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Abstract: Vitamin D (calciferol) is a fat-soluble vitamin that has a significant role in phospho-calcium
metabolism, maintaining normal calcium levels and bone health development. The most important
compounds of vitamin D are cholecalciferol (vitamin D3, or VD3) and ergocalciferol (vitamin D2,
or VD2). Besides its major role in maintaining an adequate level of calcium and phosphate concen-
trations, vitamin D is involved in cell growth and differentiation and immune function. Recently,
the association between vitamin D deficiency and the progression of fibrosis in chronic liver dis-
ease (CLD) was confirmed, given the hepatic activation process and high prevalence of vitamin
D deficiency in these diseases. There are reports of vitamin D deficiency in CLD regardless of the
etiology (chronic viral hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver disease, primary biliary
cirrhosis, or autoimmune hepatitis). Vitamin D binding protein (VDBP) is synthesized by the liver
and has the role of binding and transporting vitamin D and its metabolites to the target organs.
VDBP also plays an important role in inflammatory response secondary to tissue damage, being
involved in the degradation of actin. As intense research during the last decades revealed the possible
role of vitamin D in liver diseases, a deeper understanding of the vitamin D, vitamin D receptors
(VDRs), and VDBP involvement in liver inflammation and fibrogenesis could represent the basis for
the development of new strategies for diagnosis, prognosis, and treatment of liver diseases. This
narrative review presents an overview of the evidence of the role of vitamin D and VDBP in CLD,
both at the experimental and clinical levels.

Keywords: vitamin D; vitamin D binding protein; chronic liver diseases; fibrosis; non-alcoholic fatty
liver disease; children

1. Introduction

In recent years, vitamin D or calciferol has become a subject of intense scientific
investigation and has found a new place under the sun. Vitamin D is a fat-soluble vitamin
that has a major role in phospho-calcium metabolism, maintaining normal calcium levels
and bone health development [1,2]. Vitamin D has two essential compounds: vitamin D3,
or cholecalciferol and vitamin D2 or ergocalciferol. Both forms of vitamin D play significant
roles in the body, protecting it against rickets or bone demineralization, hypertension,
cancers, or autoimmune disorders [1–4]. It also plays a crucial role in anti-infective defense
through the anti-inflammatory, immunomodulatory, proapoptotic, and antiangiogenic
effects. In the body, vitamin D is transported by a molecule, Gc-globulin or vitamin D
binding protein, which also plays an essential role in maintaining the body’s homeostasis
through its anti-inflammatory role. This narrative review presents an overview of the
evidence of the role of vitamin D, its metabolites, and vitamin D binding protein (VDBP)
in chronic liver diseases (CLD), both at the experimental and clinical levels [1–4]. For this
purpose, we reviewed the existing literature data about the involvement of vitamin D and
VDBP in chronic hepatitis, hepatic steatosis, fibrosis, cirrhosis, or liver transplantation.
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2. Vitamin D Metabolism and Its Action

Vitamin D, through its metabolites, increases serum calcium concentrations through
stimulation of active intestinal calcium absorption, mobilizes calcium from the bones
when it is absent from the diet, and stimulates osteoblasts to produce receptor activator
nuclear factor-κB ligand (RANKL), which activates resting osteoclasts for bone resorption
(osteoclastogenesis) [1]. Vitamin D and parathyroid hormone permanently control calcium
and phosphorus homeostasis [2–4]. Most of the calcium is absorbed in the distal intestine
(70–80% of the ingested calcium) but also in the colon, two organs rich in vitamin D
receptors (VDR), calcium transport protein 1 (CaT1), calbindin-D9K, and transient receptor
potential vanilloid type 6 (TRPV6). These membrane proteins transport calcium through
the cell [2–4]. In the kidney, reabsorption processes occur in the distal renal tubules, where
about 1% of the calcium is reabsorbed. It seems small but considering that the total amount
of calcium filtered in a day reaches 7 g, it is an essential process in the phospho-calcium
balance [1].

The most important compounds of vitamin D are vitamin D3 (also known as chole-
calciferol, VD3) and vitamin D2 (ergocalciferol, VD2) with a similar chemical structure
(Figure 1). VD3 is produced in the skin from 7-dehydrocholesterol in the presence of solar
UV radiation. It is also found in some foods such as fish, beef liver, eggs, and cheese, milk.
In the liver, VD3 is transformed to calcifediol (25-hydroxyvitamin D, 25(OH)D) by CYP2R1
or CYP27A1 (Figure 2). The most important role of VD3 is to increase calcium uptake by the
intestine. This process occurs through two mechanisms, one energy-dependent and a pas-
sive paracellular pathway [2–5]. 25(OH)D is converted to calcitriol (1,25-dihydroxyvitamin
D or 1,25(OH)2D3) through the action of 1-hydroxylase (CYP27B1). All these metabolites
will bind vitamin D binding protein (VDPB) and less to albumin and will be transported to
the tissues. Here, the action of calcitriol is mediated by the VDR, a nuclear receptor in every
cell of the body. Both 25(OH)D and calcitriol are catabolized by CYP24A1, a member of the
cytochrome P450 [6]. However, calcitriol has a very high affinity for VDR, acting through a
series of cell-signaling reactions or as a ligand-activated transcription factor resulting in
immediate responses in the target cells [7].
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Figure 1. Chemical structure of the vitamin D2, ergocalciferol (C28H44O), and vitamin D3, cholecal-
ciferol (C27H44O).

