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Abstract: The onsite repulsion, spin–orbit coupling and polarizability of elements and their ions
play important roles in controlling the physical properties of molecules and condensed materials.
In celebration of the 150th birthday of the periodic table this year, we briefly review how these
parameters affect the physical properties and are interrelated.
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1. Introduction

Mendeleev’s periodic table of elements, which was formulated in 1869 based on atomic weights,
paved the way for its reformulation in terms of atomic numbers [1]. Subsequently, the occurrence of
the periods and groups in the periodic table were explained in the early 1920s by Bohr and Pauli, who
formulated the Aufbau (build-up) principle based on the shell structure of atoms discovered from
the newly developed quantum theory of atoms [1]. This principle predicts the ground state electron
configurations of atoms when supplemented by Hund’s rule (i.e., if degenerate levels are available,
electrons will occupy different orbitals singly before any are occupied doubly) and the Pauli principle
(i.e., electrons occupying the same orbital must have different spins) [1]. In the last 150 years, the
trends in the properties of the elements (electronegativity, ionization potential, electron affinity, atomic
size, spin–orbit coupling (SOC), polarizability, etc.) across each period and within each group of the
periodic table have been indispensable in understanding a vast number of physical and chemical
properties of discrete molecules and condensed materials.

Although all elements of a given group exhibit similar behaviors in their chemical bonding,
they show subtle differences in their properties, primarily because their atomic sizes increase as
one moves down a period. As the size of an atom increases, the valence orbitals increase their
radial extensions, thereby increasing their diffuseness. The latter reduces not only the degree of
electron–electron repulsion among its valence electrons (i.e., the onsite repulsion U), but also makes
the valence electrons more polarizable to the oscillating electric field of a light. An element of a given
group can adopt the behaviors of its neighboring groups when it becomes a cation by losing electrons
or an anion by gaining electrons. An important consequence of these ionizations is that an element
becomes smaller in size when it becomes a cation, but larger when it becomes an anion. Due to this
change in size, the onsite repulsion, SOC and polarizability of the ion become different from those of
its neutral analogue.
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In celebration of the 150th birthday of the periodic table this year, we briefly review how the
physical properties of molecules and condensed materials are controlled by the onsite repulsion,
SOC and polarizability of elements and their ions. Our work is organized as follows: we show that,
in most cases, the consideration of onsite repulsion can correct the deficiency of the Aufbau principle
for molecules in Section 2, and for condensed materials in Section 3. Important roles of SOC and
polarizability in controlling physical properties are discussed in Sections 4 and 5, respectively. We
examine how the onsite repulsions, SOC and polarizabilities of transition metal cations are interrelated
in Section 6, and summarize our concluding remarks in Section 7.

2. Inadequacy of the Aufbau Principle

To accurately describe the ground-state of a discrete molecule, it is necessary to carry out first
principles calculations using a determinant wavefunction, which is antisymmetric as required by
quantum mechanics. A determinant wavefunction is constructed using molecular orbitals (MOs)
expressed as a linear combination of atomic orbitals (AOs). The energies and AO compositions of the
occupied MOs are repeatedly refined from an initial guess until an additional cycle of calculations
does not lower the total energy any further. The inspection of the occupied MOs resulting from such
self-consistent-field (SCF) calculations enables one to find the electron configuration describing the
ground state. The total energy of a system depends on the energies of the occupied MOs and also
on the Coulomb and exchange repulsions between the occupied MOs. To be quantitatively more
accurate, one may go beyond the level of one-determinant wavefunction description by carrying out,
for example, extensive configuration interaction (CI) calculations.

Though quantitatively accurate, such calculations based on first principles do not provide a
conceptual tool with which to speculate the possible outcomes of SCF calculations and/or experiments
designed to test the consequences of possible ground-state electron configurations. For such qualitative
discussions, it is convenient to employ the MO levels generated by the one-electron theory, because
the relative energies of various electron configurations are determined solely by the relative energies
of MOs. Obviously, being qualitative, the one-electron approach can lead to erroneous conclusions.
In cases when incorrect predictions result from the Aufbau principle coupled with the Hund’s rule and
the Pauli principle, hereafter referred to as the Aufbau principle, one can correct them in most cases by
introducing the concept of onsite repulsion.

2.1. Low-Spin vs. High-Spin States

Exchange repulsions between the MOs occupied with identical spins arise from the requirement
that a wavefunction be antisymmetric, affecting the predictions of the Aufbau principle. We illustrate
this point by considering a dimer made up of two identical atoms, each with one AO and one electron
(Figure 1a). The interaction between the two AOs, χa and χb, located at sites a and b, respectively, gives
rise to the bonding molecular orbital (MO) ψ1 and the antibonding MO ψ2 (Figure 1b), separated by
an energy ∆e. If t is the interaction energy (i.e., the hopping integral) between the orbitals χa and χb,
then ∆e ≈ 2|t|. As long as ∆e is nonzero, the Aufbau principle predicts that the ground state is the
low-spin (LS) state in which the bonding MO ψ1 is doubly occupied (Figure 1c), and that the high-spin
(HS) state in which the bonding and antibonding MOs are each singly occupied with identical spin
(Figure 1d) is the excited state. In terms of the orbital energy, the LS state is more stable than the HS
state by ∆e. However, the two states differ in their electron–electron repulsions. The LS state has the
Coulomb repulsion J11, while the HS state has the Coulomb repulsion J12 and the exchange repulsion
–K12. In terms of the onsite repulsion U, namely, the electron–electron repulsion arising from the
double-occupancy of one AO (Figure 1e), it is found that J11 ≈ U/2 and J12 – K12 ≈ 0. In terms of onsite
repulsion, therefore, the LS state is less stable than the HS state by U/2. Consequently, the LS state is
more stable than the HS state if ∆e − U/2 > 0, but the opposite is the case if ∆e − U/2 < 0 [2]. In short,
the shortcoming of the Aufbau principle is corrected by introducing the concept of onsite repulsion.
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Figure 1. (a) A dimer made up of two identical atoms. The AOs at the sites a and b are labeled as χa 
and χb, respectively. (b) The bonding and antibonding MOs, ψ1 and ψ2, respectively, separated by 
energy ∆e. (c) The low-spin state of a dimer. (d) The high-spin state of a dimer. (e) The double 
occupation of one AO leading to the on-site repulsion U. 
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Let us revisit the relative stabilities of the low-spin and high-spin states of a dimer, discussed 
above. The low-spin state ΨG with the bonding level ψ1 doubly occupied represents a singlet state 
and indicates that the dimer has a single bond. The high-spin state ΨT, in which the bonding level ψ1 
and the antibonding level ψ2 are each singly occupied with identical spin, represents a triplet state 
and indicates that the dimer has neither bonding nor antibonding, in other words, the two electrons 
are effectively localized at each atomic center of the dimer. The excited configuration ΨE with the 
antibonding level ψ2 doubly occupied also represents a singlet state (Figure 2). Under the 
Hamiltonian Ĥ  that generates ΨG, the configuration ΨE interacts with ΨG, namely, the CI matrix 
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no CI. This interaction leads to a mixing between ΨG and ΨE, leading to a singlet state lower in energy 
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is more stable than the singlet state, which are discussed below. 

Figure 1. (a) A dimer made up of two identical atoms. The AOs at the sites a and b are labeled as
χa and χb, respectively. (b) The bonding and antibonding MOs, ψ1 and ψ2, respectively, separated
by energy ∆e. (c) The low-spin state of a dimer. (d) The high-spin state of a dimer. (e) The double
occupation of one AO leading to the on-site repulsion U.

