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Abstract: The advantage of microarray (array) over conventional karyotype for the 

diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays 

in prenatal diagnostics. In this review we compare the performance of different array 

platforms (BAC, oligonucleotide CGH, SNP) and designs (targeted, whole genome, whole 

genome, and targeted, custom) and discuss their advantages and disadvantages in relation 

to prenatal testing. We also discuss the factors to consider when implementing a 

microarray testing service for the diagnosis of fetal chromosomal aberrations. 
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1. Introduction 

In the last five years, genomic microarrays (arrays) have been widely used diagnostically for 

postnatal cases with developmental delay (DD), autism and/or congenital abnormalities. The increased 

diagnostic yield of 15%–20%, when compared to conventional karyotyping, prompted the 

recommendation by an international expert panel that microarray should become the first line test for 

postnatal referrals with these indications [1]. 

However, introduction of microarray testing for prenatal cases has been slow, mainly due to the 

potential difficulties interpreting copy number variations (CNV) of unknown significance and 

incomplete penetrance or variable expressivity, in the absence of a clear phenotype. Further 

counselling challenges arise from the coincidental discovery of late-onset disorders, which may also 

reveal a potentially-affected parent. In addition, obtaining sufficient DNA and good quality microarray 

results from prenatal samples can be difficult.  

Several recent large prospective studies have demonstrated the feasibility and utility of microarray 

in the prenatal setting, showing an increased diagnostic yield over karyotype for all indications for 

testing and in particular for referrals with sonographic abnormalities [2–4]. Comparison of abnormality 

rates among studies is difficult, and not necessarily meaningful, due to the diverse study designs, 

variation in microarray platforms used and inclusion criteria applied. Nevertheless, a meta-analysis of 

studies has shown a diagnostic yield of around 2.4% over karyotype for any referral reason and a 

diagnostic yield of 7% over karyotype for cases with abnormal ultrasound scan findings [5,6]. 

In light of these observations in December 2013 the American College of Obstetricians and 

Gynecologists (ACOG) issued a statement recommending the use of microarray as the first-line test for 

prenatal cases with structural abnormalities, fetal demise, or stillbirth. In the absence of sonographic 

findings the recommendation was that either karyotype or microarray could be used [7]. 

Genomic microarrays were initially developed using Bacterial Artificial Chromosome (BAC) 

clones. Subsequently, oligonucleotide (oligo) microarrays were developed and are now widely used 

worldwide in diagnostic laboratories. Oligo arrays can be either Comparative Genomic Hybridisation 

(CGH) or Single Nucleotide Polymorphism (SNP) arrays. Both the BAC arrays and oligo CGH arrays 

are based on CGH technology (Figure 1). SNP array technology is based on the discrimination 

between the two possible SNP alleles (A or B) for a specific position in the genome (Figure 2). For 

comprehensive reviews on the microarray technologies used by various manufacturers refer to  

Carter [8] and Alkan et al. [9]. 

Figure 1: The patient DNA and a normal control DNA, used as reference are differentially labelled 

using fluorescent dyes. The two DNAs are then mixed together and hybridised on a microarray slide 

bearing immobilised BAC (Bacterial Artificial Chromosome) or oligo (oligonucleotide) probes. Each 

probe, i.e., each spot on the slide, represents a specific locus in the genome. The DNAs will bind to 

probes with complementary sequence. After hybridisation the slide is scanned and the fluorescence of 

each dye for each probe measured. The relative intensity between the two fluorescent dyes is 

calculated for each probe. The normal copy number for any locus in the genome is usually 2. An equal 

intensity (sample:control 2:2) for the two dyes, would represent the same amount of sample  

(two copies) and control (two copies) DNA and therefore a normal copy number. Higher intensity for 

the sample DNA (sample:control 3:2) would represent a gain (three copies), while a lower intensity for 
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the sample DNA (sample:control 1:2) would represent a loss (one copy) for the particular probe. 

Analysis software plots each probe along the length of the chromosomes depending on its location and 

also on, above or below a baseline (that represents the normal copy number) according to its relative 

fluorescent dye intensity.  