VD2 comes only from external sources (the plant sterol ergosterol) and is not pro-
duced in the human body. When compared to VD3, it has lower effects but is not neg-
ligible. It is used as a medication in many countries because it prevents and treats vi-
tamin D deficiency [8,9]. Like VD3, it is also an inactive product that requires two hy-
droxylations to become active. The first reaction is in the liver by CYP2R1 to form 25-
hydroxyergocalciferol (25(OH)D2), and the second one in the kidney by CYP27B1 to form
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the active 1,25-dihydroxyergocalciferol (ercalcitriol or 1,25(OH)2D2). These new metabo-
lites will activate VDR, and they will exercise their action. VD2 supplementation seems
to be extremely important in patients with end-stage renal disease, improving bone and
mineral metabolism [10]. Generally, in the first stage, exogenous calcium is used and only
in its absence is endogenous calcium used [6].
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brosis, inhibit hepatocytes apoptosis, suppress pro-inflammatory cytokines, modulate adipokines
expressions, and increase bile acid transport.

Vitamin D2 and D3 have many essential functions. A sufficient level of 25(OH)D
in the body will protect against failed bone mineralization and rickets among children
and osteomalacia among adults. It also decreases the risk of osteoporosis, hypertension,
cancer, or autoimmune diseases in adults. Vitamin D, through its metabolites, stimulates
the immune response in children and adults, having a significant role in anti-infective
defense. Many studies report the importance of vitamin D in inhibiting the carcinogenesis
process and against progression to metastatic disease, protecting against breast, colon,
skin, stomach, or prostate cancers. Vitamin D and its metabolites also have important
anti-inflammatory, immunomodulatory, proapoptotic, and antiangiogenic effects [1,11–13].

Vitamin D3 and D2 are stored in adipose tissue where numerous VDRs are also
expressed, being involved in the regulation process of metabolic disorders. Thus, vitamin D
is an essential catalyst for energy homeostasis and glucose metabolism, influencing insulin
secretion, glucose levels, or inflammation. Thus, vitamin 25(OH)D deficiency is one of the
predisposing factors for fatty metabolic diseases, such as obesity, diabetes mellitus (DM),
atherosclerosis, non-alcoholic fatty liver disease (NAFLD), or multiple sclerosis [14].

Vitamin D3 and D2 interfere with many detoxification processes in the liver by stimu-
lating P450 cytochromes expression (i.e., CYP3A4, CYP2B6, and CYP2C9) and promoting
normal liver recovery after partial hepatectomy by increasing intracellular calcium flow,
control DNA polymerase α activity, and nuclear protein kinase activity. VDRs are localized
in the cell nucleus and are found in most body tissues, like the liver, kidney, thyroid, adrenal
glands, gastrointestinal tract, breast, or skin. One of the most important roles of VDR is to
inhibit CYP7A1 mRNA expression and bile acid synthesis, thereby protecting hepatocytes
against cholestasis [15]. Vitamin D has important antiproliferative and antifibrotic effects
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on liver fibrosis by inhibiting the expression of proliferation and profibrotic markers in
hepatic stellate cells and excessive deposition of extracellular matrix components [16].

However, in addition to vitamin D, its transport molecule, named Gc-globulin, plays
a significant role in maintaining this homeostasis. Gc-globulin is a serum α2-globulin
with a molecular weight of 52–59 kDa. Gc-globulin was first described by Hirschfeld in
1959. Over time, the name of this protein has changed with the discovery of its many
roles, so it was called vitamin D binding protein (VDBP) due to its role in vitamin D
transport, or macrophage-activating factor (Gc-MAF/DBP-MAF) after discovering its ac-
tivity of stimulating macrophages [17]. VDBP is a protein encoded by the DBP gene,
located on the long arm of chromosome 4 (4q12-q13) and expressed in various tissues.
The gene encodes the family of multifunctional plasma proteins belonging to the albumin
superfamily of binding proteins, which also includes albumin, α-fetoprotein (AFP), and
α-albumin/afamin (AFM) [18,19]. There are more than 120 variants of VDBP, the most
common phenotypes being DBP1F, DBP1S, and DBP2, linked to rs7041 and rs4588 poly-
morphisms [20]. Homozygotes for rs7041 and rs4588 have a high serum concentration of
25(OH)D after supplementation with vitamin D [17,21].

