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Abstract: Plants are sources of sunscreen ingredients that prevent cellular mutations involved in
skin cancer and aging. This study investigated the sunscreen properties of the extracts from some
ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained
from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined.
Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and
critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also ob-
tained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue
exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were
identified by UHPLC–ESI+–Orbitrap–MS. The studied extracts showed high photoprotection efficacy
and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum
photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human
fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the
highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic.
The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone
20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia;
quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and
kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen
ingredients was discussed.

Keywords: ultraviolet light; photoprotection; antigenotoxicity; cytotoxicity; genotoxicity; human
fibroblasts; ornamental plants

1. Introduction

Photoprotection is a preventive strategy to defend human skin against cancer and
photoaging [1]. The sunlight UV rays that reach the Earth’s surface, such as ultraviolet
A (320–400 nm) and ultraviolet B (280–320 nm), cause DNA damage (e.g., cyclobutane
pyrimidine dimers), which initiates inflammatory processes and skin cancer [2,3]. The use
of sunscreens is among the most popular strategies in photoprotection [4]. Sunscreens
contain compounds that act like filters, either absorbing or refracting the UV radiation [5].
Relevant properties of sunscreens used commercially have been reviewed [6,7].

It has been indicated that active ingredients of commercial sunscreens can be toxic to
humans and coral reefs [8–11], which has increased the interest in using phytochemicals
in sunscreen formulations [12–17]. Phytochemicals are genoprotective and anticancer
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agents [18,19] that are considered to be non-toxic and pharmacologically safe for human
consumption [13]. These phytochemicals can prevent cellular mutations involved in skin
cancer and aging by regulating UV-induced mutability [20,21].

Among the wide plant diversity, ornamental species have been widely used as raw
materials for the cosmetic industry due to both their fragrance and therapeutic proper-
ties [22]. Colombia is the second highest exporter of ornamental flowers worldwide [23];
however, until today, their use has been exclusively for decorative purposes. In the present
study, we took advantage of the cosmetic and therapeutic properties of ornamental plants
to find phytochemicals that can be used as sunscreen ingredients.

The work aims were as follows: (i) to evaluate the UV absorption capability of flower
extracts obtained from some ornamental plants growing in Colombia by means of in vitro
protection efficacies (SPFin vitro, and λc), (ii) to study the correlation between in vitro UVB
protection efficacy (SPFin vitro) and complementary SOS Chromotest-based DNA protection
using data from flower extracts, (iii) to evaluate in human fibroblast the cytotoxicity
and genotoxicity of promising extracts, and (iv) to study the chemical composition of
promising extracts as sources of sunscreens. We showed that the flower extracts isolated
from ornamental plants, R. centifolia and P. latifolia, were rich in photoprotective compounds.
P. latifolia extract, which is photostable and relatively safe, seems to be a good candidate for
a sunscreen active ingredient.

2. Results
2.1. In Vitro Photoprotection Efficacy of the Flower Extracts

The UV absorbance spectrum of each flower extract is shown in Figure 1; high levels
of absorbance across the UV spectrum were observed for all extracts. The extracts showed
the highest absorbance peaks for λ between 225 and 320 nm. All the absorbance peaks
depended on the extract concentrations.
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Figure 1. UV absorbance spectra of the flower extracts obtained from: (A) R. centifolia pink, commer-
cial variety, (B) R. centifolia fuchsia, commercial variety, (C) P. latifolia, and (D) I. horsfalliae. Error bars
indicate the standard error of the mean for at least three independent experiments (n = 3).
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The SPFin vitro values calculated for each flower extract are presented in Table 1. Ac-
cording to the European Commission categories (see Section 4), the four flower extracts
showed UVB photoprotection efficacy (SPFin vitro ≥ 6.0); the SPFin vitro values increased
with concentration (R = 0.97, p < 0.001, Figure 2A). Except for the I. horsfalliae extract, other
extracts also showed broad-spectrum (UVA-UVB) protection efficacy (λc ≥ 370 nm) at a
high extract concentration (750 µg/mL).

Table 1. List of the studied plant species. For each plant extract, the following indices are shown:
(i) UVB protection efficacy (SPFin vitro); (ii) critical wavelength (λc); (iii) genotoxicity inhibition
percentage (%GI) obtained using the SOS Chromotest; and (iv) percentages of human fibroblast
cell viability (%CV). At photoprotective and non-cytotoxic extract concentrations, the percentage of
effectiveness (Eff) values was also estimated for the minimum erythema dose (MDE) according to the
Fitzpatrick skin scale.