Figure 2: The patient DNA is labelled using a fluorescent dye and is subsequently hybridised on a 

microarray slide. Each spot on the slide represents either the A or B allele for a specific locus in the 

genome. Both alleles are represented multiple times on the array. The DNA will bind to probes with 

complementary sequence. After hybridisation the slide is scanned by a scanner that measures the 

fluorescence of each probe. The fluorescence intensity for each locus and for each allele at that locus is 

calculated. A heterozygous locus (AB) will show equal intensity for both alleles. A homozygous locus 

(AA or BB) will show higher intensity for the allele present (A or B). Copy number information can 

also be extrapolated from this data. Analysis software compares the data to a reference datafile in silico 

and plots each probe along the length of the chromosomes depending on its location and fluorescence 

intensity, but also on the B Allele Frequency (BAF) plot according to the presence or absence and 

fluorescent intensities of the A and B alleles. 

Figure 1. Comparative Genomic Hybridisation (CGH) arrays. 
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Figure 2. Single Nucleotide Polymorphism (SNP) arrays. 

 

Here, we compare the performance of different array platforms and designs with regards to 

appropriateness for use for prenatal testing (Table 1). We will also discuss the factors to consider when 

implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations. 

2. Types of Array Platforms 

2.1. BAC Arrays 

The first microarray platforms utilised BAC clones derived from the Human Genome Project. In 

more recent years they have been largely replaced by oligo-based platforms, either CGH or SNP, due 

to the higher resolution that these platforms can offer. However, certain features of BAC microarrays 

make them potentially appealing in a prenatal setting. 
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Table 1. Comparison between Karyotype, Bacterial Artificial Chromosome (BAC) arrays, oligo Comparative Genomic Hybridisation (CGH) 

and Single Nucleotide Polymorphism (SNP) arrays. 

   Array Platform  

 Karyotype BAC Oligo CGH SNP 

Resolution 5–10 Mb 0.5–1 Mb 
0.05–0.4 Mb 0.05–0.4 Mb 

depending on specific platform, design and calling settings 

Diagnostic yield  

(excluding common aneuploidies) 
around 5% 

higher than 

karyotype 
higher than BAC arrays higher than BAC arrays 

Diagnostic yield almost double compared to karyotype 

Detection of CNVs of  

unknown significance 
+ + ++ ++ 

Detection of CNVs of reduced penetrance 

and variable expressivity 
− + + + 

Starting material (ng)  50 1000 (200–2000) 200–250 

Turnaround time (working days) (+ 1 day if 

a rapid result is needed in advance) 
6–10 3 4 4–7 

Multiplexing/Throughput − 2 samples per slide 
1–8 samples per slide multiplexing 

in 94-well plates possible 

1 sample per chip or 8 samples per slide 

multiplexing in 94-well plates possible 

Detection of MCC possible only if the fetus is male − − + 

Detection of triploidy + − − + 

Detection of LOH/UPIC − − − + 

Detection of mosaicism + 
Depends on size of the locus, type of aberration, platform, normalisation and calling algorithms. 

Possibly easier detection using SNP arrays 

Cost comparable to microarray Depends on throughput, specific platform and overhead costs 

BAC = Bacterial Artificial Chromosome, Oligo = Oligonucleotide, CGH = Comparative Genomic Hybridisation, SNP = Single Nucleotide Polymorphism, CNV = Copy 

Number Variation, MCC = Maternal Cell Contamination, LOH = Loss of Heterozygosity, UPID = UniParental IsoDisomy. 
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Diagnostic laboratories usually receive Chorionic Villus Samples (CVS) or Amniotic Fluid (AF). 

Given that the amount of material is often limited and back-up cultures need to be set up, only a 

minimal amount of CVS or AF is available for DNA extraction. It can be challenging to obtain DNA 

of adequate quantity and quality for microarray testing, but this problem can be resolved when using a 

BAC platform, since the recommended starting material is only 50 ng, an amount easily obtainable 

from most samples. 

BAC clones are 100–150 kb long and therefore generate an intense hybridisation signal with a high 

signal-to-noise ratio. This translates to a good microarray profile and a robust, reproducible assay, 

making them an attractive choice for the often poor quality prenatal DNA. 

