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Abstract

Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that
could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment
strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the
current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its
already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious
effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced
swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative
behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important
feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that
antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent
with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate
the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct
treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.
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Introduction

Affective disorders are associated with structural brain
changes, such as reduced hippocampal volume [1], which
might stem from stressor-provoked reductions of neurogenesis
[2–4]. In this regard, particular attention has been afforded the
involvement of diminished brain-derived neurotrophic factor
(BDNF) in depression as this growth factor ordinarily enhances
neurogenesis and promotes neuronal cell survival and neurite
growth [5,6]. Studies in animals have shown that stressors
reduce hippocampal BDNF, and its administration attenuated
the depressive-like behavioural effects elicited by stressful
events [4,6–9]. In humans, serum BDNF levels have frequently
been found to be reduced in depressed individuals, but
elevated following successful pharmacotherapy [10,11];
however, contradictory reports exist in this regard [12]. In
addition to BDNF, other trophic factors, including glial derived
neurotrophic factor (GDNF) and fibroblast growth factor
(FGF-2), might also play a role in depressive disorders [13,14].

These findings suggest that it would be beneficial to
administer trophic factors such as BDNF in the treatment of

depression. However, BDNF may have untoward side effects,
including moderation of pain pathways [15–17]. Moreover,
BDNF and other neurotrophic proteins do not appreciably cross
the blood brain barrier (BBB), making the usefulness of
peripheral administration questionable [18,19]. Nonetheless, in
rodents peripheral BDNF treatment increased hippocampal
neurogenesis and BDNF protein levels, and reduced signs of
anxiety in several behavioural tests [20].

Erythropoietin (EPO) is a hematopoietic growth factor that
readily crosses the BBB and is routinely used clinically to treat
anemia [21]. This trophic cytokine has not been assessed as
extensively as other growth factors in the context of
depression, but recent studies have implicated EPO as having
clinical potential. Pre-clinical data suggested that EPO might be
an agent to promote neuronal recovery, having neuroprotective
consequences in models of stroke and traumatic brain injury
[21]. Likewise, EPO induced cognitive improvements in
healthy, as well as neuronally compromised animals [21,22].
The available data are admittedly sparse, but there have been
reports indicating that EPO may have antidepressant and
potentially even anxiolytic actions [23]. In this regard, it was
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reported that EPO induced antidepressant-like effects in a
forced swim test and altered novelty-induced hypophagia (NIH)
[24]. Furthermore, EPO levels were elevated in the dentate
gyrus (DG) of the hippocampus after electroconvulsive seizure
treatment in rats [24]. Human brain imaging studies indicate
that EPO directly improves hippocampal function [23] and
modulates brain responses to emotional information in a
manner similar to that of conventional antidepresssants in the
absence of hematological changes [25,26].

It was reported that EPO and/or EPOR was present on
neurons within the hypothalamus, hippocampus and neocortex
of adult rodents [27]. As the non-hematopoietic, carbamylated
form of EPO, c-EPO, also robustly influences CNS activity, it is
likely that EPO influences brain functioning independent of any
effects on red blood cells. In fact, hippocampal EPO levels
were elevated after treatment with an antidepressant or
electroconvulsive stimulation [24], and the administration of
EPO induced BDNF expression and adult hippocampal
neurogenesis [28,29].

In light of these findings EPO may promote antidepressant
effects by inducing BDNF expression or by directly stimulating
trophic pathways involving phosphatidylinositol-3-kinase (PI3-
K), Akt/protein kinase-B, MAP kinases, and STAT5 [30].
However, EPO is also known to influence peripheral cellular
growth through the mammalian target of rapamycin (mTOR)
pathway [31]. Given the recent findings implicating the mTOR
pathway in the rapid and prolonged anti-depressant actions of
the NMDA antagonist, ketamine [32], we hypothesize that this
pathway also contributes to the behavioural effects of EPO.
Hence, the present study assessed the impact of EPO upon a
range of depressive- and anxiety-like behaviours elicited by a
social defeat stressor in mice, and whether EPO would
augment hippocampal neurogenesis. As well, we assessed
whether the mTOR inhibitor, rapamycin, would modify the
behavioural effect of EPO in the forced swim test (FST).