2.2. Extension of Hund’s Rule

Let us revisit the relative stabilities of the low-spin and high-spin states of a dimer, discussed
above. The low-spin state ΨG with the bonding level ψ1 doubly occupied represents a singlet state
and indicates that the dimer has a single bond. The high-spin state ΨT, in which the bonding level
ψ1 and the antibonding level ψ2 are each singly occupied with identical spin, represents a triplet
state and indicates that the dimer has neither bonding nor antibonding, in other words, the two
electrons are effectively localized at each atomic center of the dimer. The excited configuration ΨE

with the antibonding level ψ2 doubly occupied also represents a singlet state (Figure 2). Under the
Hamiltonian Ĥ that generates ΨG, the configuration ΨE interacts with ΨG, namely, the CI matrix
element 〈ΨG|Ĥ|ΨE〉 = K12 is nonzero, if the Hamiltonian Ĥ includes the electron–electron repulsion
term. In the one-electron theory in which Ĥ neglects electron–electron repulsion, there is no CI. This
interaction leads to a mixing between ΨG and ΨE, leading to a singlet state lower in energy than ΨG,
that is, the true ground singlet state is represented by a linear combination of ΨG and ΨE. When ∆e
is small, the weights of ΨG and ΨE are comparable in the ground singlet state. If the singlet state is
represented by a linear combination of ΨG and ΨE, it is found [3] that the energy difference between
the singlet and the triplet states, ∆E = ES – ET is expressed as

∆E = 2Kab −
(∆e)2

U
(1)

where Kab is the exchange repulsion between the orbitals χa and χb (Figure 1a). Since Kab > 0, the triplet
state is more stable than the singlet state (i.e., ∆E > 0) if ∆e = 0, i.e., when the two states ψ1 and ψ2 are
degenerate. This explains the Hund’s rule. Equation (1) shows that the triplet state can be more stable
than the singlet state even if the two states are nondegenerate (i.e., ∆e , 0) as long as 2Kab is greater
than (∆e)2/U. Equation (1) was derived for a dimer in which the AO’s χa and χb located at different
sites interact weakly (Figure 1a), i.e., when the overlap integral Sab = 〈χa|χb〉 between the AOs χa and
χb is very small. Nevertheless, Equation (1) is valid even if χa and χb refer to MOs of an identical
molecule with energy difference ∆e. On the basis of Equation (1), we examine two cases in which the
triplet state is more stable than the singlet state, which are discussed below.
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Figure 2. Three configurations critical for determining the energy difference between the singlet and 
triplet states of a dimer. (a,b) The two singlet-state configurations. (c) The triplet-state configuration. 

The HOMO of triplet oxygen O2 consists of two degenerate pi-antibonding MOs, πx* and πy* 
(Figure 3a), and there are two electrons to occupy them. The triplet state is represented by the 
configuration (πx*)1(πy*)1, and the singlet state by the linear combination of the two configurations 
(πx*)2 and (πy*)2 (Figure 3b). ∆e = 0 between πx* and πy* because they are degenerate, so Hund’s rule 
predicts that the configuration (πx*)1(πy*)1 is the ground state. To verify this prediction using Equation 
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Now consider the singlet and triplet states of carbene CH2. The two MOs of CH2 that determine 
its triplet and singlet states are essentially the sp2-type orbital σ and the p orbital depicted in Figure 
4a. The triplet state is represented by the configuration (σ)1(p)1, and the singlet state by the 
configurations (σ)2 (Figure 4b). The energy difference ∆e between σ and p is nonzero, so the Aufbau 
principle predicts that the singlet state is the ground state in disagreement with the experiment. Since 
the σ level is essentially a sp2-type hybrid orbital, the overlap density between σ and p becomes 
substantial (Figure 4c), and so is the associated exchange repulsion. This accounts for why the triplet 
state is more stable than the singlet state in carbene CH2 (by 9 kcal/mol) [5] despite the fact that ∆e is 
nonzero.  

Figure 2. Three configurations critical for determining the energy difference between the singlet and
triplet states of a dimer. (a,b) The two singlet-state configurations. (c) The triplet-state configuration.

The HOMO of triplet oxygen O2 consists of two degenerate pi-antibonding MOs, πx* and πy*
(Figure 3a), and there are two electrons to occupy them. The triplet state is represented by the
configuration (πx*)1(πy*)1, and the singlet state by the linear combination of the two configurations
(πx*)2 and (πy*)2 (Figure 3b). ∆e = 0 between πx* and πy* because they are degenerate, so Hund’s
rule predicts that the configuration (πx*)1(πy*)1 is the ground state. To verify this prediction using
Equation (1), we note that the exchange repulsion between πx* and πy* (corresponding to χa and χb

of Equation (1), respectively) is nonzero. In general, the exchange repulsion Kab between orbitals χa

and χb arises from the overlap density ρab = χaχb, namely, Kab is nonzero if ρab does not vanish. The
overlap density πx*πy* between πx* and πy* involves, at each oxygen atom, the overlap density pxpy

between the px and py AOs, the constituents of πx* and πy*, respectively (Figure 3a). As depicted in
Figure 3c, the overlap density pxpy has nonzero regions, so the exchange repulsion between πx* and
πy* is nonzero. Thus, the triplet state is more stable than the singlet state in O2 (by 22.6 kcal/mol) [4].
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Figure 3. (a) Doubly degenerate HOMO of O2. (b) Three electron configurations describing the triplet
and singlet states of O2. (c) The overlap density, pxpy, resulting from the px and py orbitals at one
oxygen site of O2. The positive and negative lobes of each p orbital are represented by ellipses of
different colors.

Now consider the singlet and triplet states of carbene CH2. The two MOs of CH2 that determine
its triplet and singlet states are essentially the sp2-type orbital σ and the p orbital depicted in Figure 4a.
The triplet state is represented by the configuration (σ)1(p)1, and the singlet state by the configurations
(σ)2 (Figure 4b). The energy difference ∆e between σ and p is nonzero, so the Aufbau principle
predicts that the singlet state is the ground state in disagreement with the experiment. Since the σ
level is essentially a sp2-type hybrid orbital, the overlap density between σ and p becomes substantial
(Figure 4c), and so is the associated exchange repulsion. This accounts for why the triplet state is more
stable than the singlet state in carbene CH2 (by 9 kcal/mol) [5] despite the fact that ∆e is nonzero.
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In short, Equation (1) extends Hund’s rule to cases involving nondegenerate levels. When ∆e is
small, one needs to consider the possibility that the predictions of the Aufbau principle can be incorrect.