VDBP is synthesized by the liver and has the role of binding and transporting vitamin
D and its metabolites to the target organs (Figures 3 and 4) [4]. The affinity of VDBP is
the highest for 25(OH)D and less for vitamin D itself or 1,25(OH)2D. Also, the affinity
is greater for VD3 metabolites than for those of VD2. Only 5% of total plasma VDBP is
bound to vitamin D, the remaining 95% being found in different organs (heart, brain, lungs,
kidneys, spleen, tests, and uterus), where various functions are performed such as increased
neutrophil chemotaxis, T cell response, activity as VDBP-macrophage activating factor
(DBP-MAF), binding fatty acids, vitamin D metabolites, or actin scavenging [18–20,22–24].
Other functions of VDBP are the stimulation of the activity of osteoclasts and bone re-
sorption [22–24]. Therefore, VDBP plays an important role in inflammatory response
secondary to tissue damage, being involved in the degradation of actin. Actin is a protein
that forms part of the cytoskeleton, which is involved in cell motility and maintaining the
cell’s shape. After an injury that causes cell necrosis or tissue damage, actin is released into
the circulation in large quantities, forming long filaments (F-actin). These, together with
the coagulation factor V, trigger disseminated intravascular coagulation. Physiologically,
the mechanism of action of VDBP is actin binding and scavenging [24–27]. In the absence
of VDBP, actin remains free, favoring platelet aggregation and thrombus formation. VDBP
binds to circulating neutrophils and stimulates their chemotactic activity, intensifies C5a-
mediated signals, increases macrophage activity at the site of tissue injury, and amplifies
macrophage apoptosis processes by inducing caspase [20,22–28]. It plays an essential role
in the uptake and transport of endotoxins in sepsis, suggesting its role in predicting the
evolution of the disease in patients with peritonitis. The most important role of VDBP is
related mainly to vitamin D3, increasing its biological half-life, thus extending its duration
of action, protecting the tissues from its excessive action, limiting its action at the tissue
level, and promoting renal reabsorptions [29,30]. The level of VDBP is not correlated di-
rectly with vitamin D3 levels. A low level of VDBP is associated with a high bioavailability
of D3 in the tissues [26–30].

VDBP is found in smaller quantities in most body fluids (serum, saliva, urine, breast
milk, cerebrospinal fluid, seminal liquid, or ascites liquid). The serum concentration of
VDBP is between 350 and 500 µg/L, varying during the day (lower in the morning and
increase later in the day) [20]. The level of DBP is not influenced by serum vitamin D
level, even if it is deficient, correlating only with the 24,25-dihydroxycholecalciferol level,
an inactive metabolite of 25(OH)D3. VDBP has a high turnover rate. Research studies
on immunodeficiency techniques in adults or animals describe a significant decrease in
serum VDBP concentrations in severe tissue damage, considered a prognostic marker in
the evolution [18,28].
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Figure 4. The roles of vitamin D2 and D3 and VDPB. Only 5% of VDBP is found in plasma, bound
by 25(OH)D, the main active metabolite of VD2 and VD3 subunits. The rest of the 95% is found in
different tissues and organs where different functions are performed. An important anti-inflammatory
roll, through the different effects on lymphocytes, macrophages, or neutrophils, regulates lipid
metabolism by binding fatty acids and significantly reducing the risk for atherosclerosis or insulin
resistance, prevents disseminated intravascular coagulation by stimulating actin degradation, or
regulates bone resorption by stimulating osteoclast activity. Vitamin D2 and D3m through their
metabolites, perform a lot of functions in bone mineralization; autoimmune disorders or different
cancers; anti-infective defense by its anti-inflammatory role; and protection against obesity, diabetes
mellitus, atherosclerosis, non-alcoholic fatty liver disease, liver fibrosis, or multiple sclerosis [14–24].

3. Vitamin D in Liver Diseases

Vitamin D is important in cell growth and differentiation, immune function, and
cardiovascular and calcium and phosphate homeostasis [32]. Recently, the association
between 25(OH)D deficiency and the progression of fibrosis in CLD was confirmed [33],
given the hepatic activation process and high prevalence of vitamin D deficiency in these
diseases. The causal relationship is uncertain: whether vitamin D deficiency increases the
risk for liver fibrosis or CLD is associated with vitamin D deficiency [34–36].

The prevalence of vitamin D deficiency (serum level of 25(OH)D under 20 ng/mL)
was reported in CLD to range from 64% to 92%. Previously, this deficiency was commonly
described in cholestatic disorders due to impaired intestinal absorption. There are reports
of vitamin D deficiency in CLD regardless of the etiology (chronic viral hepatitis; alcoholic
cirrhosis; NAFLD; primary biliary cirrhosis; PBC; or autoimmune hepatitis, AIH) [37].