Methods

Experimental Animals
Sixty-four male CD-1 mice (Charles River), 10-12 weeks of

age, served as experimental subjects. In addition, 16 CD-1
retired breeders (Charles River) were used as aggressive
conspecifics in the social defeat paradigm. A separate study
involving 32 male CD-1 mice (Charles River) was conducted to
assess the impact of the mTOR pathway inhibitor, rapamycin,
on the behavioural effects of EPO in the FST. Animals were
individually housed in the non-stressed condition in standard
(27 × 21 × 14 cm) polypropylene cages. All animals were
maintained on a 12-h light/dark cycle with lights on at 08:00 h.
Mouse chow (Charles River diet, 5071) and water was
provided ad libitum, and room temperature was maintained at
approximately 21°C. All procedures were approved by the
Carleton University Committee for Animal Care and were
conducted in adherence to guidelines set out by the Canadian
Council for the Use and Care of Animals in Research.

Injection Treatments
In order to label dividing cells, on the first day of the

experiment prior to any other treatment being administered all
mice received a single intraperitoneal (i.p) injection of
bromodeoxyuridine (BrdU, 200 mg/kg; Sigma-Aldrich, lot
060M1224V). Thereafter, mice received either i.p. injection of
EPO (R&D systems; recombinant mouse EPO; lot #
EUP0409111) or saline (Sigma-Aldrich; lot RNBB9031) 3 times
a week for 2 weeks. EPO was delivered at a dose of 5000 U/kg
(which was calculated to be ~40 µg/kg). Both the saline and the
EPO were injected at a volume of 0.4 ml.

Social Defeat Stressor
As depicted in Table S1, half of the EPO and half of the

saline treated mice (n = 16/group) were subjected to the social
defeat stressor from Day 1 to Day 14, whereas non-stressed
mice remained undisturbed in their home cages. The stressed
animals were placed in a novel cage with an aggressive CD-1
bully mouse, with a mesh divider keeping them separated.
Once a day, at random times after the completion of any
required behavioural tests, the divider was lifted and the mice
were allowed to interact physically. Once a mouse showed
submissive behaviours or excessive fighting occurred
(continuous biting), the divider was put back into place.
Submissive behaviours were defined as standing on back paws
while waving front paws in the air, or continuously cowering in
a corner and then squeaking and running when the dominant
mouse came near. If the mouse was not clearly defeated by
the end of 5 minutes the divider was put back and a new bully
mouse was introduced the next day. All interactions were
recorded, including latency to fight and submit, submission
style, and the bullies’ behaviour (fighting style, aggressive tail
wagging); any injuries were recorded and carefully monitored.
No mice needed to be removed from the study due to injuries
over the course of the 14-day stressor regimen.

Behavioural Testing
Behavioural testing occurred on the 7th, 10th and 13th days

of the experiment (i.e., during the second week of the study;
see Table S1). As well, each test session was conducted early
in the day just before the daily interaction with the bully mouse
and included assessment in the FST, open field (OF) and
elevated plus maze (EPM), as well as performance on a
novelty task. Separate mouse cohorts from each group were
tested on each of the aforementioned test days. As statistical
analyses revealed no significant cohort/day differences, data
were pooled over the three testing sessions. As well, tests
were presented in a predetermined random order to preclude
order effects. This sequence of spaced testing allowed
assessment of performance on a series of depression-relevant
tasks, without “overloading” mice and promoting stress effects
related to the behavioural tests themselves. On the behavioural
assessment days, testing commenced no later than 1 PM and
terminated prior to the application of the daily social stressor.
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Forced Swim Test
Mice were individually placed for 10 minutes in a 2/3rd filled

2000 mL beaker with 25 ± 1°C water. The mice could not
escape, and their feet could not touch the bottom. After each
swim, mice were lightly towel dried and introduced back into
their home-cage, which was then placed for 15 min on a
heating pad set to medium heat. The water in the beaker was
changed between each test. Each FST session was video
recorded and later scored for time spent swimming or climbing
(pedaling or circular movements around the beaker or active
attempts to climb the beaker wall), and time immobile (lack of
movement beyond those movements necessary to maintain
balance).