2.3. Limits of the One-Electron Picture

Let us consider a linear molecule FeL2 containing a high-spin Fe2+ (d6, S = 2) ion, where the
ligand L is bulky, for example, L = C[Si(CH3)3]3. With the local z-axis of FeL2 taken along the axis of its
rotational symmetry, i.e., along the L-Fe-L direction (Figure 5a), the five d-states, xy, x2-y2, xz, yz and
3z2-r2, of FeL2 are grouped into the 1a, 1e and 2e sets [6,7],

1a = 3z2
− r2 = |2, 0〉

1e = (xy, x2-y2) = (|2, 2〉, |2, -2〉)
2e = (xz, yz) = (|2, 1〉, |2, -1〉)

(2)

which are based on the magnetic quantum numbers lz of the spherical harmonics |l, lz〉 (l = 2, lz = ±2,
±1, 0) describing the angular properties of the d-orbitals. For simplicity, the term “d-states” are used to
indicate the d-block level of FeL2 in which the d-orbitals of Fe are combined out-of-phase with s/p
orbitals of the ligands L. The crystal-field theory (CFT) predicts that the d-states of a transition-metal
cation at a linear coordination site are split as 1e < 2e < 1a (Figure 5b), so that the ground-state
electron configuration of FeL2 containing a Fe2+ (d6, S = 2) ion is given by (1e)3(2e)2(1a)1 (Figure 6a).
Consequently, the degenerate level 1e becomes unevenly occupied. A magnetic system with such
an electronic configuration is predicted to have a nonzero magnetic moment only in one direction,
i.e., along the z-axis. Such a magnetic system is said to be uniaxial [8]. As expected, FeL2 is found
to be uniaxial [9]. Note that a system with an unevenly occupied degenerate level is susceptible
to a Jahn–Teller distortion, which lowers its symmetry by lifting the degeneracy that led to the
unevenly occupied degenerate level. Thus, uniaxial magnetism is observed only when the associated
Jahn–Teller distortion is prevented. In FeL2, the Jahn–Teller instability is blocked by the bulky ligand
L = C[Si(CH3)3]3 surrounding the Fe2+ ion [9].
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Figure 5. (a) Linear ML2 molecule, where M is a transition metal, and L a main group ligand. (b) The
d-state split pattern of 1e < 2e < 1a, predicted by the crystal-field theory (CFT). (c) The d-state split
pattern of 1a < 1e < 2e assumed to rationalize the uniaxial magnetism of (FeL2)− and CoL2.
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Linear (FeL2)− units containing a Fe+ (d7, S = 3/2) ion, found in [K(crypt-222)](FeL2), exhibit
uniaxial magnetism [10]. Linear CoL2, where L = C(SiMe2ONaPh)3, contains a Co2+ (d7, S = 3/2)
ion. The latter is isoelectronic with Fe+ and exhibits uniaxial magnetism [11]. In terms of the d-state
split pattern of 1e < 2e < 1a explaining the uniaxial magnetism of FeL2, the ground state electron
configuration of (FeL2)− and CoL2 would be (1e)4(2e)2(1a)1 (Figure 6b). The latter fails to explain
the uniaxial magnetism of (FeL2)− and CoL2 because it has no unevenly occupied degenerate level.
To explain the uniaxial magnetism of linear (FeL2)− and linear CoL2 using the Aufbau principle,
it was necessary to assume that the d-state split pattern is 1a < 1e < 2e (Figure 5c) [10,11] because the
resulting configuration (1a)2(1e)3(2e)2 has an unevenly occupied degenerate level (Figure 6c). However,
this d-state split pattern cannot explain the uniaxial magnetism of linear FeL2, because the resulting
configuration (1a)2(1e)2(2e)2 for the Fe2+ (d6) ion does not have an unevenly occupied degenerate
level (Figure 6d). Thus, we arrive at an impasse of the one-electron picture, as the d-state split pattern
needed to explain the uniaxial magnetism of a high-spin d6 ion (d7 ion) does not explain that of the
high-spin d7 ion (d6 ion) [6,7]. In terms of the CFT, the d-state split pattern of any transition metal
cation at a linear coordination site is given by 1e < 2e < 1a. Thus, the Aufbau principle combined with
the CFT fails to explain that of the high-spin d7 ion of linear (FeL2)− and linear CoL2.

As already mentioned, the total energies of the various electron configurations of linear FeL2,
(FeL2)− or CoL2 are determined by the occupation of their split d-states, as well as by the Coulomb and
exchange repulsions between the occupied d-states. Figure 7 depicts several electron configurations of
FeL2, and Figure 8 those of (FeL2)− or CoL2, where each electron configuration is classified by the value
of L =

∑
i Lz(i), where lz(i) refers to the lz value of the occupied d-state i. The relative total energies

of these configurations were examined in terms of first principles density functional theory (DFT)
including extensive configuration interaction (CI) calculations [6]. These CI calculations for FeL2 show
that the three states (Figure 7) increase their energies in the order, L = 2 < L = 1 < L = 0, which is exactly
what the Aufbau principle predicts based on the d-state split pattern, 1e < 2e < 1a. The CI calculations
for (FeL2)− and CoL2 show that the five states (Figure 8) increase their energies in the order:Molecules 2020, 25, x 7 of 23 
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For (FeL2)−: L = 2 < L = 1 < L = 3 < L = 0 (A) < L = 0 (B)
For CoL2: L = 2 < L = 3 < L = 0 (A) < L = 0 (B) < L = 1.
With the L = 2 state as the ground state, the uniaxial magnetism of both (FeL2)− and CoL2

is explained by the CI calculations. In contrast to this conclusion based on highly extensive CI
calculations [6], a computational study based on CASSCF calculations [12] reported that the ground
state of (CoL2)0 is the L = 3 state, but details of the CSASCF calculations were not reported. As already
pointed out, the trends in the relative energies obtained by the CI calculations are not reproduced by
the Aufbau principle using the d-state split pattern, 1e < 2e < 1a. If the Aufbau principle were to be
combined with the d-state split pattern of 1a < 1e < 2e, the following relative stabilities can be deduced
from Figure 9:Molecules 2020, 25, x 8 of 23 
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L = 2 < L = 1 < L = 3, and L = 2 < L = 0 (A) < L = 0 (B).
In short, only the ground state (i.e., the L = 2 state) correctly predicted by the Aufbau principle

when combined with the d-state split pattern of 1a < 1e < 2e. As discussed above, the correct ground
state for a linear ML2 system containing a high-spin d7 ion is not correctly predicted by the Aufbau
principle. It is important to be aware that, though useful as a conceptual framework for discussion,
the Aufbau principle can lead to such failures.

3. Effect of Onsite Repulsion on the relative Stabilities of Metallic and Magnetic Insulating States

3.1. One-Electron Approximation

The electronic structure of a molecule is described by discrete energy levels, and that of an
extended solid by energy bands. For simplicity, consider a chain made up of identical atoms with one
electron and one orbital per site (Figure 10a). The energy levels allowed for this chain span from the
most bonding to the most antibonding levels (Figure 10b) leading to a band of width W ≈ 4|t|, where t
is the hopping integral between the nearest-neighbor sites. With one electron per site, each of the lower
half band levels can be doubly occupied so that there is no energy gap between the highest-occupied
and the lowest-unoccupied band levels. Thus, the resulting half-occupied band represents a metallic
state. In Figure 10b, each allowed level is regarded as accommodating two electrons of opposite spins.
However, it is more convenient to think that each allowed level consists of up-spin and down-spin
sublevels, which are degenerate in the non-spin-polarized description of electronic structures. In the
latter description, the partially occupied band depicted in Figure 10b is identical to that in Figure 11a,
and there is no net magnetic moment at each atomic site. In the spin-polarized description of electronic
structures, the up-spin and down-spin sublevels are allowed to differ in their spatial orbitals, and
hence in their energies. This will be discussed further in the next section.Molecules 2020, 25, x 9 of 23 
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Figure 11. The description of a band in terms of up-spin and down-spin subbands: (a) When the
up-spin and down-spin bands are not spin-polarized, leading to a nonmagnetic metallic state. (b) When
the up-spin and down-spin bands are partially spin-polarized, leading to a magnetic metallic state.
(c) When the up-spin and down-spin bands are completely spin-polarized, leading to a magnetic
insulating state.
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3.2. Magnetic Insulating State Induced by Onsite Repulsion