DNA could, of course, be extracted from cultured cells instead of direct CVS or AF samples, 

providing enough material for high quantity and quality DNA extraction. This would, however, add 

considerably to the reporting time and is to be avoided for prenatal samples where time is limited. In 

addition, cultural artefacts can arise that may require extra culturing and karyotyping work to 

determine their significance. 

BAC arrays have an average whole genome resolution of 0.5–1 Mb, which is around 10 times 

higher than conventional karyotyping, but is lower than oligo-based arrays. However, this could be 

considered desirable in a prenatal setting, because although increasing resolution increases the 

diagnostic yield in postnatal cases [10], it also increases the detection of CNVs of unknown 

significance [11,12]. Abnormal sonographic findings are often non-specific making clinical 

interpretation of microarray findings of unknown significance challenging. From the laboratory 

perspective, interpretation can be difficult, time-consuming and potentially inconclusive, even when 

parental samples are available and inheritance studies are undertaken. More importantly, from the 

clinical and patient perspective, such microarray findings can lead to difficult counselling creating a lot 

of uncertainty and anxiety to the parents and potentially leading to the termination of healthy  

wanted pregnancies. 

The first BAC arrays required a dye-swap experiment. The DNA of interest and normal reference 

control DNA were labelled twice each, swapping fluorescent dyes, and hybridised on two sub-arrays 

(hybridisation areas) on a microarray slide. This resulted in one sample being hybridised per slide. 

Newer BAC platforms, protocols and analysis software have been developed, so that dye-swap is no 

longer necessary. This allows two samples to be set up per array slide. Even so, multiplexing is limited 

and BAC arrays are only suitable for low throughput. In a laboratory receiving many prenatal samples, 

this would be labour intensive and would not be cost-effective. In addition, it is now common practice 

to use higher resolution platforms for postnatal referrals, leading to the requirement for two different 

platforms, one for postnatal and another for prenatal testing, and the concomitant logistical difficulties 

this may entail. However, in a smaller laboratory that receives only a few samples a week, a BAC 

platform may be cost-effective and could minimise any delay in reporting as only two samples are 

required per run. BAC arrays protocols are 1–1.5 day long, giving the potential of a very fast result. 

Theoretically, from sample receipt to reporting it could take less than three days. 

To our knowledge, currently there is only one available off-the-shelf BAC platform on the market. 

This is largely for users of prenatal arrays, but it means there are very limited options regarding array 

design and supplier. 
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2.2. OligoCGH Arrays 

OligoCGH arrays are widely used in the postnatal setting. Oligo probes are ~50–60 bp long  

(2000–2500 times shorter than BAC probes), and thus have the potential to provide higher resolution, 

which is dependent on the number and spacing (density) of the probes, as well as on the number of 

consecutive probes needed for a CNV call to be made. Whereas BAC arrays have a high  

signal-to-noise ratio and therefore a single BAC clone is sufficient for accurate CNV calling, shorter 

oligo probes result in less specific hybridisation and lower signal-to-noise ratio, i.e., higher background 

noise. For oligo-based arrays this leads to less robust assays and higher number of consecutive probes 

required for a call to be made confidently. This means that the resolution can be varied depending on 

the platform and the calling parameter settings adopted after the validation of the platform. A 

minimum resolution of 400 kb has been recommended [13]. 

Higher resolution results in the detection of smaller CNVs. Therefore, as already mentioned, the 

diagnostic yield is higher when using an oligo-based (either CGH or SNP) compared to BAC  

arrays [10,14]. With higher diagnostic yield, usually comes a higher rate of CNVs of unknown 

significance [11,12]. However, for a variety of reasons, the final detection rate of changes of unknown 

significance is similar for BAC and oligoCGH arrays, although the nature of uncertainty is different. 

Both platforms can lead to uncertainty because of limited or absent data in in-house and publically 

available databases relevant to the CNV detected and the genes within it. This type of uncertainty is 

higher in oligo arrays. In contrast, when using BAC arrays, interpretational difficulties arise because of 

the large intervals between consecutive probes and therefore uncertainty as to the gene content [14]. 

