzini from UCSF School of Medicine for their

valuable discussions.

Author Contributions

Conceived and designed the experiments: BBG OUS. Performed the

experiments: BBG. Analyzed the data: BBG. Contributed reagents/

materials/analysis tools: BBG. Wrote the paper: BBG OUS. Obtained

permission for use of WTCCC data: BBG OUS.

References

1. Hardy J, Singleton A (2009) CURRENT CONCEPTS Genomewide Associ-

ation Studies and Human Disease. New England Journal of Medicine 360:

1759–1768.

2. Elbers CC, van Eijk KR, Franke L, Mulder F, van der Schouw YT, et al. (2009)

Using Genome-Wide Pathway Analysis to Unravel the Etiology of Complex

Diseases. Genetic Epidemiology 33: 419–431.

3. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, et al.

(2000) The common PPAR gamma Pro12Ala polymorphism is associated with

decreased risk of type 2 diabetes. Nature Genetics 26: 76–80.

4. Frayling TM (2007) Genome-wide association studies provide new insights into

type 2 diabetes aetiology. Nature Reviews Genetics 8: 657–662.

5. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, et al. (2009)

Pathway and network-based analysis of genome-wide association studies in

multiple sclerosis. Human Molecular Genetics 18: 2078–2090.

6. Peng G, Luo L, Siu HC, Zhu Y, Hu PF, et al. (2010) Gene and pathway-based

second-wave analysis of genome-wide association studies. European Journal of

Human Genetics 18: 111–117.

7. Askland K, Read C, Moore J (2009) Pathways-based analyses of whole-genome

association study data in bipolar disorder reveal genes mediating ion channel

activity and synaptic neurotransmission. Human genetics 125: 63–79.

8. Torkamani A, Topol EJ, Schork NJ (2008) Pathway analysis of seven common

diseases assessed by genome-wide association. Genomics 92: 265–272.

9. Wang K, Li M, Bucan M (2007) Pathway-Based Approaches for Analysis of

Genomewide Association Studies. American journal of human genetics 81.

10. Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L,

et al. (2007) A genomic pathway approach to a complex disease: axon guidance

and Parkinson disease. PLoS genetics 3: e98.

11. Pattin KA, Moore JH (2008) Exploiting the proteome to improve the genome-

wide genetic analysis of epistasis in common human diseases. Human genetics

124: 19–29.

12. Wilke RA, Mareedu RK, Moore JH (2008) The Pathway Less Traveled: Moving

from Candidate Genes to Candidate Pathways in the Analysis of Genome-Wide

Data from Large Scale Pharmacogenetic Association Studies. Current

pharmacogenomics and personalized medicine 6: 150–159.

13. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, et al.

(2006) Reconstruction of a functional human gene network, with an application

for prioritizing positional candidate genes. American journal of human genetics

78: 1011–1025.

14. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, et al. (2007) A

human phenome-interactome network of protein complexes implicated in

genetic disorders. Nature Biotechnology 25: 309–316.

15. Tu ZD, Wang L, Arbeitman MN, Chen T, Sun FZ (2006) An integrative

approach for causal gene identification and gene regulatory pathway inference.

Bioinformatics 22: E489–E496.

16. Suthram S, Beyer A, Karp RM, Eldar Y, Ideker T (2008) eQED: an efficient

method for interpreting eQTL associations using protein networks. Molecular

Systems Biology 4: -.

17. Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using linkage genome

scans to improve power of association in genome scans. American journal of
human genetics 78: 243–252.

18. Roeder K, Devlin B, Wasserman L (2007) Improving power in genome-wide
association studies: weights tip the scale. Genetic Epidemiology 31: 741–747.

19. Saccone SF, Bolze R, Thomas P, Quan JX, Mehta G, et al. (2010) SPOT: a

web-based tool for using biological databases to prioritize SNPs after a genome-

wide association study. Nucleic Acids Research 38: W201–W209.

20. Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs
for disease association studies. Nucleic Acids Research 36: D820–D824.

21. Lee PH, Shatkay H (2009) An integrative scoring system for ranking SNPs by
their potential deleterious effects. Bioinformatics 25: 1048–1055.

22. Wingender E, Chen X, Hehl R, Karas H, Liebich I, et al. (2000) TRANSFAC:
an integrated system for gene expression regulation. Nucleic Acids Research 28:

316–319.

23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: A

software environment for integrated models of biomolecular interaction
networks. Genome Research 13: 2498–2504.

24. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and
signalling circuits in molecular interaction networks. Bioinformatics 18(Suppl 1):

S233–240.