Int. J. Mol. Sci. 2022, 23, 10705 6 of 18

Potential mechanisms of VD3 or VD2 deficiency in CLD include reduced exogenous
vitamin D sources (diet, limited exposure to sunlight), the intestinal malabsorption of
vitamin D due to cholestasis, the reduced production of VDBP and albumin due to liver
injury, impaired hepatic hydroxylation, and increased catabolism of 25(OH)D [37]. Besides
these causes, the genetic studies identified genetic determinants of vitamin D status: vari-
ants at three loci in genes involved in the synthesis, hydroxylation, and transport of VD
(7-dehydrocholesterol reductase, DHCR7, CYP27R1 and DBP) [38,39].

Vitamin D in biliary atresia and fibrosis. Biliary atresia (BA) is an important cause
of cholestasis in infants. Most patients had progressive liver fibrosis despite the hepatic
portoenterostomy (HPE) and evolved toward cirrhosis and end-stage liver disease with
the need for liver transplantation (LT) [40]. Progressive liver fibrosis is the most important
predictor of outcome after HPE in BA [41]. The mechanism of liver fibrosis and cirrhosis in
BA includes immune dysregulation, viral infection (cytomegalovirus, CMV), or excessive
inflammatory factors [42–46]. Activation of hepatic stellate cells (HSC) through the TGF-
signaling pathway and excessive extracellular matrix deposition are essential steps in liver
fibrosis [47].

Vitamin D deficiency is common in almost all infants with BA before HPE, reported
in 96.3–98.9% of patients [33,41,48], but even after HPE and oral supplementation with
vitamin D products [49]. A serum level of 25(OH)D was higher in the jaundice-free post-
HPE patients than in those with jaundice after HPE [49,50]. Vitamin D absorption is
impaired in cholestatic disorders, but vitamin D activation is also significantly reduced in
infants with BA [33].

The role of vitamin D in fibrosis may be explained through its actions as a regulatory
factor: Reducing the proliferation and migration of HSC and by binding with VDR with
upregulation of CYP2R1 can regulate the activity of the TGF-beta/SMAD signaling pathway
in HSCs; inhibits the expression of profibrotic genes such as Col-1alfa1, alfa-SMA, TIMP-1,
and deposition of types I and III collagen; and promotes expression of antifibrosis genes
such as MMP-2 or MMP9 [16,33,51–55].

VDR is not expressed in liver tissue but in nonparenchymal liver cells (HSCs). It was
demonstrated that vitamin D deficiency is associated with severe cirrhosis [56], and VDR
gene polymorphism increases the risk of cirrhosis in PBC and NAFLD patients [57,58]. It
was demonstrated that VDR gene knockout mice could lead to primary liver fibrosis [54].

Vitamin D administration reduces extracellular matrix deposition and attenuates
fibrosis in animal models of chronic hepatic injury [16,54,59], but the ability to remediate
already-established fibrosis is less promising.

Vitamin D deficiency in BA patients promotes liver fibrosis [33]. CYP2R1 and CYP27A1
are key enzymes in the hydroxylation of vitamin D in the liver. CYP2R1 expression is
significantly decreased in BA patients and was the leading cause of 25(OH)D deficiency
rather than malabsorption, explaining the lack of response after oral supplementation of
vitamin D [33]. The mechanism for this deficiency in BA patients is not precise.

Lithocholic acid, a biliary compound that accumulates in cholestasis, can activate
VDR and alter vitamin D signaling. Ligand-specific pleiotropy of VDR may explain the
potentially opposing effects using a common pathway stimulated by different ligands
(vitamin D and bile acid) [60].

The correlation between 25(OH)D deficiency and liver fibrosis in BA patients was
confirmed in clinical studies [33]. Zhuang et al. [40] reported that the low serum level of
25(OH)D was correlated with the stage of fibrosis and serum level of PIIINP in BA patients.
There were no associations between serum 25(OH)D level and liver function biomarkers,
except for alkaline phosphatase (ALP). Ng et al. reported a negative correlation between
25(OH)D level and ALP, both pre-HPE and post-HPE. In a study including 33 children with
BA after HPE, Peng et al. [61] reported a correlation between the low serum 25(OH)D level
and severity of fibrosis evaluated by share wave elastography.

Vitamin D and NAFLD. NAFLD is a spectrum of progressive diseases that range
from steatosis, inflammation, and fibrosis to cirrhosis and is now considered the most



Int. J. Mol. Sci. 2022, 23, 10705 7 of 18

common chronic liver disease. Multiple factors are included in the pathogenesis of NALFD:
metabolic syndrome, environmental risk factors, inherited susceptibility, and the risk factors
are difficult to be assessed with precision. Due to the connections with metabolic syndrome,
this condition was renamed Metabolic-Associated Fatty Liver Disease (MAFLD) [62].

Vitamin D regulates adipose tissue inflammation, liver fibrosis, aberrant fat accumula-
tion in the liver, and insulin resistance [55,63–66]. Deficiency in vitamin D was associated
with insulin-resistance-related diseases such as type 2 DM (T2DM), metabolic syndrome,
and MAFLD [67].