Oligo-based arrays provide better description of the breakpoints and therefore, more precise 

delineation of the genes involved. Such CNVs are often inherited, making interpretation easier in light 

of the parent’s phenotype. De novo CNVs are less frequent and could be causative of an abnormal 

phenotype. In addition, although such “private” CNVs of unknown significance might be more 

frequently encountered in oligo-based platforms, recurrent CNVs of variable expressivity or 

incomplete penetrance, such as the reciprocal duplication of the DiGeorge Syndrome region 

(dup(22)(q11.2q11.2)), are equally prevalent in both BAC and oligo-based arrays, posing the same 

difficulties in interpretation, reporting, and counselling. 

Microarrays have now been in clinical use for a few years, and online databases with results 

from normal individuals (such as the Database of Genomic Variation [15]), and those with 

phenotypic abnormalities (such as DECIPHER [16] and ECARUCA [17]), are widely available. In 

addition, databases cataloguing genes (Online Mendelian Inheritance in Man (OMIM)) and 

genomic regions (DECIPHER) that cause disease are available. The International Standards  

for Cytogenomics Array (ISCA) consortium provide regular reviews and updates on  

haplo-insufficiency or triplo-sensitivity scores assigned to genes [18]. These databases are 

indispensable tools that aid the interpretation of both postnatal and prenatal microarrays, 

minimising uncertainty in reporting. Additionally, as datasets of both normal control subjects and 

subjects being tested by microarray are becoming larger, the prevalence of relatively rare recurrent 

CNVs of variable expressivity or incomplete penetrance can be more accurately calculated. Over 

time this improves our understanding of CNVs and helps in the counselling of parents when the 

fetus carries such a CNV [19,20]. 
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The resolution of the array used and the reporting of CNVs of unknown significance vary in 

different parts of the world [11]. This is reflected by the fact that the majority of laboratories in the 

USA use the highest resolution arrays, while in most European countries laboratories use lower 

resolution oligo-based arrays. 

The amount of DNA available from prenatal samples can be limited, and the recommended starting 

material varies between different platforms from as little as 200 ng to 2000 ng of DNA. An average 

would be 1000 ng, but practical experience in our laboratory has shown that even with half the amount 

of DNA (500 ng), good array results with quality and profiles comparable to postnatal results can be 

consistently obtained from prenatal samples. Laboratories should validate their platform for lower 

DNA starting material, in order to maximise its utility for prenatal samples with low quantities  

of DNA. 

There are a variety of commercially available oligoCGH platforms. Depending on the probe density 

used, these platforms can be used to multiplex between one and eight samples per slide. Higher 

multiplexing results in streamlined workflow, lower array price per sample, improved turnaround 

times and overall cost-efficiency. Moreover, protocols which adopt multiplexing the labelling process 

in 94-well plates can further increase the throughput, rendering these platforms appropriate for 

laboratories that receive large number of samples per week. OligoCGH array protocols are 1.5–2 days 

long, adding potentially 0.5–1 day of turnaround time compared to BAC arrays. However, results 

could still be reported within four days from sample receipt. 

2.3. SNP Arrays 

SNP arrays were initially designed for and used in studies examining the association of specific 

SNPs with disease (Whole-Genome Association Studies). Later, their use was expanded to the 

detection of CNVs. 

SNP arrays use oligo probes that are either 25 bp or 50 bp long, and therefore tend to have the 

lowest signal-to-noise ratio compared to other platforms. Again, as with oligoCGH arrays, resolution 

will depend on the probe density and the calling algorithm. SNP arrays can be designed with different 

numbers of SNPs across different parts of the chromosome and resolution will be higher in targeted 

areas. SNP arrays tend to have the highest probe density compared to BAC and oligoCGH arrays, and 

therefore they allow more accurate delineation of the breakpoints and the genes, or even the introns 

and exons of a specific gene involved. Despite this, as with oligoCGH, interpretational difficulties 

might arise when private CNVs are encountered but in-house and online available databases, as well as 

inheritance studies, will resolve the vast majority of these. 