When the up-spin and down-spin states of discrete molecules or extended solids become
spin-polarized, more up-spin electrons occur than down-spin electrons (by convention). One outcome
of the spin polarization is that both up-spin and down-spin bands can become partially occupied,
as depicted in Figure 11b. This represents a metallic state in which each atomic site has nonzero
magnetic moment, namely, a magnetic metallic state. When the spin polarization is strong, the
up-spin and down-spin bands are completely separated so that there is an energy gap between the
highest-occupied and lowest-unoccupied energy levels (Figure 11c), and the resulting state becomes a
magnetic insulating state. In the metallic state (Figure 11a), each occupied state has two electrons so
that the metallic state has onsite repulsion. In the magnetic insulating state (Figure 11c), all occupied
states each have one electron of identical spin so that there is no onsite repulsion. Thus, when the
width of the band W is greater than the onsite repulsion (i.e., when W > U), the metallic state becomes
more stable than the magnetic insulating state, but the opposite is the case if W < U [2,13]. Magnetic
insulators arising from the spin polarization induced by onsite repulsion are known as Mott insulators.
According to the Aufbau principle, the nonmagnetic metallic state would be more stable than either
the magnetic metallic state or the magnetic insulating state. The spin polarization leading to the latter
two states takes place to reduce the extent of electron repulsion between occupied states.

3.3. Need to Consider beyond Onsite Repulsion

In a given group, the 3d-orbital is more contracted than the 4d orbital, which is in turn more
contracted than the 5d orbital. Thus, the onsite repulsion associated with the d-orbitals is strongest
for the 3d transition metal element. This is the reason why a greater number of magnetic insulators
are found among the compounds of 3d transition-metal elements than among those of 4d and 5d
transition-metal elements. Another factor affecting the magnitude of U of a given transition metal atom
M is the charge of the atom. The d-orbitals of M are more contracted in the cation than in the neutral
state, so the onsite repulsion U should be greater for the cation and should increase with an increase in
the positive charge on the cation. Thus, one might consider it to be unlikely that a compound of a 5d
transition-metal cation with a partially occupied band becomes a magnetic insulator.

However, this reasoning is not necessarily correct. For example, consider Ba2NaOsO6, consisting
of OsO6 octahedra containing Os7+ (d1, S = 1/2) cations. The d-states of each Os7+ (d1, S = 1/2)
cation are split into the t2g and eg states (Figure 12). With the p-orbitals of the surrounding ligands,
the metal d-orbital makes pi-antibonding in the t2g states, and sigma-antibonding in the eg states
(Figure 13). In this double-perovskite Ba2NaOsO6 [14], each OsO6 octahedron is connected to its
neighboring six OsO6 octahedra by the Os-O···Na+

···O-Os bridges in three orthogonal directions. Since
the O···Na+

···O bridges have a long the O···O contact distance (Figure 14), the t2g-states of each OsO6

octahedron interact very weakly with those of its adjacent OsO6 octahedra. To a first approximation,
therefore, the xz, yz and xy states constituting the t2g set of the OsO6 octahedra form three very narrow
bands. One would expect a small onsite U for the diffuse 5d orbitals, but the U for Os7+ may not be
negligible because its 5d orbitals might be contracted by the high oxidation state. Since Ba2NaOsO6

is a magnetic insulator, it is most likely that the W < U condition is fulfilled for Ba2NaOsO6. This is
the condition leading to Mott insulators [13]. However, this condition is not sufficient to provide a
magnetic insulating state for Ba2NaOsO6 because it has one electron to occupy the three degenerate
up-spin bands (Figure 15). This leads to a magnetic metallic state for Ba2NaOsO6 [14], in disagreement
with the experimental observation [15]. With any value of U appropriate for Os, it is not possible to
introduce a bandgap at the Fermi level. To correct his failure, it is necessary to take into consideration
the effects of both SOC and onsite repulsion at the Os7+ site [14], as will be discussed in the next section.
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4. Effect of Spin-Orbit Coupling

4.1. Energy of SOC

In classical mechanics, the energy of interaction between the spin and orbital moments (
→

S and
→

L,

respectively) of an electron in a given atom is written as ξ(r)
→

S ·
→

L, where the constant ξ(r) decreases
with the radius r of the electron moving around the nucleus, but increases with the nuclear charge of
the atom because the electron density becomes more contracted, hence increasing the relativistic effect.
Given the distribution of an electron, the SOC constant 〈ξ〉 of an atom is obtained by integrating ξ(r)
over the radial wavefunction R(r) of the atom. Thus, the SOC in an atom of many unpaired electrons

with total spin and orbital moments,
→

S and
→

L, respectively, leads to the energy [16],

λ
→

S ·
→

L (3)

where λ = 〈ξ〉/2S. For a given oxidation state, the 〈ξ〉 value of an element increases with increasing
atomic number while, for a given element, 〈ξ〉 increases with increasing oxidation state. This is so
because both factors lead to the contraction of electron density, hence enhancing the relativistic effect.
The SOC constant λ is positive when the electron shell containing unpaired electrons is less than

half-filled as in V4+ (d1, S = 1/2). When λ > 0, the lowest-energy state is obtained when
→

S and
→

L are

antiparallel with the total moment
→

J =
→

L −
→

S . The constant λ is negative if the shell is more than half

occupied as in Cu2+ (d9, S = 1/2). When λ < 0, the lowest-energy state results when
→

S and
→

L are parallel

with the total moment
→

J =
→

L +
→

S . If the shell is half occupied as in high-spin Mn2+ (d5, S = 5/2), SOC

vanishes because
→

L = 0 for such an ion. What matters in this discussion is only the relative orientations

between
→

S and
→

L. Often, it is more informative to fix the coordinate system describing the orbital

angular moment
→

L and then ask how the SOC energy λ
→

S ·
→

L depends on the orientation of the spin

moment
→

S with respect to the coordinate system chosen for
→

L. The importance of the latter approach
lies in the fact that a transition-metal cation M typically forms an MLn (typically, n = 2 − 6) complex

with the surrounding ligands L. Using the coordinate system (x, y, z) for
→

L is equivalent to describing
the structure of MLn using the same coordinate. By convention, the rotational axis of MLn is taken as
the z-axis. This will be discussed in the next section.

4.2. Dependence of the SOC Energy on the Spin Orientation

In quantum mechanical description, the SOC energy λ
→

S ·
→

L is replaced with λŜ · L̂, where Ŝ and L̂
are the spin and orbital momentum operators, respectively. In analyzing the SOC energy λŜ · L̂, it is
convenient to use two independent coordinate systems (Figure 16); one coordinate system (x, y, z) for
L̂, and another coordinate system (x′, y′, z′) for Ŝ. Then, the spin orientation is given by the z′-axis,
which is defined by the polar angles (θ, ϕ) with respect to the (x, y, z) coordinate system. An important
consequence of using the two independent coordinates is that the SOC energy λŜ · L̂ is be rewritten
as [16],

λŜ · L̂ = Ĥ
0
SOC + Ĥ

′

SOC (4)

where the term Ĥ
0
SOC allows the SOC interaction only between states of identical spins, and the term

Ĥ
′

SOC only between states of opposite spins. The dependence of Ĥ
0
SOC and Ĥ

′

SOC on the polar angle θ
are expressed as

Ĥ
0
SOC ∝ cos θ(αL̂z) + sin θ(βL̂+ + γL̂−) (5)

Ĥ
′

SOC ∝ sin θ(α′L̂z) + cos θ(β′L̂+ + γ′L̂−) (6)
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where L̂z is the z-component of L̂, while L̂+ and L̂− are the raising and lowering operators defined
in terms of the x- and y-components of L̂. The constants α, β and γ depend on the angle ϕ, and so
do the constants α′, β′ and γ′. When acted on the spherical harmonics |l, lz〉, these operators lead to
the results.