Open Field Test
Mice were individually placed in the corner of a 30 cm3 open

field (OF), which was constructed from opaque Plexiglas and
illuminated by ambient fluorescent ceiling lights. Mice were
allowed free exploration of the arena for 10 min, during which
time their movements were tracked (EthoVision, Noldus,
Netherlands) and their ambulatory velocity, distance travelled,
and rearing motions analyzed. Movement patterns were
examined for the whole arena, as well as a pre-determined
large outer square (20 cm2) and small inner square (center; 10
cm2). A 10% ethanol solution was used to clean the OF arena
between each session.

Elevated-plus Maze (EPM)
Mice were individually placed in a randomly selected closed

arm of the EPM apparatus and permitted to explore the maze
for 5 minutes (each of the four arms was 24.8 cm long and 7.7
cm wide; the two closed arms had opaque walls 21 cm high,
and the other two arms had no walls). Each EPM session was
camera recorded and scored for time spent and number of
entries into the open arm, closed arm, and center, as well as
for the frequency of stretching (keeping feet within closed arm
or central area and extending head into to open arm) and head
dipping (looking down over the side of the open arm). A 10%
ethanol solution was used to clean the EPM between each
session.

Novelty Test
Mice were individually placed in the corner of a 30 cm3

opaque Plexiglas arena that contained a novel object (green
candle holder, 18.0 cm). Mice were allowed free exploration of
the arena for 5 minutes while a computer system (EthoVision,
Noldus, Netherlands) tracked their movements and measured
the latency to approach and the time spent in contact with the
novel object.

Immunohistochemistry
On day 14 of the experimental regimen, all mice (both the

behaviourally tested and naïve cohort were included in order to
ascertain whether the behavioural testing procedure itself might
influence neurogenesis) were anaesthetized with 0.6 mL of
pentobarbital (Ceva Sante Animale; lot 150A1) and perfused
transcardially with saline followed by 4% paraformaldehyde

(PFA) in 0.1 M Phosphate Buffer Saline (PBS) (Sigma-Aldrich).
The brains were removed and stored at 4°C in the PFA mixture
for 24 hours. This mixture was then replaced with a 20%
sucrose solution (Sigma-Aldrich) and refreshed each day for 2
days, and then once a week for a month. The brains were then
sliced to a thickness of 40 µm via the Cryotome FSE (Thermo
Scientific). The slices were stained in the hippocampus for
doublecortin (DCX). DCX was used as a marker to analyze the
absolute number and dendritic growth of newly generated
neurons in the adult dentate gyrus. On the first day of the DCX
staining procedure, the slide-mounted brains were washed in a
0.01M PBS solution and then incubated in the primary goat
anti-DCX antibody (1:200) at 4°C. Twenty four hours later the
slides were washed again and then incubated for 2 hours in the
secondary antibody, which was a donkey Alexa 488 anti-goat
(1:100). Slides were then washed, air dried and cover-slipped.
In order to quantify the number of DCX+ neurons within the
dentate gyrus, bilateral counts from four hippocampal sections
(bregma levels: -1.22, -1.58, -1.94 and -2.30) were pooled for
each animal. All counts were done in a blinded fashion with the
counter unaware of the treatments. BrdU staining,
unfortunately, provided inconsistent outcomes, and hence the
data were not assessed further.