The starting material recommended is between 200 ng and 250 ng of DNA, which is in general an 

achievable target for the majority of prenatal samples. As with other array platforms, even lower 

amounts of starting material are likely to give microarray results of adequate quality for analysis. As 

with oligo arrays, there are a variety of platforms available, many of which can be used to multiplex 

samples in batches of up to 24. Protocols vary and can last three to five days, adding considerable time 

to the results turnaround time. Nevertheless, results can be reported within five to seven days from 

sample receipt, which is usually an acceptable timeframe for prenatal samples, particularly when 

compared to karyotyping, where average reporting times are between 10–14 days. 
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The disadvantage of SNP arrays results from the fact that probe spacing and genome coverage is 

limited by the non-random distribution of SNPs in the genome. Regions of segmental duplications are 

usually poorly or not at all covered. SNP array manufactures now provide arrays that also have  

non-polymorphic SNP-independent copy number probes providing more even and consistent coverage. 

The major advantage of SNP arrays over other platforms, and of particular relevance to prenatal 

diagnosis, is the additional data gained by the SNP probes. This data, presented usually as B Allele 

Frequency (BAF), provides valuable genotyping information by producing specific BAF patterns in 

cases of triploidy, diploid-triploid mosaicism, maternal cell contamination (MCC), and loss of 

heterozygosity (LOH). These patterns render such cases readily detectable. Triploidy and  

diploidy-triploidy mosaicism are relatively frequent in prenatal diagnosis (1%–3% of conceptions) and 

would not be detected by BAC or oligo arrays. MCC is thought to occur in around 2.5% of cases, 

especially in bloodstained amniotic fluid samples [21]. A SNP array would detect the presence of the 

maternal genotype in the sample and indicate that the DNA tested is not purely fetal, thereby 

decreasing the reliability of the results. The presence of LOH could be either due to common ancestry 

of the parents (consanguinity) or due to UniParental IsoDisomy (UPID). UPID is clinically relevant for 

certain imprinted regions of the genome (e.g., 15q11q13 is associated with Prader-Willi and Angelman 

Syndromes). However, the diagnostic yield for clinically relevant UPID is very low because the 

incidence of uniparental disomy is rare [22]. Alternatively, LOH for a whole acrocentric chromosome 

might represent an isochromosome, which would alert the laboratory to further investigate the fetus 

and parents by karyotyping to assess future reproductive risks [23]. 

One further advantage is that the genotype information provided by SNP arrays allows more 

accurate copy number determination than CGH (BAC or oligo) arrays because the latter delivers a 

relative quantitation technique, where gains and losses in comparison to the reference normal genome 

are detected but the exact copy number cannot be easily extrapolated. The exact copy number is more 

easily extrapolated by the BAF plot generated from SNP array analysis, which allows homozygous and 

heterozygous deletions to be easily distinguished. Similarly, three copies can be easily distinguished 

from four copies at a specific locus, which might indicate the specific underlying mechanisms of 

chromosomal aberration formation. In general, the SNP data provides confirmation of the copy number 

data, minimising technical artefacts and false-positive calls. 

It has also been suggested that mosaicism is more readily detectable by SNP arrays, due to the 

presence of the SNP data. However, direct comparisons among platforms are difficult, because the 

lowest level of mosaicism detected will not only depend on the size of the locus and type of aberration, 

but also on the microarray data normalisation and calling algorithms [13]. 

Finally, when using CGH platforms the patient and control DNA need to be sex-matched and 

therefore the fetal sex needs to be known before the microarray testing. The technology of SNP arrays 

is not based on CGH, as only the patient DNA is hybridised on the microarray slide or chip. The data 

produced is then compared to a reference data-file, containing the results from multiple controls. As 

knowledge of fetal sex is not required before SNP analysis, no rapid sex determination using QF-PCR 

(Quantitative Fluorescent—Polymerase Chain Reaction) is required. This offers a further advantage 

over oligo arrays, where this step must be undertaken before analysis. 
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3. Array Design 

3.1. Targeted 

In order to minimise findings of unknown clinical significance, some of the first BAC platforms 

designed were targeted, only covering regions of the genome linked to known syndromes, as well as 

subtelomeric and pericentromeric regions. Backbone probes, i.e., probes evenly spaced across the 

genome providing low whole genome coverage, were not included in these designs and, therefore, 

such platforms showed large coverage gaps. The majority of pathogenic CNVs are non-recurrent; thus, 

pathogenic abnormalities may be missed, while the incidence of CNVs of unknown significance is not 

necessarily decreased [24]. 