L̂z|l, lz〉 ∝ lz|l, lz〉
L̂±|l, lz〉 ∝ |l, lz ± 1〉

(7)
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That is, L̂z does not alter the orbital character of |l, lz〉, but L̂+ and L̂− do. L̂+ raises the lz value by
1, and L̂− lowers the lz value by 1.

In short, Equations (5) and (6) shows explicitly how the SOC energy λ
→

S ·
→

L is affected by the

orientation of the spin moment
→

S with respect to the coordinate system describing the structure of MLn.
The polar angle θ = 0◦ means that the spin moment is parallel to the local z-axis (||z), i.e., the rotational
axis of MLn, while the angle θ = 90◦ means that the spin orientation is perpendicular to the z-axis (⊥z).

4.3. Magnetic Insulating State Induced by Spin-Orbit Coupling and Onsite Repulsion

We now examine how the xz, yz and xy components of the up-spin t2g state of an OsO6 octahedron
are affected by the SOC. For this purpose, we note that the angular properties of the xz, yz and xy
states are given by

xz ∝ |2,−1〉 − |2,+1〉
yz ∝ |2,−1〉+ |2,+1〉
xy ∝ |2,−2〉 − |2,+2〉

(8)

and the SOC-induced interactions between them are governed by Ĥ
0
SOC (Equation (5a)). According to

Equation (7), the interaction matrix elements 〈i|Ĥ
0
SOC|J〉 (i, j = xz, yz, xy) are all nonzero. Namely,

the xz, yz and xy states interact under the action of SOC, so that the three t2g levels of an Os7+ ion are
split into three different states (Figure 17a) [14]. The latter leads to the three slightly overlapping bands
(Figure 17b) for Ba2NaOsO6, still predicting a magnetic metallic state. Once the onsite repulsion is
included, the magnetic insulating state is correctly predicted (Figure 17b) [14]. Thus, the consideration
of both onsite repulsion and SOC is necessary to explain the magnetic insulating state of Ba2NaOsO6 [14].
A number of such magnetic insulators have been discovered, which are best described as spin-orbit
Mott insulators [17] to distinguish them from Mott insulators.

4.4. Singlet to Triplet Transition

Let us revisit the two-orbital two-electron problem of Figure 1. If the interaction between the
atomic sites is strong, the energy difference ∆e between the MOs is large. Five electron configurations
are presented in Figure 18. When ∆e is large, the ground state is well represented by the singlet state
ΨG, and the triplet states ΨT and Ψ′T are higher in energy. The third member of the triplet state, Ψ′′ T,
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is expressed as a linear combination of Φ1 and Φ2. The alternative combination of Φ1 and Φ2 leads to
the excited singlet state ΨS. If the electron repulsions are properly taken into consideration, the

Ψ′′ T = Φ1+Φ2
√

2
ΨS = Φ1−Φ2

√
2

(9)

relative energies of the ΨG, ΨT and ΨS states are given as depicted in Figure 19a [18], which shows that
their energies increase in the order, ΨG < ΨT < ΨS.Molecules 2020, 25, x 14 of 23 
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nonzero only when the system is non-centrosymmetric. Nonlinear optical (NLO) crystals are the key 
materials for the laser science and technology due to their ability to double the frequency of an 
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Figure 19. (a) The relative energies of the ground state ΨG, the excited singlet state ΨS, and the excited
triplet state ΨT, where the MOs ψ1 and ψ2 used for constructing these configurations are obtained by
self-consistent-field (SCF) calculations for ΨG, so e1 and e2 are the effective orbital energies including
electron–electron repulsion. (b) The optical transitions associated with the ground and excited singlet
and the triplet excited states. In the absence of SOC, the absorption (S0→ S1) and fluorescence (S1 → S0)
are allowed, but the intersystem crossing (S1 → T1) and phosphorescence (T1 → S0) are not.

In general, the ΨG state represents the ground singlet state S0 while the ΨT and ΨS states represent
the first excited triplet and singlet states T1 and S1, respectively (Figure 19b). Since the singlet and
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triplet states differ in spin, the transition dipole moment is nonzero between the different singlet
states (i.e., S0 and S1) but vanishes between the singlet and triplet states (e.g., S0 and T1). Thus, in the
absence of SOC, the optical transition is allowed between the singlet states, but not between the singlet
and triplet states (Figure 19b). In the presence of SOC, the singlet and triplet states (e.g., S1 and T1,
respectively) interact weakly via the term Ĥ

′

SOC (Equation (6)). As a result, the true excited ‘singlet’
and excited ‘triplet’ states are not pure spin states but are mixed-spin states, namely,

S′1 ≈ S1 + δT1

T′1 ≈ T1 + δS1
(10)

where δ represents a small mixing coefficient. Consequently, the intersystem crossing occurs between
the S1 and T1 states, and the phosphorescence takes place between the T1 and S0 states (Figure 19b).

5. Polarizability

5.1. Induced Polarization, Polarizability and Second Harmonic Generation

The dynamic polarizability of a material refers to its ability to generate instantaneous dipoles in
response to an external field. With ε0 as the electric permittivity of the vacuum, the electric polarization
Pi (i = x, y, z) of a material induced by the oscillating electric field Ei (i = x, y, z) of light is written as,

Pi(ω1, ω2, · · ·) = P(1)
i + P(2)

i + · · ·

= ε0
∑

J=x,y,z
χ
(1)
iJ (ω1)EJ(ω1) + ε0

∑
J,K=x,y,z

χ
(2)
iJK(ω1 +ω2,ω1,ω2)EJ(ω1)EK(ω2) + · · ·

(11)

where χ(1)iJ is the linear electric susceptibility, and χ(2)iJK is the second order electric susceptibility tensor,
or the second harmonic generation (SHG) coefficient tensor when ω1 = ω2. The latter is nonzero
only when the system is non-centrosymmetric. Nonlinear optical (NLO) crystals are the key materials
for the laser science and technology due to their ability to double the frequency of an incident laser
beam through the SHG process. Over the years, a number of studies have been devoted to the
understanding of which structural and electronic aspects of NLO materials govern the strengths of
their SHG responses.

For an isotropic system such as an isolated atom, the linear electric susceptibility is isotropic,
leading to the atom polarizability

α =
P(1)

ε0E
(12)

where P(1) and E are the magnitudes of P(1)
i and Ei, respectively. In general, the polarizability of an atom

becomes larger when the distribution of its valence electron density becomes more diffuse, i.e., when
its size becomes larger. To a first approximation, the atoms making up a material are independently
polarized so that the total polarizability Asum of the material may be given by the sum [19],

ASUm =
∑
µ

αµ (13)

where αµ is the polarizability of an atom µ in the material. In the study of piezoelectric crystals,
it was shown that the second harmonic nonlinear optical susceptibility can be related to the linear
susceptibility as [20],

χ
(2)
iJK(2ω) = χ

(1)
ii (2ω)χ

(1)
JJ (ω)χ

(1)
KK(ω)δ2ω

iJK (14)

where δ2ω
ijk is Miller’s delta parameter. For nonzero SHG coefficients χ(2)ijk , and the δ2ω

ijk tensor does not
deviate much from the mean value for all the crystals investigated despite the fact that their nonlinear
susceptibilities vary over orders of magnitude. This finding indicates that an SHG coefficient χ(2)ijk
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has a multilinear functional dependence on the linear susceptibilities, implying that the second order
nonlinear optical property can be understood from the first order property. Miller’s rule implies that a
non-centrosymmetric crystal made up of atoms with high polarizability will have a large SHG response.