Wang et al. [63] observed that NAFLD was more prevalent among the subjects with
low levels of 25(OH)D, increasing the risk for NALFD in a specific population, explained
by the genetic predisposition (a variant in the VDBP gene). Many studies [68–70] and
meta-analyses [71–73] report that vitamin D deficiency is common in adults with NAFLD.
25(OH)D level is inversely correlated with aspartate aminotransferase (AST) and aspartate
aminotransferase (ALT) [74]. A low level of 25(OH)D was associated with the severity of
fibrosis in patients with NAFLD [75]. Other authors reported no significant association
between a low level of 25(OH)D and the risk for NALFD in adults [76–79]. In children
and adolescents, data are sparse. A recent meta-analysis, including eight articles (five
cross-sectional and three case-control studies), supported the association of a low 25(OH)D
level with NAFLD [80].

There is proof that vitamin D hydroxylation capacity is not perturbed in NALFD
and does not represent the cause of vitamin D deficiency. Liver expression of CYP2R1
and CYP27A1 is preserved, and the expression of specific genes involved in vitamin D
metabolism is not variable in NAFLD patients [36,68,81].

Studies on animal models report that vitamin D deficiency exacerbates the severity
of NALFD histology [82,83]. There is a correlation between a low level of vitamin D with
insulin resistance and liver inflammation by the upregulation of proinflammatory genes [82].
Vitamin D promotes adiponectin secretion in cultured adipocytes, and adiponectin has anti-
inflammatory and insulin-sensitizing properties [84] and, together with VDR, is involved
in the homeostasis of the other organs linked to MAFLD (gut and adipose tissue) [62].
Vitamin D3 and D2 protect against fatty liver, liver inflammation, and oxidative stress
by inhibiting the p53-p21 signaling pathway and associated cell senescence, promoting
the nuclear translocation of nuclear factor erythroid 2-related factor (NFE2L2), decreasing
toll-like receptors (TLRs), repressing sirtuin, and activating the hepatocyte nuclear factor 4
alfa (HNF4 alfa) [67,82,85–88]. The role of vitamin D as an antifibrotic agent by inhibiting
HSCs and expression of different profibrotic mediators was presented before. Moreover,
the liver expression of VDR may modulate lipid accumulation by controlling the level of
angiopoietin-like protein 3 and lipoprotein-lipase [89].

Despite all these experimental research results, interventional clinical trials found no
beneficial impact of vitamin D supplementation in NAFLD patients regarding the biochem-
ical markers, insulin resistance, adiponectin profile, liver histology, or ultrasonographic
markers of liver injury [79,90–95].

Vitamin D in chronic viral hepatitis. Despite the decrease in the incidence of hepatitis
B virus (HBV) infections due to the successful vaccination campaigns during the last
decades, chronic HBV infection represents a public health burden and a significant cause of
cirrhosis in adults.

Vitamin D deficiency is common in HBV-infected patients, and a low 25(OH)D level
correlates with higher HBV replication [96,97]. Some studies contradict these findings and
specify that the different phases of HBV infection may have different vitamin D impacts
(related to host immunity) [98,99].

Regarding the role of vitamin D genetics in the outcome of HBV infection, studies
report favorable outcomes with interferon (IFN) treatment in patients with a distinct geno-
type of CYP27B1 and VDR polymorphism [100]. Other studies support such correlations in
specific populations of patients with HBV infection [101–103].
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Chronic hepatitis C virus (HCV) infection represents a public health problem due to the
high number of people infected and the increased risk for liver cirrhosis and hepatocellular
carcinoma (HCC). The use of the new antivirals made the HCV infection treatment very
efficient. Still, during PEGylate (Peg)-IFN treatment era, research was conducted to identify
the risk factors for treatment failure. Vitamin D deficiency is common in patients with
HCV infection, and data suggest that vitamin D could affect the treatment with Peg-IFN
and ribavirin in those patients. In many countries, this is still the treatment approved for
children under 12 years old.

Severe vitamin D deficiency was present in 30% of patients with HCV infection and
cirrhosis, compared to 14% of non-cirrhotic HCV patients and 28% of patients with non-
HCV cirrhosis [35]. Also, Miroliaee et al. [104] reports a higher prevalence of 25(OH)D
deficiency in cirrhotic vs. non-cirrhotic patients (76.5% vs. 17.9%) and a correlation of
low levels with more severe cirrhosis (Child-Pugh class B and C) in chronic hepatitis B, C,
and AIH, findings that were supported by other studies [105,106]. A low 25(OH)D level
was associated with the severity of fibrosis in HCV patients [107] and with an inadequate
response to IFN-based therapy [56]. Vitamin D deficiency was correlated with a sustained
virological response (SVR) in HCV genotype 2 and 3 patients [108]. Also, the same study
reported that CYP27B1-1260 promotor polymorphism rs10877012 impacts 1,25(OH)2D level
and SVR in HCV patients. Vitamin D may suppress HCV replication through oxidative
stress pathways [35]. Gutierrez et al. [109] proved that vitamin D3, D2, and 1,25(OH)2D3
synergistically reduce HCV replication with IFN-alfa in cell culture. Also, vitamins D3
and D2 activate gene expression of CCL20 (macrophage inflammatory protein-3 alpha)
and can aid in HCV clearance in vivo. There was also a strong upregulation of SCL30A10
in vitamin D-treated cells with the facilitation of zinc transport into cells. Zinc has a role
in the innate and adaptative immune system, and it was proved that zinc inhibits HCV
replication [110].