Targeted designs are not commercially available currently and, if a laboratory wished to use such a 

platform, it would have to be custom-made. The authors’ opinion is that targeted designs should be 

avoided, due to the significant likelihood of even large clinically relevant CNVs being missed. A 

design with at least a low-resolution backbone would be more appropriate in the prenatal setting. 

3.2. Whole-Genome 

As the name implies, whole-genome designs include probes covering the whole genome. Probes  

are usually spaced in more or less equal intervals, which overcome the problem of missing large 

clinically-relevant CNVs encountered in targeted designs. 

Whole-genome designs tend to produce array profiles of good quality with few, if any,  

false-positive calls. However, the vast majority of commercially available designs are whole-genome 

and targeted. 

3.3. Whole-Genome and Targeted 

Most commercially available designs follow the whole-genome and targeted format. A probe 

backbone covering the whole genome is present. Moreover, additional probes are included, targeting 

regions and genes of clinical interest. Regions and genes of interest can be identified from resources 

such as peer-reviewed publications and OMIM. The most commonly adopted list of targeted genes and 

regions is the ISCA design, which is based on the haplo-insufficiency and triplo-sensitivity scores 

assigned by the ISCA consortium [18]. 

The main drawback of targeting specific loci is that the design needs to be constantly under  

review and frequently updated in line with the new evidence published. For instance, although recent 

evidence clearly supports the fact that haplo-insufficiency of the gene ARID1B leads to intellectual 

disability [25,26] and the gene has been assigned the highest haplo-insufficiency score by the ISCA 

consortium, the gene is not targeted in the current version 2 ISCA microarray design, because it was 

defined since the last update. Similarly, genes that are targeted might be under review and may not be 

targeted in future versions. 

Furthermore, because of the targeted nature of the design, probe coverage is not uniform across  

the genome. In our experience, labelling issues or relatively poor quality array profiles could lead to 

false-positive CNVs of whole genes that are targeted in these designs. Such artefacts are much less 
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frequent in whole-genome non-targeted designs. Therefore, microarray analysts should be aware of 

such artefacts and vigilant when interpreting targeted single gene gains or losses. Microarray quality 

metrics should always be taken into consideration. 

3.4. Custom Designs 

Laboratories have the option of designing their own array platforms, whether targeted,  

whole-genome or both. Again, as with off-the-shelf platforms, targeted regions and genes should be 

frequently reviewed and the design should be updated accordingly. Furthermore, since the design and 

probes included will not have been validated by the array supplier, additional validation locally might 

be necessary. 

4. Other Factors to Consider When Implementing a Prenatal Array Service 

4.1. Experience 

One of the most important factors to consider before offering a prenatal microarray service is the 

individual laboratory’s experience of arrays [27]. The previous and current experience of specific 

platforms is an invaluable tool in the successful implementation of prenatal arrays. As mentioned 

above, in-house databases will greatly aid interpretation, even if they are mainly built on results from 

postnatal samples. Moreover, practical experience of the array protocol and behaviour of the specific 

platform will help implement a prenatal service by simplifying the validation process and aiding 

troubleshooting. We consider the experience in postnatal samples not only desirable, but also an 

indispensable component for the implementation of microarrays in a prenatal setting. We recommend 

that the same platform should be used for both postnatal and prenatal referrals. In addition to 

interpretation, this will assist in and simplify the laboratory’s workflow, saving considerable labour 

time. Laboratories that only offer a prenatal service should not be discouraged from implementing 

microarrays. However, they will need to choose an array platform and design that they feel confident 

analysing and undertake extensive validation. 