Species (CNH Voucher) Conc. (µg/mL) SPFin vitro λc %GI %CV Eff I Eff II Eff III Eff IV

Rosa centifolia pink,
commercial variety 0 0 ± 0 0 ± 0 0 ± 0 93 ± 2 - - - -

62 3 ± 0 360 ± 0 4 ± 4 93 ± 2 - - - -
125 6 ± 0 360 ± 0 17 ± 6 91 ± 2 - - - -
250 11 ± 0 360 ± 0 31 ± 7 88 ± 2 95% 98% 100% 97%

LC30 = 363 15 ± 0 360 ± 0 44 ± 3 70 ± 0 93% 100% 100% 100%
LC50 = 492 21 ± 0 360 ± 0 50 ± 1 50 ± 0 83% 96% 87% 84%

500 21 ± 0 360 ± 0 56 ± 2 49 ± 16 - - - -
750 32 ± 0 370 ± 0 72 ± 2 22 ± 10 - - - -

Rosa centifolia fuchsia,
commercial variety 0 0 ± 0 0 ± 0 0 ± 0 94 ± 1 - - - -

62 3 ± 0 357 ± 0 12 ± 8 93 ± 1 - - - -
125 5 ± 0 353 ± 0 24 ± 5 91 ± 1 - - - -
250 10 ± 0 360 ± 0 22 ± 7 87 ± 3 88% 92% 99% 100%

LC30 = 492 23 ± 0 360 ± 0 30 ± 5 70 ± 0 88% 100% 84% 90%
500 25 ± 0 360 ± 0 43 ± 3 69 ± 13 73% 84% 80% 79%

LC50 = 702 36 ± 1 370 ± 0 55 ± 3 50 ± 0 91% 94% 89% 94%
750 32 ± 1 370 ± 0 74 ± 3 45 ± 6 - - - -

Posoqueria latifolia
(COL512080) 0 0 ± 0 0 ± 0 0 ± 0 90 ± 3 - - - -

62 3 ± 0 357 ± 0 27 ± 2 90 ± 2 - - - -
125 6 ± 0 360 ± 0 27 ± 2 90 ± 1 - - - -
250 13 ± 1 360 ± 0 27 ± 2 88 ± 3 81% 79% 90% 90%
375 19 ± 0 360 ± 0 48 ± 2 84 ± 4 86% 83% 88% 90%
500 26 ± 2 360 ± 0 58 ± 2 82 ± 6 89% 98% 90% 100%
750 35 ± 1 370 ± 0 67 ± 2 73 ± 6 91% 93% 92% 99%

Ipomoea horsfalliae
(COL587134) 0 0 ± 0 0 ± 0 0 ± 0 93 ± 1 - - - -

62 4 ± 0 340 ± 0 9 ± 5 89 ± 0 - - - -
125 7 ± 0 340 ± 0 8 ± 6 76 ± 5 87% 89% 90% 91%

LC30 = 250 12 ± 0 340 ± 0 10 ± 4 70 ± 9 100% 93% 90% 96%
LC50 = 398 39 ± 0 350 ± 0 20 ± 6 50 ± 0 99% 100% 99% 100%

500 39 ± 0 350 ± 0 29 ± 8 36 ± 12 - - - -
750 39 ± 0 350 ± 0 59 ± 3 16 ± 5 - - - -

Commercial sunscreen 0 0 ± 0 0 ± 0 0 ± 0 94 ± 0 - - - -
(Eau Thermale Avène

SPF 50+) †,‡ 465 27 ± 0 370 ± 0 0 ± 0 84 ± 1 100% 100% 100% 100%

930 30 ± 0 370 ± 0 4 ± 0 54 ± 6 100% 100% 100% 100%
1870 40 ± 0 380 ± 0 14 ± 1 27 ± 5 - - - -
3750 40 ± 0 380 ± 0 32 ± 1 5 ± 3 - - - -
7500 40 ± 0 380 ± 0 42 ± 0 2 ± 0 - - - -

15,000 40 ± 0 380 ± 0 67 ± 1 0 ± 0 - - - -
30,000 40 ± 0 380 ± 0 82 ± 1 0 ± 0 - - - -

Titanium dioxide † 0 0 ± 0 0 ± 0 0 ± 0 88 ± 2 - - - -
50 6 ± 0 380 ± 0 0 ± 0 58 ± 1 87% 83% 75% 82%
62 6 ± 0 390 ± 0 12 ± 1 39 ± 6 - - - -

100 11 ± 0 390 ± 0 20 ± 4 19 ± 0 - - - -
125 12 ± 0 390 ± 0 32 ± 6 0 ± 0 - - - -
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Table 1. Cont.