The clinical studies evaluating the 25(OH)D level and prediction of SVR response are
controversial. One meta-analysis [111] revealed no association between 25(OH)D baseline
level and SVR to Peg-IFN and ribavirin combination. Still, another meta-analysis, based on
only three papers, supports the idea that low vitamin D level is linked to lower SVR [112].
There are also other studies without any correlation between the vitamin D level and
treatment outcome [113–115]. Even though there is no proof that the baseline vitamin
D level would influence the SVR in treatment with Peg-IFN and ribavirin, some studies
reported that supplementation with vitamin D was beneficial [116–119].

Vitamin D in autoimmune hepatitis (AIH). Many studies have shown the impor-
tance of vitamin D in AIH, as these patients present a high prevalence of vitamin D
deficiency [120,121]. It is well known that patients with low levels of 25(OH)D present
severe interface hepatitis and advanced liver fibrosis or are more often non-responders to
glucocorticoid therapy [122,123].

In AIH, both the genetic and non-genetic factors of the autoimmune process are re-
lated to vitamin D. Susceptibility to type 1 AIH is associated with B1*0301 and DRB1*0401
genes in Caucasian American or northern European people and with DRB1*0405 in Asian
countries. Type 2 AIH is often associated with DRB1*07 alleles [124]. Vitamin D has an
important effect on MHC class II antigen suppression in human mononuclear phagocytes
and prevents proliferation and fibrosis processes through the effects on cytochrome p450,
by increasing intracellular calcium flow, or by the effects on DNA polymerase α activ-
ity and cytoplasmic and nuclear protein kinase activity [124]. Vitamin also D regulates
T-cell-mediated immunity. It decreased the cytotoxic T lymphocyte antigen-4 (CTLA-4)
expression in monocytes and is a trigger for type 1 AIH [125]. In AIH, the number of
monocytes increases, expressing an elevated level of regulated intracellular toll-like re-
ceptors (TLRs). Vitamin D decreases their activation, especially TLR-2, TLR-4, and TLR-9.
Another role of vitamin D is in detoxification processes by increasing the expression of P450
cytochromes (CYP3A4, CYP2B6, and CYP2C9) [124]. In type 2 AIH with LKM antibodies,
the activity of CYP2D6 is inhibited, affecting the oxidation; peroxidation; and/or reduc-
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tion of vitamins, steroids, and xenobiotics metabolization [126]. Different VDR variants
are also involved in AIH pathogenesis, primarily through the connection with fatty acid
synthase (FAS) promoter variants, with some pro-inflammatory cytokines or liver fibrosis
promoters [127–129]. In active AIH, the number of CD4+CD25high T cells is reduced and
expresses low levels of forkhead helix transcription factor 3 (Foxp3). This transcriptional
regulator plays an essential role in maintaining self-tolerance and preventing autoimmune
diseases by regulating the function of CD4+ T regulatory cells (Tregs), a distinct lymphocyte
with an inhibitory effect on the activation of the immune system [130]. The consequence
of this Foxp3 reduction is decreased protective capacity against abnormal cell prolifera-
tions [124,130]. Tregs cells are more significant in AIH patients compared with control and
correlate with the liver’s inflammatory activity [124,130].

Regarding the non-genomic role of vitamin D in AIH, it participates in the up-
regulation of phosphatase 1 mitogen-activated protein kinase (MAPK) signaling pathways,
thus regulating cytokine production. It is an important inhibitor of Gamma delta (γδ) T
cells, a small subset of T cells with pro-inflammatory activity [124,131]. Vitamin D provides
protection against the oxidative injuries caused by nitrite production, reduces the extent of
lipid peroxidation, and stimulates the hepatic antioxidant system [124,131].

Vitamin D in acute liver injury. Supplementation with vitamin D may improve the
necro-inflammation and apoptosis induced by hepatic ischemic-reperfusion injury in rats.
This favorable response is attributed to attenuated TLR4 signaling, a potent activator of
Kupffer cells. The findings of this study support the possible use of vitamin D supple-
mentation before hepatic surgery as a simple and cost-efficient method for improving the
outcome [36,132,133].

Vitamin D in liver transplanted patients. Most patients had a low 25(OH)D level
before LT, and after transplantation, vitamin D deficiency was rare [134]. Some studies sup-
port that a low level of 25(OH)D before the LT may be linked with rejection episodes [135].