5.2. Polarizabilities of Cations and Anions

In interpreting the properties of a material, it is not the polarizabilities of neutral atoms but those
of their cations and anions that are relevant. An atom increases its size when it becomes an anion so
that its valence electron distribution becomes more diffuse, hence increasing its polarizability. The
opposite occurs when an atom becomes a cation. Calculated atom polarizabilities are known for most
neutral atoms [21], but hardly so for their anions and cations. Experimental atom polarizabilities
are not known for many neutral atoms, and are known only for a limited few anions and cations.
Therefore, it has been a challenging task to estimate the polarizabilities of anions and cations. Very
recently, a practical solution to this problem has been found in the study of the 12 ABC2 (A = Zn, Cd;
B = Si, Ge, Sn; C = P, As) chalcopyrites consisting of A2+, B4+ and C3− ions [18]. The SHG responses of
these isostructural NLO compounds increase almost linearly with V/Eg (Figure 20), where V and Eg are
the primitive unit cell volume and the bandgap of a specific ABC2 compound, respectively. In short,
the larger the primitive unit cell volume, the larger the SHG response. This is understandable because
the unit cell volume increases when its constituent atoms are large.Molecules 2020, 25, x 17 of 23 
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To quantify this point, it is necessary to estimate the polarizabilities of the A2+, B4+ and C3−

ions. In general, the polarizability αµ for an atom µ of radius rµ is proportional to its sphere volume
(4π/3)rµ3,

αµ ∝ (4π/3)rµ3. (15)

This relationship is expected to be valid even for anions and cations. The polarizabilities of anions and
cations can be estimated by employing the following four steps: (a) For the F−, O2− and Cl− anions,
their ionic polarizabilities are known [22–24], and so are their ionic radii [24]. A reasonably good linear
relationship exists between the two quantities [19]. (b) This linear relationship can be used to estimate
the ionic polarizabilities of various ions from the known ionic radii [25]. (c) When the ionic radii of
the ions (e.g., P3− and As3− anions) are unknown, we note for various ions that the polarizabilities
derived from the above two steps vary almost linearly with the calculated polarizabilities of their
neutral atoms [19]. (d) Finally, this linear relationship is used to estimate the polarizabilities of the ions
(e.g., P3− and As3− anions) from those of their neutral atoms (i.e., P and As) [19].
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Thus, for each member of the 12 ABC2 (A = Zn, Cd; B = Si, Ge, Sn; C = P, As) chalcopyrite
family, we obtain the total polarizability Asum of a primitive unit cell by summing the individual ion
contributions (Equation (13)). The relationship between Asum and V is linear, and so is the relationship
between the SHG responses and Asum/Eg values (Figure 21). This relationship establishes a clear link
between the SHG response and the first order optical response, which can be understood in terms of
Miller’s rule. Notice that 12 ABC2 chalcopyrites are isostructural, so the number of atoms per primitive
unit cell is identical. When we compare the SHG responses of non-isostructural NLO compounds, it is
necessary to employ the Asum/Eg normalized to an identical number of atoms, for example, Asum/(NEg),
where N is the number of atoms per unit cell [26].Molecules 2020, 25, x 18 of 23 
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6. Experimental Trends

6.1. Ionic Sizes and Oxidation States

It is well known that the ionic size of an element in a given group increases going down the
period (e.g., from Mg2+ to Ca2+ to Sr2+). This allows one to sterically tune the structure of a compound.
The ionic sizes and oxidation states of many transition-metal (TM) and rare-earth (RE) elements
are relatively similar to those for many main-group elements, rendering them exchangeable within
a compound. Figure 22a shows the electronegativity vs. ionic radius plot for various divalent
cations at six-coordinate sites, and Figure 22b the corresponding plot for various trivalent cations at
six-coordinate sites. Many divalent TM cations have ionic sizes similar to that of Mg2+, but they have
higher electronegativities and possess d-electrons as valence electrons (Figure 22a). The latter provides
added capabilities to tune the bonding, stability and electronic properties. Spanning the interval in
ionic size between Ca2+ and Sr2+ cations are many divalent RE cations. Figure 22b reveals that the sizes
of trivalent TM cations lie between those of Al3+ and In3+ (roughly between those of As3+ and Sb3+).
The sizes of trivalent RE cations lie in the region between those of Tl3+ and Bi3+ (roughly between
those of Y3+ and La3+).

6.2. Onsite Repulsion and d-Electron. Count

In a sense, the onsite repulsion U is a measure of how strongly its valence atomic orbitals are
contracted. Thus, the onsite repulsion of an atom µ, Uµ, would increase with decreasing ionic volume
Vµ = (4π/3)rµ3, and would increase with increasing oxidation state ζµ. Therefore, the onsite repulsion
Uµ is expected to increase with the ratio ζµ/Vµ. Thus, to a first approximation, it may be assumed that

Uµ ∝
ζµ

Vµ
. (16)
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An important factor affecting the ionic radius of a TM cation M at an octahedral site is how the
d-states of the MLn complex are occupied. The d-states of a ML6 octahedron are split into t2g- and
eg-states (Figure 12). The t2g-states are π-antibonding (Figure 13a), but the eg-states are σ-antibonding
(Figure 13b), between M and L so the eg-states are more strongly antibonding than are the t2g-states.
Thus, with respect to the occupation of the t2g-states, that of the eg-states lengthens the M–L bond
more so that the high-spin states of MLn have longer M–L bonds than the low-spin MLn. Effectively,
therefore, the cation M in the high-spin state has a larger ionic radius, and hence a larger ionic volume.
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Shown in Figure 23 are the plots of the d-electron count vs. the ζµ/Vµ for various divalent and
trivalent TM cations in six-coordinate environments. For both divalent and trivalent TM cations, we find
the following: (a) The ζµ/Vµ values for low-spin 3d cations increase as the d-electron count increases,
reaching a maximum approximately at the d6 electron count. This follows the trend that, on going
from left to right within a given period, the effective nuclear charge, and hence the electronegativity,
increases, thereby contracting the size of the cation. (b) For a given TM cation, the ζµ/Vµ value is
smaller in the high-spin than in the low-spin state, because the ionic volume becomes larger in the
high-spin state due to the fact that the eg state is more antibonding than the t2g state (see Figure 13).
(c) The ζµ/Vµ values for the 4d and 5d elements are smaller than those of the 3d elements, due to
fact that their ionic volumes are larger. These observations are expected from our discussions on the
relative stabilities of high-spin and low-spin states (see Section 2.1). (d) The effective onsite repulsion
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of a trivalent TM cation is greater than the corresponding divalent TM cation, because the trivalent
ions are smaller in size than the corresponding divalent cations (see Figure 22).Molecules 2020, 25, x 20 of 23 
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Figure 23. Plots of the d-electron count versus ζµ/Vµ for (a) divalent and (b) trivalent TM cations in
an octahedral coordination environment, where the low-spin and high-spin cations are represented
by shaded and unshaded circles, respectively. The elements in red are susceptible to a Jahn–Teller
distortion or may show uniaxial magnetism.