Species (CNH Voucher) Conc. (µg/mL) SPFin vitro λc %GI %CV Eff I Eff II Eff III Eff IV

250 26 ± 0 390 ± 0 57 ± 7 0 ± 0 - - - -
500 40 ± 0 380 ± 0 82 ± 3 0 ± 0 - - - -

1000 40 ± 0 380 ± 0 100 ± 2 0 ± 0 - - - -
2000 40 ± 0 380 ± 0 93 ± 4 0 ± 0 - - - -

CNH: Colombian National Herbarium. The SPFin vitro values were classified in categories according to the
European Commission recommendation as follows: no protection (0.0 ≤ SPFin vitro ≤ 5.9), low protection
(6.0 ≤ SPFin vitro ≤ 14.9), medium protection (15.0 ≤ SPFin vitro ≤ 29.9), high protection (30.0 ≤ SPFin vitro ≤ 59.9),
and very high protection (SPFin vitro ≥ 60.0). A λc > 370 nm defines broad-spectrum protection. The MDE values
were previously indicated by Valbuena et al. [24], and these are as follows: type I (0.035 J/cm2 = 350 J/m2),
type II (0.056 J/cm2 = 560 J/m2), type III (0.070 J/cm2 = 700 J/m2), and type IV (0.084 J/cm2 = 840 J/m2). †, For
the comparison, a widely used commercial sunscreen (Eau Thermale Avène SPF 50+) and sunscreen ingredient
(titanium dioxide) were included. ‡, The higher sunscreen concentration (v/v) evaluated was 30 mg/mL, dissolved
in distilled water.
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Figure 2. Correlation between UVB photoprotection efficacy (SPFin vitro) and extract concentration
(A) and %GI estimates (B). A database containing 28 paired SPFin vitro and %GI values, corresponding
to photoprotective flower extracts, was used.

2.2. Relations between SPFin vitro and %GI Estimates in Flower Extracts

None of the flower extracts had increased I values at concentrations assayed in the
SOS Chromotest (data not shown); therefore, they were considered not genotoxic in the
model E. coli PQ37 cells. All photoprotective extracts also showed antigenotoxic against
UVB radiation (Table 1). The SPFin vitro and %GI values in flower extracts were highly
correlated (R = 0.82, p < 0.001, Figure 2B). That is, the greater the UVB photoprotective
efficiency, the lower the genetic damage.

2.3. Extract Cytotoxicity in Human Fibroblast (MRC5) Cells

Cytotoxicity dose–response relations were studied for each flower extract at a concentra-
tion range between 62 and 750 µg/mL (Table 1). Next, lethal concentrations, 50% (LC50) and
30% (LC30), in human fibroblast (MRC5) cells were obtained by interpolation. Based on the
LC50 values, extract cytotoxicity was as follows: I. horsfalliae (398 µg/mL) > R. centifolia pink,
commercial variety (492 µg/mL) > R. centifolia fuchsia, commercial variety (702 µg/mL).
The extracts were safe for fibroblast cells at concentrations lower than LC30 values as follows:
I. horsfalliae (250 µg/mL); R. centifolia pink, commercial variety (363 µg/mL); and R. centifolia
fuchsia, commercial variety (492 µg/mL). The P. latifolia extract was unique in that it was
shown to be non-cytotoxic to fibroblast cells at the concentration range studied. All the
extracts were relatively less cytotoxic than the commercial sunscreen (Eau Thermale Avène
SPF 50+) and the sunscreen active ingredient (titanium dioxide) used for comparison.

2.4. Extract Genotoxicity in Human Fibroblast (MRC5) Cells

Genotoxicity dose–response relations were studied for each flower extract (Table 2).
According to genotoxicity criteria, the extracts produced some degree of DNA damage at the
following concentrations: I. horsfalliae (187.5 µg/mL) > R. centifolia (375.0 µg/mL) > P. latifolia
(750 µg/mL). Evaluation of the equivalent solvent concentrations (dilutions) in extracts indi-
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cated that the solvent (methanol) was not genotoxic in human fibroblasts for the concentration
range tested. Therefore, except for P. latifolia, the extracts showed low-to-moderate genotoxic-
ity across the concentration range studied. Such genotoxicity showed a clear dose–response
relationship (extract concentration–DNA damage), and demonstrates the importance of estab-
lishing the safe extract concentrations for potential use as sunscreen ingredients. These data
also suggest a cytotoxic mode of action depending on the genotoxicity for all extracts.