4. VDBP and Liver Disorders

VDBP is synthesized by hepatic parenchymal cells, under the influence of estrogen,
glucocorticoids, and inflammatory cytokines, but not by vitamin D. In all conditions
involving tissue necrosis or injury (acute liver failure, ALF, septic shock, tissue traumatism),
serum level of VDBP is significantly reduced. It is unknown at this time if VDBP is
pathogenetically involved in the diseases or if it is just a consequence [25,28].

VDBP in acute liver failure (ALF). Most studies describe a decrease of VDBP in
patients with acute or CLD and its normalization after LT. However, the level of VDBP
drops rapidly in ALF, as the liver synthesizes it, but also due to a rapid clearance of this
protein in acute lesions. The decrease is not very specific, as it is found in many other acute
liver injuries (vascular rupture, hemorrhage, viral and toxic hepatitis) or a variety of other
acute illnesses, including cardiovascular, autoimmune, infectious diseases, organ failures
or burns, and is considered a marker of poor prognostic [26–29,136]. In ALF, decreased
level of VDBP will affect the actin-cleaning system, leading to a worse prognosis. Several
studies confirm the involvement and usefulness as a marker in predicting potentially ALF
fatal cases, with a low serum level of <100 mg/L of VDBP being inversely correlated with
survival. Also, the serum level of VDBP correlates significantly with other parameters
already used as prognostic markers (coagulation factors V, VII, INR or albumin) or with
specific scores used to determine the need for transplantation in adults or children (King’s
College, PELD/MELD score) [21,25,28–32,136,137]. The level of VDBP in ALF patients also
varied with age and etiology. In a recent study performed on children, serum VDBP was
significantly lower in neonates (0–28 days) and infants (1–12 months) compared with older
children (1–14 years) and teenagers (14–18 years). In neonates and infants, ALF was caused
by inborn errors of metabolism and infections, while autoimmunity and toxic hepatitis
predominated at older ages. This difference correlates with the severity of hepatic necrosis,
which is much more extensive in diseases in younger children. In adults, the level of VDBP
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also correlates with the etiology of ALF. Many studies report values significantly higher in
patients with acetaminophen-induced ALF than in other causes of ALF [21,28–32,136,137].

VDBP in CLD. The level of VDBP is less decreased or is normal in CLD than in ALF,
without consequences for vitamin D transport or bone metabolism [25,137]. This decreased
level can be associated with other protein abnormalities, such as reduced caeruloplasmin
or transferrin, regardless of etiology. The level of VDBP can be normal or even increased,
especially in hemochromatosis or chronic active hepatitis. In patients with pre-existing liver
injuries, a worsening of the damages is described with a new injuria caused by an increase
of the pro-coagulating status because of an extra release of actin. Data about vitamin D
serum levels and its usefulness as a marker in CLD are limited, with few studies reporting
so far [25,32,137–139].

VDBP in chronic viral hepatitis. Most studies have been performed mainly in adults
with chronic HBV infection, where vitamin D and VDBP have been shown to have implica-
tions for the evolution of the disease. Both low 25(OH)D and VDBP levels promote viral
replication and fibrosis progression [139]. In children with chronic HBV infection, the asso-
ciation between vitamin D level, VDBP, HBV replication, or hepatic fibrosis was described
in a large study by Huang. Serum levels of VDBP and 25(OH)D were decreased in children
with HBV infection and progressive liver disease compared with healthy children. Also, in
children with chronic HBV infection during the immune clearance phase (HBeAg positive,
high serum of HBV-DNA, and increased transaminases) or those infected with genotype
C, vitamin D and VDBP were decreased compared to children with inactive carrier phase
(HBeAg positive, low serum HBV-DNA, and normal transaminases) or those infected
with genotype B. This decrease in VDBP is most likely secondary to lower production in
damaged hepatic cells, greater consumption of scavenging actin, and the viral replication
that stimulates monocyte and neutrophil chemotaxis [139–141].

Regarding liver fibrosis and cirrhosis, the level of VDBP is correlated with the degree
of hepatic fibrosis. Children with chronic HBV infection and stage 1 or 2 of fibrosis had
higher VDBP levels, while the level decreased in patients with stage 3 fibrosis. Also, in
adults with compensated liver cirrhosis after HBV infection, the serum level of VDBP
was significantly lower than in healthy controls, and a direct correlation between plasma
VDBP and fibrosis degree and Child-Pugh score has been described [136,137]. The exact
mechanism of this correlation is not yet known, and it is only assumed that in the early
stages of fibrosis, increased VDBP production is associated with the process of hepatocyte
regeneration [136,137]. In another study, Thanapirom et al. evaluated the role of VDBP
genetic polymorphism in response to treatment with Peg-IFN in patients with HBeAg-
negative chronic HBV infection. Eight genotypes of vitamin D cascade genes, including
CYP27B1 (rs10877012), DHCR7 (rs12785878), CYP2R1 (rs2060793, rs12794714), and GC
(rs4588, rs7041, rs222020, rs2282679) were analyzed. The GC rs222020 TT genotype has
been identified in patients with HBsAg clearance and ALT normalization after treatment
with Peg-IFN [142].