25. Karchin R (2009) Next generation tools for the annotation of human SNPs.

Briefings in bioinformatics 10: 35–52.

26. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server
and survey. Nucleic Acids Research 30: 3894–3900.

27. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010)
A method and server for predicting damaging missense mutations. Nature

Methods 7: 248–249.

28. Loots G, Ovcharenko I (2007) ECRbase: database of evolutionary conserved

regions, promoters, and transcription factor binding sites in vertebrate genomes.
Bioinformatics 23: 122–124.

29. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second
generation human haplotype map of over 3.1 million SNPs. Nature 449: 851-

U853.

30. Saccone SF, Saccone NL, Swan GE, Madden PAF, Goate AM, et al. (2008)

Systematic biological prioritization after a genome-wide association study: an
application to nicotine dependence. Bioinformatics 24: 1805–1811.

31. Chelala C, Khan A, Lemoine NR (2009) SNPnexus: a web database for
functional annotation of newly discovered and public domain single nucleotide

polymorphisms. Bioinformatics 25: 655–661.

32. Bandyopadhyay S, Kelley R, Ideker T (2006) Discovering regulated networks

during HIV-1 latency and reactivation. Pacific Symposium on Biocomputing
Pacific Symposium on Biocomputing. pp 354–366.

33. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, et al. (2009)

ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology

and pathway annotation networks. Bioinformatics 25: 1091–1093.

34. Boyle EI, Weng SA, Gollub J, Jin H, Botstein D, et al. (2004) GO::TermFinder -
open source software for accessing Gene Ontology information and finding

A New Methodology to Associate SNPs with Diseases

PLoS ONE | www.plosone.org 12 October 2011 | Volume 6 | Issue 10 | e26277



significantly enriched Gene Ontology terms associated with a list of genes.

Bioinformatics 20: 3710–3715.
35. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, et al. (2007) The

DAVID Gene Functional Classification Tool: a novel biological module-centric

algorithm to functionally analyze large gene lists. Genome Biology 8: -.
36. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess

overrepresentation of Gene Ontology categories in Biological Networks.
Bioinformatics 21: 3448–3449.

37. Ramos H, Shannon P, Aebersold R (2008) The protein information and

property explorer: an easy-to-use, rich-client web application for the manage-
ment and functional analysis of proteomic data. Bioinformatics 24: 2110–2111.

38. Zeeberg BR, Feng WM, Wang G, Wang MD, Fojo AT, et al. (2003) GoMiner: a
resource for biological interpretation of genomic and proteomic data. Genome

Biology 4: -.
39. Bali D, Gourley S, Kostyu DD, Goel N, Bruce I, et al. (1999) Genetic analysis of

multiplex rheumatoid arthritis families. Genes and Immunity 1: 28–36.

40. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, et al. (2000)
Characterizing the quantitative genetic contribution to rheumatoid arthritis

using data from twins. Arthritis and Rheumatism 43: 30–37.
41. Raychaudhuri S, Remmers EF, Lee AT, Hackett R, Guiducci C, et al. (2008)

Common variants at CD40 and other loci confer risk of rheumatoid arthritis.

Nature Genetics 40: 1216–1223.
42. Raychaudhuri S, Thomson BP, Remmers EF, Eyre S, Hinks A, et al. (2009)

Genetic variants at CD28, PRDM1 and CD2/CD58 are associated with
rheumatoid arthritis risk. Nature Genetics 41: 1313–U1376.

43. Suzuki M, Tetsuka T, Yoshida S, Watanabe N, Kobayashi M, et al. (2000) The
role of p38 mitogen-activated protein kinase in IL-6 and IL-8 production from

the TNF-alpha- or IL-1 beta-stimulated rheumatoid synovial fibroblasts. Febs

Letters 465: 23–27.
44. Begovich AB, Carlton VEH, Honigberg LA, Schrodi SJ, Chokkalingam AP,

et al. (2004) A missense single-nucleotide polymorphism in a gene encoding a
protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis.

American journal of human genetics 75: 330–337.

45. Kurreeman FAS, Padyukov L, Marques RB, Schrodi SJ, Seddighzadeh M, et al.
(2007) A candidate gene approach identifies the TRAF1/C5 region as a risk

factor for rheumatoid arthritis. Plos Medicine 4: 1515–1524.
46. Plenge RM, Cotsapas C, Davies L, Price AL, Bakker PIW, et al. (2007) Two

independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nature
Genetics 39: 1477–1482.

47. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, et al. (2007) STAT4

and the risk of rheumatoid arthritis and systemic lupus erythematosus. New
England Journal of Medicine 357: 977–986.

48. Thomson W, Barton A, Ke X, Eyre S, Hinks A, et al. (2007) Rheumatoid
arthritis association at 6q23. Nature Genetics 39: 1431–1433.

49. Zhernakova A, Alizadeh BZ, Bevova M, van Leeuwen MA, Coenen MJH, et al.

(2007) Novel association in chromosome 4q27 region with rheumatoid arthritis
and confirmation of type 1 diabetes point to a general risk locus for autoimmune

diseases. American journal of human genetics 81: 1284–1288.
50. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, et al. (2009) REL,

encoding a member of the NF-kappa B family of transcription factors, is a newly
defined risk locus for rheumatoid arthritis. Nature Genetics 41: 820-U877.

51. Barton A, Eyre S, Ke XY, Hinks A, Bowes J, et al. (2009) Identification of AF4/

FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility
locus and confirmation of two further pan-autoimmune susceptibility genes.

Human Molecular Genetics 18: 2518–2522.

52. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human

disease network. Proceedings of the National Academy of Sciences of the United

States of America 104: 8685–8690.

53. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, et al. (2005)

Towards a proteome-scale map of the human protein-protein interaction

network. Nature 437: 1173–1178.

54. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, et al. (2005) A human

protein-protein interaction network: A resource for annotating the proteome.

Cell 122: 957–968.

55. Albert R (2005) Scale-free networks in cell biology. Journal of Cell Science 118:

4947–4957.

56. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale

organization of metabolic networks. Nature 407: 651–654.

57. Barabasi AL (2009) Scale-Free Networks: A Decade and Beyond. Science 325:

412–413.

58. Vallabhajosyula RR, Chakravarti D, Lutfeali S, Ray A, Raval A (2009)

Identifying Hubs in Protein Interaction Networks. Plos One 4: -.

59. Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nature reviews Genetics 5: 101–113.

60. Shahrara S, Castro-Rueda HP, Haines GK, Koch AE (2007) Differential

expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis

synovial tissues. Arthritis Research & Therapy 9: R112.

61. Wu G, Zhu L, Dent JE, Nardini C (2010) A comprehensive molecular

interaction map for rheumatoid arthritis. Plos One 5: e10137.

62. Calzone L, Gelay A, Zinovyev A, Radvanyi F, Barillot E (2008) A

comprehensive modular map of molecular interactions in RB/E2F pathway.

Molecular Systems Biology 4: 173.

63. Zinovyev A, Viara E, Calzone L, Barillot E (2008) BiNoM: a Cytoscape plugin

for manipulating and analyzing biological networks. Bioinformatics 24: 876–877.

64. Martin JE, Alizadeh BZ, Gonzalez-Gay MA, Balsa A, Pascual-Salcedo D, et al.

(2010) Identification of the Oxidative Stress-Related Gene MSRA as a

Rheumatoid Arthritis Susceptibility Locus by Genome-Wide Pathway Analysis.

Arthritis and Rheumatism 62: 3183–3190.

65. Zhang LC, Li W, Song LL, Chen LN (2010) A towards-multidimensional

screening approach to predict candidate genes of rheumatoid arthritis based on

SNP, structural and functional annotations. Bmc Medical Genomics 3: -.

66. Couzin J, Kaiser J (2007) Genome-wide association. Closing the net on common

disease genes. Science 316: 820–822.

67. Williams SM, Canter JA, Crawford DC, Moore JH, Ritchie MD, et al. (2007)

Problems with genome-wide association studies. Science 316: 1840–1842.

68. Joosten LA, Koenders MI, Smeets RL, Heuvelmans-Jacobs M, Helsen MM,

et al. (2003) Toll-like receptor 2 pathway drives streptococcal cell wall-induced

joint inflammation: critical role of myeloid differentiation factor 88. Journal of

Immunology 171: 6145–6153.

69. Liacini A, Sylvester J, Li WQ, Huang W, Dehnade F, et al. (2003) Induction of

matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP

kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes.

Experimental cell research 288: 208–217.

70. Schett G, Tohidast-Akrad M, Smolen JS, Schmid BJ, Steiner CW, et al. (2000)

Activation, differential localization, and regulation of the stress-activated protein

kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38

mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid

arthritis. Arthritis and Rheumatism 43: 2501–2512.

A New Methodology to Associate SNPs with Diseases

PLoS ONE | www.plosone.org 13 October 2011 | Volume 6 | Issue 10 | e26277