Table 2. Genotoxicity of the flower extracts in MRC5 human fibroblasts cells. The genetic damage in-
dex (GDI) values and their corresponding standard errors, calculated from at least three independent
experiments, are given. Pearson correlation coefficients (R) showing the relationship between GDI
extract concentrations are also presented.

Conc. (µg/mL)
GDI (
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The standard mutagen 4-nitro-quinoline-1-oxide (0.89 µg/mL) was used as positive control (PC). †, The DNA
damage criteria were as follows: (i) GDI values between 0 and 1 (no DNA damage); (ii) GDI values between 1 and
2 (little DNA damage); (iii) GDI values between 2 and 3 (moderate DNA damage); and (iv) GDI values between
3 and 4 (severe DNA damage). In addition, a clear dose–response relationship (concentration–DNA damage)
must exist. ‡, SEC: GDI values for solvent (methanol) equivalent concentrations (between 39 and 618 mM) in
the extracts.

2.5. In Vitro Photoprotection Efficacy and Photostability at Safe Extract Concentrations

At photoprotective and safe extract concentrations, namely, at non-cytotoxic (≤LC30)
and non-genotoxic concentrations, only the P. latifolia extract showed high UVB and broad-
spectrum (UVA-UVB) photoprotection efficacy values (Table 1). The other extracts demon-
strated a reduction in their SPFin vitro values, which indicates their low photoprotection
efficacy (6.0 ≤ SPFin vitro ≤ 15.0; λc < 370 nm) values. Conversely, extract photostability
or effectiveness (Eff) when they were irradiated at Fitzpatrick’s MDE was consistently
high at photoprotective and safe extract concentrations. According to these results, the
P. latifolia and R. centifolia extracts at non-cytotoxic concentrations could be good candidates
for use as sunscreen active ingredients. Conversely, the I. horsfalliae extract at non-cytotoxic
concentrations was shown to be genotoxic (Table 2) and poorly photoprotective (Table 1);
therefore, this extract was excluded from further analyses.

2.6. Chemical Characterization of the Promising Flower Extracts by UHPLC–ESI+–Orbitrap–MS

The yields of the hydroalcoholic flower extracts were as follows: P. latifolia (41.2 ± 0.1%)
> R. centifolia fuchsia, commercial variety (30.9 ± 0.0%) > R. centifolia pink, commercial
variety (18.2 ± 0.1%). The UHPLC–ESI+–Orbitrap–MS analysis of the flower extracts
from R. centifolia and P. latifolia plant species allowed us to identify presumptively several
compounds on the basis of their mass spectra fragmentation patterns and exact mass
measurements (Table 3).
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Table 3. Major constituents identified in flower extracts using UHPLC–ESI+–Orbitrap–MS. Extract constituents were dependent on their retention times (min) in
chromatograms. The extracts were as follows: A—Rosa centifolia pink, commercial variety, B—Rosa centifolia fuchsia, commercial variety, and C—Posoqueria latifolia.

No. tR, min Compounds Formula
Calculated Mass Experim.

Mass.
∆ppm HCD, eV

Product Ions
mg/g of Extract

(
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± SE, n = 3)

[M]+ [M + H]+ Fragment Type m/z (I, %) A B C

1 3.30 Cyanidin-3,5-glucoside a,b,c C27H31O16 611.1612 - 611.15987 1.37 20
[M-C6H10O5]+

[M-2C6H10O5]+

[M-2C6H10O5-C8H6O3]+

449.10965 (100)
287.05522 (52)
137.02374 (21)

- 34 ± 1 -

2 3.61 Chlorogenic acid a,b,c C16H18O9 - 355.10235 355.10384 0.76 10
[(M + H)-H2O]+

[(M + H)-C7H10O5]+

[(M + H)-C7H10O5-H2O]+

337.09030 (0.3)
181.04933 (2)

163.03917 (100)
- - 35 ± 1

3 3.83 Quercetin-rutinoside-
rhamnoside a,b C33H40O20 - 757.21856 757.21907 0.66 0

[(M + H)-C6H10O4]+

[(M + H)-C6H10O4-H2O]+

[(M + H)-C6H10O4-C6H10O5]+

[(M + H)-C6H10O4-C6H10O5-
C6H10O4]+

611.16151 (31)
593.1487 (0.1)
449.10834 (3)