Electronic transitions between localized (magnetic) and delocalized (metallic) states can be tuned
using the above periodic trends because they can affect whether U > W or U < W. For example, the
tendency toward a more metallic/delocalized behavior can be expected by substituting earlier transition
metal cations into a compound (e.g., FeO to TiO in rock-salt type structures). In addition, an increase
in oxidation state significantly increases the onsite repulsion by a factor of about three (e.g., Ti2+ to V3+

for the d2 electron counts), leading to more localized states. A number of TM cations at octahedral
sites are susceptible to a Jahn–Teller distortion, as indicated in Figure 23. Uniaxial magnetism has been
observed in the cases when the Jahn–Teller distortion is suppressed, as discussed above. Compounds
containing 4d and 5d TM cations show a more metallic behavior than those containing the 3d TM
cations because 4d and 5d TM cations possess a smaller onsite repulsion. The exceptional case occurs
for spin-orbit Mott magnetic insulators of 5d TM cations, which arise from the combined effect of
smaller onsite repulsion and stronger SOC. (see below).

6.3. Onsite Repulsion and Spin Orbit Coupling

The SOC of an atom increases with increasing the atomic number Z (i.e., approximately proportional
to Z4) [27]. To examine how the onsite repulsion of TM cations are correlated with their SOC, we
plot the ζµ/Vµ values of 3d, 4d and 5d TM cations against their Z values (Figure 24). In analyzing
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this correlation, we should note that a TM cation M with a lower coordination number has a shorter
M-L distance with the ligand L because there is less steric crowding among the surrounding ligands
L. That is, a TM cation M with a lower coordination number has a smaller ionic size. It is found
from Figure 24 that: (a) TM cations with large ζµ/Vµ values possess high oxidation states and low
coordination number (e.g., 4-coordinate Fe6+ or 4-coordinate Mn6+); (b) TM cations with large ζµ/Vµ
values are found for several 3d cations, a few for 4d cations, and none for 5d cations. There are several
factors leading to this trend. First, 3d cations are small in size so their coordination number can become
small. This effectively shortens the metal–ligand distance M–L, hence effectively reducing the ionic
size and increasing the onsite repulsion. Such an effect does not occur for 5d cations because they are
large in size, and hence their coordination number cannot become small. Thus, the ζµ/Vµ value of 5d
cations cannot become large by reducing their coordination number. Second, a high oxidation state is
common for 5d cations because their electronegativity is low, which has the effect of increasing the
onsite repulsion. The first factor dominates over the second factor (e.g., large ζµ/Vµ for 4-coordinate
Fe6+ vs. small ζµ/Vµ for six-coordinate Os6+, large ζµ/Vµ for four-coordinate Mn6+ vs. small ζµ/Vµ
for six-coordinate Re6+). (c) The TM cations with small ζµ/Vµ values occur for cations with high
coordination numbers (i.e., six- and eight-coordination) largely because their cations are large in size.
(d) For 3d, 4d and 5d cations, the ζµ/Vµ value are very small for cations with low oxidation states
(i.e., below +4, not labeled in Figure 24 for clarity).
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Recent experiments show that SOC effects can start to predominate in the region of Figure 24
containing Ir5+, Os5+ and Os7+ cations in octahedral coordination environments (e.g., Ba2NaOsO6

discussed in Sections 3.3 and 4.3 [13,14] as well as other systems, such as (Na/Li)2IrO3, Sr2IrO4, NaOsO3,
and Cd2Os2O7 [26]. Interestingly, this region also shows a close grouping together with Pt5+, Re5+ and
Ir5+, suggesting that similar compounds with these cations in octahedral coordination environments
should show strong SOC effects. The onsite repulsion can be increased or decreased by using Os6+ or
W5+ cations, respectively, while maintaining a similar SOC effect. To date, however, many of these
cations are not known to occur in structures with these combinations of coordination environments
and oxidation states.
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7. Concluding Remarks

We briefly reviewed how the onsite repulsion, spin–orbit coupling and polarizability of elements
and their ions affect the physical properties of molecules and condensed materials. When combined
with the energy levels generated by the one-electron theory, the Aufbau principle provides a conceptual
tool with which to predict the ground state of molecules and condensed materials, although this
approach can fail to provide correct predictions. In most cases, this deficiency of the Aufbau principle
can be remedied by introducing onsite repulsion. For magnetic insulators of 5d transition-metal
elements, termed spin–orbit Mott insulators, the consideration of both onsite repulsion and SOC is
necessary in creating a bandgap. Anions and cations differ in their polarizability from their neutral
analogues. Nevertheless, the polarizabilities of ions can be estimated on the basis of their ionic radii
and the polarizabilities of their neutral analogues. The onsite repulsions, SOC and polarizabilities
of transition metal cations are interrelated, and this interrelationship can be used to tune these
parameters experimentally.

Author Contributions: The manuscript was written through contributions of all authors. All authors have read
and agreed to the published version of the manuscript.

Funding: Acknowledgment is made to President’s International Fellowship Initiative of CAS (2019VMA0049);
the donors of The American Chemical Society Petroleum Research Fund for partial support of this research through
grant number 57882-ND10; the National Natural Science Foundation (NSF) of China (61874122, 21703251); the NSF
of Fujian Province (2019J01121, 2019J05151); the Strategic Priority Research Program of the Chinese Academy of
Sciences (CAS) (XDB20000000); the National Key Research and Development Program of China (2016YFB0701001);
Youth Innovation Promotion of CAS (2019302); 100 talents program of CAS and Fujian Province.

Acknowledgments: MHW thanks FJIRSM for the Jiaxi Lu Foreign Guest Professorship, which allowed him to
visit and carry out research collaborations at FJIRSM.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. For Comprehensive Details on the History of the Periodic Table. Available online: https://en.wikipedia.org/

wiki/History_of_the_periodic_table (accessed on 30 December 2019).
2. Whangbo, M.-H. Mott-Hubbard conditions for electron localization in the Hartree-Fock band theory. J. Chem.

Phys. 1979, 70, 4963. [CrossRef]
3. Hay, P.J.; Thibeault, J.C.; Hoffmann, R. Orbital interactions in metal dimer complexes. J. Am. Chem. Soc. 1975,

97, 4884–4899. [CrossRef]
4. Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and

Mesosphere; Springer: Dordrecht, The Netherlands, 2005.
5. Hirai, K.; Itoh, T.; Tomioka, H. Persistent triplet carbenes. Chem. Rev. 2009, 109, 3275–3332. [CrossRef]

[PubMed]
6. Koo, H.-J.; Kasapbasi, E.E.; Whitten, J.L.; Whangbo, M.-H. The conceptual dilemma of the one-electron

picture in describing the uniaxial magnetism at linear coordination sites. Eur. J. Inorg. Chem. 2019, 2630–2634.
[CrossRef]

7. Whangbo, M.-H.; Xiang, H.J.; Koo, H.-J.; Gordon, E.E.; Whitten, J.L. Electronic and structural factors
controlling the spin orientations of magnetic Ions. Inorg. Chem. 2019, 58, 11854–11874. [CrossRef]

8. Dai, D.; Whangbo, M.-H. Analysis of the uniaxial magnetic properties of high-spin d6 ions at trigonal prism
and linear two-coordinate sites: Uniaxial magnetic properties of Ca3Co2O6 and Fe[C(SiMe3)3]2. Inorg. Chem.
2005, 44, 4407–4414. [CrossRef]