Role of mTOR in EPO induced behavioural changes
In a separate study, the mTOR pathway inhibitor, rapamycin,

was used to determine whether EPO might induce
antidepressant-like effects through this signaling pathway (as is
the case with the novel antidepressant, ketamine). A separate
cohort of 32 male CD-1 mice (10-12 weeks of age) received
either saline or EPO (5000 U/kg ip.) treatment once every
second day over a six day time period (i.e. three injections).
These groups were subdivided so that half of the mice also
received an injection of rapamycin (10 mg/kg ip, dissolved in
saline with 5% DMSO), while the remaining animals received
the vehicle (i.e. three injections) immediately prior to the EPO/
saline injection. Three hours following the final injections, mice
were tested in a FST paradigm identical to that described for
the earlier experiment.

Statistical Analysis
Prior to analyses, all data were checked for normality using

the Shapiro-Wilk test with alpha = 0.05. Subsequently, it was
found that none of the data violated the assumption of
normality. Hence, behavioural data were analysed by a 2 factor
(EPO injection × Social Stressor treatment) ANOVA, whereas
immunohistochemical measures were assessed using a 3-
factor ANOVA (EPO injection × Social Stressor × Prior
Behavioural Testing) design. In the rapamycin study, a 2 (EPO
vs vehicle) × 2 (rapamycin vs vehicle) ANOVA was used to
assess FST performance data. Significant interactions were
followed-up using Tukey post hoc comparisons. A StatView
(SAS Institute, version 6.0) statistical software package was
used for the computations.

Depression and Erythropoietin
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Results

Experiment 1
Forced Swim Test.  There was no significant main effect of

the stressor condition [p = 0.967], nor was there a significant
interaction between the stressor condition and injection type on
immobility time in the FST [p = 0.162]. However, the ANOVA
revealed that EPO significantly reduced immobility in the forced
swim test, irrespective of whether or not mice had been
exposed to the stressor F(1,28) = 2.07, [p = 0.001] (Figure 1).

Open Field Test.  A significant EPO × stress interaction was
apparent for both the total distance travelled in the open field,
as well as the mean movement velocity Fs(1,28) = 5.52 and
5.20, respectively, [p = 0.026]; See Figure 2. The follow-up
comparisons confirmed that the stressor treatment reduced the
total distance and velocity among the saline treated mice,
whereas it had no effect in the EPO treated mice.

Elevated-plus Maze.  No significant differences were
observed for either stress condition or injection group for
rearing [p = 0.866, p = 0.380; respectively], stretch attends [p =
0.173, p = 0.080; respectively] and head dipping [p = 0.368, p =
0.388; respectively] in the EPM (data not shown). Similarly, for
these EPM parameters no significant interaction was observed
between EPO treatment and stressor [p = 0.199, p = 0.212, p =
0.348; respectively]. However, the number of entries into the
open arms of the EPM was significantly reduced overall among
the stressor-treated animals relative to the non-stressed
controls F(1,14)= 4.51, [p = 0.020] (see Figure 3).

Novelty Test.  The social stressor reduced the time spent in
contact with the novel object located within the open field,
F(1,29) = 4.51, [p = 0.005]. However, EPO administration had
no effect on novel object exploration in either the stressed or
non-stressed animals [p = 0.409] (Figure 3).

Immunohistochemistry.  There were no main effects of [p =
0.413] or interactions involving behavioural testing and stress
condition [p = 0.521] or behavioural testing and injection
treatment [p = 0.200] on the number of DCX+ hippocampal
neurons (Figure 4). There was also no significant three-way