303.05017 (100)

- - 1.5 ± 0.1

4 3.96
Kaempferol-

rhamninoside a,b C33H40O19 - 741.22365 741.22209 2.10 10

[(M + H)-C6H10O4]+

[(M + H)-2C6H10O4]+

[(M + H)-2C6H10O4-C6H10O5]+

[(M + H)-2C6H10O4-C6H10O5-
C8H6O2]+

595.16736 (13)
449.1091 (13)

287.05585 (100)
153.01669 (0.1)

- - 3.7 ± 0.4

5 4.00 Rhamnetin-rhamnoside a,b C34H42O20 - 771.23421 771.23531 1.41 0

[(M + H)-C6H10O4]+

[(M + H)-C6H10O4-H2O]+

[(M + H)-2C6H10O4]+

[(M + H)-2C6H10O4-C6H10O5]+

[(M + H)-2C6H10O4-C6H10O5-
C8H6O3]+

625.17715 (34)
607.16452 (0.3)
479.11913 (17)

317.06532 (100)
167.03427 (0.1)

- - 1.7 ± 0.1

6 4.10 Ecdysterone a,b C27H44O7 - 481.31598 481.31476 1.22 0

[(M + H)-H2O]+

[(M + H)-2H2O]+

[(M + H)-3H2O]+

[(M + H)-4H2O]+

463.30446 (100)
445.29547 (64)
427.28415 (16)
409.27374 (1)

- - 64 ± 8

7 4.10 Quercetin-3-rutinoside a,b,c C27H30O16 - 611.1612 611.16095 0.47 10

[(M + H)-C6H10O4]+

[(M + H)-C6H10O4-C6H10O5]+

[(M + H)-C6H10O4-C6H10O5-
C8H6O3]+

465.10226 (30)
303.04836 (100)
153.01828 (7)

1.3 ± 0.1 4.5 ± 0.1 6.9 ± 0.4

8 4.20 Quercetin-glucoside a,b,c C21H20O12 - 465.10275 465.10321 0.98 10 [(M + H)-C6H10O5]+

[(M + H)-C6H10O5-C8H6O3]+
303.04956 (100)
153.01776 (2) 6.3 ± 0.7 17 ± 1 1.3 ± 0.1

9 4.31
Kaempferol-

neohesperidoside a,b C27H30O15 - 595.16574 595.16379 3.29 10

[(M + H)-H2O]+

[(M + H)-C6H10O4]+

[(M + H)-C6H10O4-C6H10O5]+

[(M + H)-C6H10O4-C6H10O5-
C8H6O2]+

577.15659 (0.2)
449.10574 (33)

287.05545 (100)
153.01762 (1)

- - 8.7 ± 0.5
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Table 3. Cont.

No. tR, min Compounds Formula
Calculated Mass Experim.

Mass.
∆ppm HCD, eV

Product Ions
mg/g of Extract

(
–
x ± SE, n = 3)

[M]+ [M + H]+ Fragment Type m/z (I, %) A B C

10 4.31 Rhamnetin-rutinoside a,b C28H32O16 - 625.17631 625.17697 1.06 10

[(M + H)-C6H10O4]+

[(M + H)-C6H10O4-C6H10O5]+

[(M + H)-C6H10O4-C6H10O5-
C8H6O3]+

479.11914 (27)
317.06548 (100)
167.03214 (0.01)

- - 17 ± 1

11 4.33 Quercetin-arabinoside a,b C20H19O11 - 435.09218 435.0923 0.11 10 [(M + H)-C5H8O4]+

[(M + H)-C5H8O4-C8H6O3]+
303.04884 (100)
153.01845 (6)

1.08 ±
0.04 1.4 ± 0.2 -

12 4.43 Quercetin-3-
rhamnoside a,b,c C21H20O11 - 449.10838 449.10800 0.36 10 [(M + H)-C6H10O4]+

[(M + H)-C6H10O4-C8H6O3]+
303.04836 (100)
153.01828 (4) 49 ± 2 32 ± 1 -

13 4.43 Kaempferol-3-glucoside a,b,c C21H20O11 - 449.10783 449.10773 0.24 10 [(M + H)-C6H10O5]+

[(M + H)-C6H10O5-C8H6O2]+
287.05415 (100)
153.01802 (1) 70 ± 12 41 ± 1 -

14 4.57 Kaempferol-arabinoside a,b C20H18O10 - 419.09727 419.09756 0.69 0 [(M + H)-C5H8O4]+