9. Reiff, W.M.; LaPointe, A.M.; Witten, E.H. Virtual free ion magnetism and the absence of Jahn−Teller distortion
in a linear two-coordinate complex of high-spin Iron(II). J. Am. Chem. Soc. 2004, 126, 10206–10207. [CrossRef]

10. Zadrozny, J.M.; Xiao, D.J.; Atanasov, M.; Long, G.J.; Grandjean, F.; Neese, F.; Long, J.R. Magnetic blocking in
a linear iron(I) complex. Nat. Chem. 2013, 5, 577–581. [CrossRef]

11. Bunting, P.C.; Atanasov, M.; Damgaard-Møller, E.; Perfetti, M.; Grassee, I.; Orlita, M.; Overgaard, J.;
van Slageren, J.; Neese, F.; Long, J.R. A linear Co(II) complex with maximal orbital angular momentum from
non-Aufbau ground state. Science 2018, 362, 1378. [CrossRef]

https://en.wikipedia.org/wiki/History_of_the_periodic_table
https://en.wikipedia.org/wiki/History_of_the_periodic_table
http://dx.doi.org/10.1063/1.437387
http://dx.doi.org/10.1021/ja00850a018
http://dx.doi.org/10.1021/cr800518t
http://www.ncbi.nlm.nih.gov/pubmed/19449838
http://dx.doi.org/10.1002/ejic.201900370
http://dx.doi.org/10.1021/acs.inorgchem.9b00687
http://dx.doi.org/10.1021/ic050185g
http://dx.doi.org/10.1021/ja030632w
http://dx.doi.org/10.1038/nchem.1630
http://dx.doi.org/10.1126/science.aat7319


Molecules 2020, 25, 867 21 of 21

12. Atanasov, M.; Aravena, D.; Suturina, E.; Bill, E.; Magana, D.; Neese, F. First principles approach to the
electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single
molecule magnets. Coord. Chem. Rev. 2015, 289–290, 177–214. [CrossRef]

13. Mott, N.F. Metal–Insulator Transition; Taylor & Francis Ltd.: London, UK, 1974.
14. Xiang, H.J.; Whangbo, M.-H. Cooperative effect of electron correlation and spin-orbit coupling on the

electronic and magnetic properties of Ba2NaOsO6. Phys. Rev. B. 2007, 75, 052407. [CrossRef]
15. Erickson, A.S.; Misra, S.; Miller, G.J.; Gupta, R.R.; Schlesinger, Z.; Harrison, W.A.; Kim, J.M.; Fisher, I.R.

Ferromagnetism in the Mott Insulator Ba2NaOsO6. Phys. Rev. Lett. 2007, 99, 016404. [CrossRef] [PubMed]
16. Dai, D.; Xiang, H.J.; Whangbo, M.-H. Effects of spin-orbit coupling on magnetic properties of discrete and

extended magnetic systems. J. Comput. Chem. 2008, 29, 2187–2209. [CrossRef] [PubMed]
17. Zhang, J.; Yan, D.; Yesudhas, S.; Deng, H.; Xiao, H.; Chen, B.; Sereika, R.; Yin, X.; Yi, C.; Shi, Y.; et al. Lattice

frustration in spin-orbit Mott insulator Sr3Ir2O7 at high pressure. NJP Quantum Mater. 2019, 4, 23. [CrossRef]
18. Albright, T.A.; Burdett, J.K.; Whangbo, M.-H. Orbital Interactions in Chemistry, 2nd ed.; Wiley: New York, NY,

USA, 2013.
19. Cheng, X.Y.; Whangbo, M.-H.; Hong, M.C.; Deng, S. Dependence of the second-harmonic generation response

on the cell volume to bandgap ratio. Inorg. Chem. 2019, 58, 9572–9575. [CrossRef]
20. Miller, R.C. Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 1964, 5, 17.

[CrossRef]
21. Shannon, R.D.; Fischer, R.X. Empirical electronic polarizabilities of ions for the prediction and interpretation

of refractive indices: Oxides and oxysalts. Am. Mineral. 2016, 101, 2288–2300. [CrossRef]
22. Sadlej, A.J. Static dipole polarizability of the fluoride ion. J. Phys. Chem. 1979, 83, 1653–1957. [CrossRef]
23. Qi, J.; Xue, D.; Ratajczak, H.; Ning, G. Electronic polarizability of the oxide ion and density of binary silicate,

borate and phosphate oxide glasses. Phys. B: Condensed Matter 2004, 349, 265–269. [CrossRef]
24. Wilson, J.N.; Curtis, R.M. Dipole polarizabilities of ions in alkali halide crystals. J. Phys. Chem. 1970, 1,

187–196. [CrossRef]
25. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and

chalcogenides. Acta Crystallogr. A. 1976, 32, 751–767. [CrossRef]
26. Cheng, X.Y.; Li, Z.H.; Wu, X.-T.; Hong, M.C.; Whangbo, M.-H.; Deng, S. Key factors leading to large second

harmonic generation in nonlinear optical materials. ACS Appl. Mater. Interface 2020. [CrossRef] [PubMed]
27. Witczak-Krempa, W.; Chen, G.; Kim, Y.B.; Balents, L. Correlated quantum phenomena in the strong spin-orbit

regime. Annu. Rev. Condens. Matter Phys. 2014, 5, 57–82. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ccr.2014.10.015
http://dx.doi.org/10.1103/PhysRevB.75.052407
http://dx.doi.org/10.1103/PhysRevLett.99.016404
http://www.ncbi.nlm.nih.gov/pubmed/17678173
http://dx.doi.org/10.1002/jcc.21011
http://www.ncbi.nlm.nih.gov/pubmed/18484639
http://dx.doi.org/10.1038/s41535-019-0162-3
http://dx.doi.org/10.1021/acs.inorgchem.9b01368
http://dx.doi.org/10.1063/1.1754022
http://dx.doi.org/10.2138/am-2016-5730
http://dx.doi.org/10.1021/j100475a015
http://dx.doi.org/10.1016/j.physb.2004.03.307
http://dx.doi.org/10.1021/j100696a034
http://dx.doi.org/10.1107/S0567739476001551
http://dx.doi.org/10.1021/acsami.9b20023
http://www.ncbi.nlm.nih.gov/pubmed/31977172
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125138
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Inadequacy of the Aufbau Principle 
	Low-Spin vs. High-Spin States 
	Extension of Hund’s Rule 
	Limits of the One-Electron Picture 

	Effect of Onsite Repulsion on the relative Stabilities of Metallic and Magnetic Insulating States 
	One-Electron Approximation 
	Magnetic Insulating State Induced by Onsite Repulsion 
	Need to Consider beyond Onsite Repulsion 

	Effect of Spin-Orbit Coupling 
	Energy of SOC 
	Dependence of the SOC Energy on the Spin Orientation 
	Magnetic Insulating State Induced by Spin-Orbit Coupling and Onsite Repulsion 
	Singlet to Triplet Transition 

	Polarizability 
	Induced Polarization, Polarizability and Second Harmonic Generation 
	Polarizabilities of Cations and Anions 

	Experimental Trends 
	Ionic Sizes and Oxidation States 
	Onsite Repulsion and d-Electron. Count 
	Onsite Repulsion and Spin Orbit Coupling 

	Concluding Remarks 
	References