Figure 1.  Time spent mobile, in seconds, in the forced
swim test (FST).  Data are expressed as mean ± SEM (n = 8/
group). EPO (black bars) clearly reduced FST immobility
relative to the saline treatment (hatched bars). This effect was
apparent whether mice were exposed to the stressor regimen
or not. *p < 0.001 relative to saline-treated controls.
doi: 10.1371/journal.pone.0072813.g001

interaction between behavioural testing, stress condition and
injection treatment [p = 0.904]. In the absence of any Stressor x
EPO interactions [p = 0.118], there were significant main
effects for both the stressor and EPO treatments. Specifically,
the stressor induced a modest but significant reduction in DCX
+ neurons F(1,24)= 28.62, [p = 0.009], whereas EPO treatment
increased the number of DCX+ hippocampal neurons F(1,24) =
28.97, [p = 0.001], It is noteworthy that in the presence of the
stressor, EPO increased DCX+ counts over and above that
observed among saline treated animals (albeit to a lesser
degree than that observed in the absence of the stressful
challenge).

Experiment 2
Rapamycin and forced swim test.  A significant EPO ×

Rapamycin interaction was apparent with respect to time
immobile in the FST F(1,26) = 5.19, [p = 0.03]. As shown in
Figure 5, EPO treatment alone significantly reduced immobility
in the FST (p = 0.01), whereas mice that also received the
rapamycin injection did not differ from saline treated animals.

Figure 2.  Total distance moved (top panel) and velocity of
movement (bottom panel) in an open field (OF)
arena.  Stressor treatment significantly reduced both of these
measures in the saline (hatched) but not the EPO (black bars)
treated animals. Data are expressed as mean ± SEM (n = 8/
group) *p < 0.05.
doi: 10.1371/journal.pone.0072813.g002
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Discussion

Our data showed that EPO can increase hippocampal
neurogenesis and promote anti-depressant and anti-anxiety-
like effects, and that mTOR might be an important mediator in
at least some of these outcomes. Irrespective of the stressor
treatment, EPO increased neurogenesis and reduction of
immobility in the FST. Thus, rather than reversing the impact of
the stressor, EPO alone appears to have potent neurogenic
and anti-depressant-like (at least in this swim test)
consequences. In addition, EPO did reverse the stressor-
induced reduction of open field exploration and suppression of
entries into the open arm of an elevated plus maze, suggesting
that EPO can counteract anxiety-like effects induced by the
stressor exposure. Finally, the fact that rapamyacin prevented
the anti-depressant-like effects of EPO in the FST, indicates an

Figure 3.  The number of entries into the open arm of an
elevated plus maze (EPM) (top panel) and the time spent in
contact with the novel object during a novelty task (bottom
panel) The stressor treatment markedly reduced the
number of EPM open arm entries in saline injected mice,
but this effect was totally absent in mice that received the
EPO treatment.  The bottom panel depicts that a robust
stressor-induced reduction of exploration of the novel object
was apparent. However, EPO had no influence on this
behavioural measure. Data are expressed as mean ± SEM (n =
8/group) *p < 0.05.
doi: 10.1371/journal.pone.0072813.g003

importance of the mTOR pathway in underlying at least some
of the effects of EPO.

As already mentioned, EPO had antidepressant-like effects
as reflected by reduced immobility in the forced swim test (a
common screening method of antidepressant activity). It has
been suggested that the increased FST mobility might be due
to the performance enhancing capabilities of EPO, given its
ability to increase the presence of red blood cells [22].
However, in keeping with the findings of Girgenti et al. [24], we
did not find a general EPO-related increase in mobility in the
open field test. Thus, it is unlikely that the effects of EPO were
attributable to potential motor enhancement. These
antidepressant-like effects are consistent with earlier reports

Figure 4.  DCX immunoflourescent labelling of the dentate
gyrus region of the hippocampus at 20X
magnification.  EPO treatment (black bars) increased DCX+
neuron counts relative to saline treatment (hatched bars). The
bottom photomicrographs depict representative images from
the treatment groups: A. Saline, B. EPO, C. Saline + Stress
and D. EPO + Stress. Data are expressed as mean ± SEM (n =
8/group) *p < 0.01, **p < 0.001.
doi: 10.1371/journal.pone.0072813.g004
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from Miskowiak and colleagues. Specifically, EPO was found to
exert antidepressant-like effects in healthy and depressed
individuals, in terms of behavioural and neural responses to
emotional information, and such effects were apparent in the
absence of any variations of reaction times [23,25,26,33–35].