4.2. Costs 

Although the features of different platforms and designs described here are of utmost importance 

when choosing a prenatal microarray, the cost of implementation cannot be ignored. Cost per patient 

can vary between different platforms and suppliers. For the same type of platform, cost increases with 

increasing resolution. Additionally, if the microarray service is being introduced in the laboratory, 

further setting-up costs will apply and they may vary widely. In general, reagent costs tend to be 

comparable for platforms of similar resolution: Therefore, set-up, validation, and the ability to 

multiplex, and thereby increase efficiency, may be deciding factors when selecting an array platform. 

In addition to reagent and hardware expenses, labour may add considerably to the cost. Labour cost 

varies across the world and high-cost labour could be offset by automation and fast, intuitive,  

user-friendly analysis software. 
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4.3. Analysis and Analysis Software 

As already mentioned, it is crucial for the analysis software to be fast, intuitive and  

user-friendly, not only in order to reduce analysis time and labour costs, but also to aid with 

interpretation. The analysis software should have links to all the major genome browsers and variant 

databases (such as DGV, DECIPHER, ECARUCA, ISCA, OMIM). If this data is embedded in the 

software, instead of being real-time, then frequent software updates should be released by the software 

supplier. The analysis software should also have the capacity of creating and storing a database with all 

the previous laboratory microarray results and their interpretation. This in-house database would  

be of utmost importance during analysis of future cases, especially since some CNVs can be  

platform-specific benign variants or artefacts. 

Most array platforms come with complimentary analysis software but this should be assessed and 

deemed fast and intuitive by the user. If the software is not user-friendly, then purchasing a license for 

alternative software should be considered, especially if this would save considerable analysis and 

interpretation time. In addition, different software programmes utilise different algorithms and thus 

their performance can be very variable [28,29] and can affect the detection of CNVs. 

In order to minimise the detection of CNVs of unknown significance, some laboratories may choose 

to filter the microarray results and apply CNV size cut-off filters. However, the gene content is more 

informative regarding interpretation than the size of the CNV. Therefore, in our view, even when using 

a filter, CNVs of unknown significance, variable expressivity or incomplete penetrance, will still be 

detected with significant chromosomal abnormalities being missed. 

5. Conclusions 

The advantage of microarray over conventional karyotype for the diagnosis of fetal pathogenic 

chromosomal aberrations has been proven [2–4] and is no longer debatable [5,6]. However, this 

increased yield of abnormal chromosomal abnormalities brings with it counselling challenges 

subsequent to the interpretational difficulties associated with the increased detection of CNVs of 

variable or unknown significance. 

There are several array platforms and designs available, each with their own advantages and 

disadvantages. Many factors will impact on the decision as to which to use (Table 2) and will be a 

balance between the diagnostic yield, detection of CNVs of unknown significance and implementation 

costs. Regardless of which platform is used, awareness by the laboratory, as well as by the clinicians 

and genetic counsellors, of the limitations and advantages of the platform is crucial, in order to limit 

unrealistic expectations and facilitate appropriate pre-test and post-test counselling. 
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Table 2. Choosing a microarray platform checklist. 

1 Current platform used by the laboratory; incorporation in current workflow 
2 Existing experience with and results in-house database from current/previous platforms 
3 Platform resolution; diagnostic yield and potential detection of CNVs of unknown significance 
4 Platform design; whole-genome/targeted, off-the-self/custom-made 
5 Cost for setting-up a prenatal microarray service 
6 Reagents cost per patient; potential for multiplexing 
7 Starting material; DNA extraction method and DNA yield 
8 Report turnaround time 
9 SNP information; detection of triploidy/MCC/LOH 

10 Analysis software 

In our era of rapidly developing genetic technologies, it is to be anticipated that next generation 

sequencing (NGS) will replace array technology both postnatally and prenatally. The use of  

non-invasive prenatal testing (NIPT) for aneuploidy by analysis of cell free fetal DNA in maternal 

blood is now a reality [30] and it is expected to dramatically reduce the number of invasive procedures 

and tests [31]. As the NIPT technology becomes more robust and affordable, it will also have the 

potential to be used for the detection of fetal CNVs [32] and eventually fetal whole genome 

sequencing [33], potentially replacing invasive testing and prenatal microarrays altogether. 
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