In chronic HCV infection, even though vitamin D deficiency is rare, VDBP poly-
morphisms (especially rs7041 and rs4588) are frequently associated with lower levels of
25(OH)D and rapid fibrosis progression [143]. VDBP possesses many functions implicated
in the modulation of the inflammatory response; therefore, its polymorphism determines
the variability of the response to IFN therapy. It is involved in nonspecific immune re-
sponse, protects against disseminated intravascular coagulation, transports lipids such
as arachidonic acid and endotoxin, and stimulates the chemotactic activity of the C5a.
This variability could be significant in identifying patients without response to antiviral
therapy [143].

VDBP in autoimmune liver diseases. Genetic predisposition and environmental
factors, including vitamin D metabolism, are the main factors responsible for triggering
the immune process in autoimmune liver disease. In AIH, PBC or primary sclerosing
cholangitis, vitamin D deficiency or VDR from the dendritic cells, and macrophages, seem
to be among the important factors in triggering the immune process, the role of VDBP being
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less studied. In a recent study analyzing the VDBP level in children with ALF of various
etiologies, we found that the level of VDBP in AIH was within the reference limits [25,28].

VDBP and NAFLD. It is well known that vitamin D deficiency predisposes to NAFLD
or metabolic syndrome, but there are few data on the VDBP role in NAFLD. Specific
variants of VDBP (mutation of VDBP-rs7041-G) have been shown to decrease the risk of
NAFLD [63].

VDBP in cirrhosis. In patients with cirrhosis and liver synthesis deficits, the total
VDBP starts to fall slightly. Interestingly, the reduction does not correlate with the disease’s
severity and acuity. This is because the process of necrosis is not so intense; systemic
inflammatory response syndrome is reduced compared to acute injuries and possibly due
to increased levels of estrogen, which occurs in cirrhotic patients [25].

VDBP in liver transplantation. In patients with LT, the level of VDBP was initially
low, associated with the cirrhosis degree, and then returned to normal levels after the
transplant. During the first days after LT, the level of VDBP may decrease (in patients with
normal values before transplantation) due to cold ischemia or surgical stress [144]. It seems
that the level starts to balance after day 3 and reaches the normal value after more than
10 days. Regarding the immunosuppression used after LT, it does not influence the level of
VDBP; on the contrary, corticosteroids increase the level of this protein. Some authors also
described a high risk of acute cellular rejection and CMV infection in LT patients with a
specific VDBP genotype [144].

5. Vitamin D Supplementation and Chronic Liver Diseases

The data reported until now suggest that vitamin D supplementation may be a bene-
ficial potential therapeutic option in chronic liver diseases. Even though the association
between vitamin D deficiency and the presence of MAFLD was proved, the clinical trials
investigating vitamin D supplementation in these patients revealed controversial find-
ings [67]. Some data suggest that the efficacy of vitamin D supplementation in MAFLD
is linked to its role in glucose tolerance and insulin resistance. The best effect was young
patients, with mild liver disease, without established diabetes and only in association with
antifibrotic agents [67,145].

Also, one reason for the difficulty in proving the efficacy of vitamin D supplemen-
tation through nutrition in real life could be that exogenous sources are dependent on
the individual dietary habits, use of vitamin D food fortification or different vitamin D
supplements, but also due to other reasons linked to sun exposure. The advice for vitamin
D supplementation in vitamin D deficiency situations presented in nutritional guidelines is
meant for the general population [38]. For the patients with CLD, with a particular recom-
mendation for those with cholestasis, cirrhosis, and steatosis, EASL suggests evaluating
the 25(OH)D level and supplementing with oral vitamin D for those with levels under
20 ng/mL until reaching a serum level above the 30 ng/mL [146]. In cirrhotic patients
with bone disease, depending on the severity of osteopenia, EASL Guidelines recommend
a balanced diet and the supplementation with calcium (1000–1500 mg/d) and 25(OH)D
(400–800 IU/d or 260 µg every 2 weeks) associated in severe cases with biphosphonates or
new agents [146].

One crucial issue that should be considered when using vitamin D-fortified food
is represented by the strategies to provide stability, bioaccessibility, and functionality of
vitamin D. As mentioned before, significant individual variability of the response to vitamin
D supplementation was reported. Moreover, the bioaccessibility of vitamin D depends on
the food matrix. An essential role is played by lipids, proteins, fibers, and antioxidants.
Future studies should focus on finding the best source for vitamin D administration [147].

6. Conclusions and Future Perspectives

As intense research during the last decades revealed the possible role of vitamin D in
liver diseases, a deeper understanding of the vitamin D, VDR, and VDBP involvement in
liver inflammation and fibrogenesis could represent the basis for the development of new
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strategies for diagnosis, prognosis, and treatment. Further studies with a larger population,
in children and adults, with specific inclusion criteria, are needed to prove the benefit of
vitamin D supplementation in patients with liver diseases.
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