Anxiety is frequently comorbid with depressive disorders
[36–38] and SSRIs are often used to diminish anxiety [38]. Yet,
there has been little data concerning the potential influence of
EPO on behavioural indices of anxiety [39]. Nevertheless,
Leconte et al. [40] recently reported that mild hypoxia, which is
a known inducer of EPO, had anxiolytic-like effects in both the
light/dark transition test and the EPM. However, in the Leconte
et al. [40] report, EPO levels were not directly assessed, and
an earlier study from this same group of investigators failed to
find an anxiolytic-like effect of EPO [41]. In humans, a single
high dose of EPO was found to reduce neural and cognitive
responses to threat-relevant information 1 week following drug
administration [25]. However, when participants were tested at
an earlier time-point after EPO administration responses to
threat were actually enhanced; this pattern of effects is similar
to that seen with SSRIs [25].

In the current investigation EPO had no effect on the
frequency of entries into the open arms of the EPM under the
basal condition. However, EPO attenuated the reduction of
open arm entries that was evident among mice receiving the
social stressor. In effect, although the adaptive anxiety
response to potentially threatening environmental stimuli or
situations (e.g., the open arms of the EPM) may not be affected
by EPO, the excessive, abnormal anxiety provoked by previous
stressor experiences, which is ordinarily manifested in the EPM

as a further reduction in exploration of the open arms, is
effectively diminished by EPO. Curiously, analysis of
movement patterns of mice in the open field test revealed that
EPO attenuated the stressor-induced reduction in velocity and
mean distance travelled in the open field arena as a whole.
However, this pattern was not evident when movement
patterns were assessed in the center of the arena. As the
center of the arena is particularly apt in eliciting anxiety-related
avoidance, it might be the case that the anxiolytic effects of
EPO were limited. In fact, the results of the novelty test
indicated that in this paradigm EPO did not attenuate the
effects of the antecedent stressor. It has been fairly well
established that several forms of anxiety should be considered
in behavioural tests, such as the anxiety that occurs in
response to specific stimuli vs that associated with contextual
cues, as well as anxiety responses elicited by conditioned vs
non-conditioned stressors as well naturalistic stressors [42].
Further studies are thus warranted to determine in greater
detail whether or not EPO has anxiolytic properties.

Effective antidepressant treatments have been reported to
increase hippocampal neurogenesis [43–45] and reverse the
adverse effects of chronic stressors on neurogenesis [43,46]. It
was similarly found in the present investigation that EPO
increased hippocampal neurogenesis, as reflected by
increased DCX staining. As this occurred irrespective of
whether or not animals had been behaviourally tested, the
increased neurogenesis cannot be attributable to learning
effects associated with repeated testing. It was previously
reported that chronic antidepressant treatment alone enhanced
adult cell proliferation within the dorsal hippocampus [43–45],

Figure 5.  Rapamycin reversed the anti-depressant like effects of EPO in a forced swim test.  As shown by the hatched bars,
EPO treatment (5000 IU ip) reduced FST immobility time among the vehicle-injected mice. Rapamycin pre-treatment (black bars; 10
mg/kg ip), however, totally prevented the impact of EPO upon FST immobility. * p < 0.05.
doi: 10.1371/journal.pone.0072813.g005
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suggesting that these drugs have pro-mitotic effects
independent of stressor conditions. The present results are
consistent with this perspective, as EPO increased DCX
staining regardless of whether or not mice had previously been
exposed to a stressor. Finally, it should be mentioned that a
few reports exist indicating that antidepressant treatments did
not affect hippocampal neurogenesis and that the behavioral
effects of antidepressants were independent of any influence
on neurogenesis [47–49]. The reason for discrepancies
between studies remains to be determined but might involve
strain differences, as the Huang [48] and Holick [49] studies
involved BALB/cJ mice, in contrast to the commonly used
C57BL6 or CD1 (as in the present study) strains.

The increase in hippocampal neurogenesis may be a
potential mechanism through which EPO exerts its
antidepressant-like effects. Indeed, it has been suggested that
the decreased hippocampal volume associated with depression
[50–52], as well as the restoration of hippocampal volume with
symptom remission [53], might be related to changes of
neurogenesis [46,51,54–56]. As stressors suppress progenitor
cells in the hippocampus [2,57–64], it follows that the
enhancement of hippocampal neurogenesis by EPO could
attenuate certain negative effects of stressors. In effect, the
present findings contribute to the existing evidence indicating
that the anti-depressant-like effects of EPO may be mediated,
in part, by an augmentation of hippocampal neurogenesis.

The present findings suggest that the mTOR signaling
pathway might be an important downstream process
contributing to the forced swim alterations induced by EPO.
Indeed, rapamycin completely inhibited the impact of EPO on
FST performance, just as EPO was reported to attenuate the
antidepressant effects of ketamine [65]. The present results are
particularly interesting in light of the finding that mTOR
underlies other positive effects upon neuroplasticity, including
BDNF production, neurogenesis and synaptogenesis [32]. In
addition to playing a neurogenic role in response to ketamine
[32], the mTOR pathway was also found to be important for
insulin or epileptogenic insult induced neurogenesis, as
rapamyacin inhibited neurogenesis induced by these stimuli
[66,67]. In the case of EPO, hippocampal EPO levels were
elevated after effective antidepressant treatments [24] and
EPO administration itself induced BDNF expression and adult
hippocampal neurogenesis [28,29]. Thus, EPO might be
eliciting its behavioural effects through mTOR- and- BDNF-
associated enhancements of adult hippocamal neurogenesis
and potentially other neuroplastic changes.

One limitation of this study is the fact that the FST is not a
test for depressive-like behaviour per se, but rather a common
screening method for antidepressant drugs. Yet, stressors and

other treatments that promote depressive-like behaviours in
other paradigms have also been reported to elicit increased
immobility in the FST [68]. Another limitation would be that the
effects of rapamyacin upon hippocampal neurogenesis were
not determined. Thus, we cannot conclude as to whether the
effects of inhibition of the mTOR pathway upon forced swim
performance were related to hippocampal neurogenic
processes. Finally, given that EPO did not significantly
modulate the impact of the stressor (which itself had modest
effects) on neurogenesis, it did not appear that EPO was
directly targeting processes affected by the stressor.

Although the present investigation suggests that EPO could
have beneficial anti-depressant or anti-anxiety like effects in
the face of stressors, this cytokine might have clinically
important effects for a range of other conditions in which
neuroplasticity is disturbed. In this regard, EPO protected
hippocampal neurons from stressor-induced apoptosis [69–71]
and rescued hippocampal CA1 neurons from ischemic
damage; EPO was also reported to attenuate performance
disturbances in the Morris water maze [72,73]. Chronic EPO
treatment might even have cognitive enhancing effects, as
indicated by improvements in spatial performance in the Morris
water maze test [22] and the improved executive functioning,
coding and working memory, and psychomotor speed
observed in EPO treated multiple sclerosis and schizophrenic
patients [74]. Translating findings from animal models of
depression into human clinical trials can be challenging and is
not always successful. In the case of EPO, caution would need
to be exercised with respect to dose, particularly in light of the
potential for thrombosis or other hematopoietic complications.
However, EPO is currently being used successfully to treat
anemia without apparent toxicity as an obstacle for its use. The
present findings contribute to the emerging evidence that EPO
may be a new candidate treatment for affective disorder, or at
least be useful as an adjunctive agent together with existing
treatments.
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