[(M + H)-C5H8O4-C8H6O2]+
287.05553 (85)
153.01845 (1) 6.4 ± 0.5 2.0 ± 0.1

15 4.60 Rosmarinic acid a,b,c C18H16O8 - 361.09179 361.09157 0.62 10
[(M + H)-H2O]+

[(M + H)-C9H8O4]+

[(M + H)-C9H8O4-H2O]+

343.07965 (0.2)
181.04958 (10)

163.03841 (100)
- - 0.5 ± 0.0

16 4.60 cis-Resveratrol-
diglucoside a,b C26H32O13 - 553.19156 553.19199 0.41 10

[(M + H)-H2O]+

[(M + H)-2H2O]+

[(M + H)-C6H10O5]+

[(M + H)-C6H10O5-H2O]+

[(M + H)-2C6H10O5]+

535.18141 (3)
517.17064 (0.4)
391.13762 (94)

373.12898 (100)
229.08403 (0.1)

- - 140 ± 7

17 4.70 Kaempferol-rhamnoside a,b C21H21O10 - 433.11292 433.11453 1.39 10 [(M + H)-C6H10O4]+

[(M + H)-C6H10O4-C8H6O2]+
287.05499 (100)
153.01749 (0.3) 64 ± 8 23 ± 2 -

18 4.75 trans-Resveratrol-
diglucoside a,b C26H32O13 - 553.19156 553.19199 0.41 10

[(M + H)-H2O]+

[(M + H)-2H2O]+

[(M + H)-C6H10O5]+

[(M + H)-C6H10O5-H2O]+

[(M + H)-2C6H10O5]+

535.18141 (8)
517.17064 (0.2)
391.13762 (100)
373.12898 (62)
229.08403 (0.1)

- - 280 ± 16

19 5.16 Quercetin a,b,c C15H10O7 - 303.05047 303.0499 0.10 10 [(M + H)-C8H6O3]+ 153.01776 (1) 160 ± 26 130 ± 14 -

20 5.63 Kaempferol a,b,c C15H10O6 - 287.05501 287.05647 5.08 10 [(M + H)-C8H6O2]+ 153.01897 (0.2) 146 ± 5 51 ± 4 -

a Tentative identification based on comparison with [M+] or [M + H]+ ions reported in the literature for Rosa spp. [25,26]. b Tentative identification based on comparison with molecule
fragmentation pattern in mass spectra and on databases [27–30]. c Standard compounds used for the comparison of their mass spectra with those present in the extracts studied. HCD,
higher-energy-collisional-dissociation cell.
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The major compounds in the extracts (≥17 mg ± SD/g of extracts) were as follows:
quercetin-3-rhamnoside (49 ± 2), kaempferol-3-glucoside (70 ± 12), kaempferol-rhamnoside
(64 ± 8), quercetin (160 ± 26), and kaempferol (146 ± 5) in R. centifolia pink, commer-
cial variety; cyanidin-3,5-glucoside (34 ± 1), quercetin-glucoside (17 ± 1), quercetin-3-
rhamnoside (32 ± 1), kaempferol-3-glucoside (41 ± 1), kaempferol-rhamnoside (23 ± 2),
quercetin (130 ± 14), and kaempferol (51 ± 4) in R. centifolia fuchsia, commercial variety;
chlorogenic acid (35 ± 1), ecdysterone (64 ± 8), rhamnetin-rutinoside (17 ± 1), cis-resveratrol-
diglucoside (140 ± 7), and trans-resveratrol-diglucoside (280 ± 16) in P. latifolia. Other
compounds were also detected in the extracts at a minor proportion (<17 mg ± SD/g of
extracts), as follows: quercetin-rutinoside-rhamnoside (1.5 ± 0.1), kaempferol-rhamninoside
(3.7 ± 0.4), ramnetin-rhamnoside (1.7 ± 0.1), quercetin-3-rutinoside (6.9 ± 0.4), kaempferol-
neohesperidoside (8.7 ± 0.5), and quercetin-arabinoside (1.4 ± 0.2). The chromatographic
profiles obtained for the flower extracts studied, using the UHPLC–ESI+–Orbitrap–MS
technique, are shown in Figure 3.
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Figure 3. The extracted ionic currents (EICs) of [M]+ or protonated molecules [M + H]+ present
in the total ion current (TIC) obtained by UHPLC–ESI+–Orbitrap–MS for three flower extracts:
(A) R. centifolia (pink variety), (B) R. centifolia (fuchsia variety), and (C) P. latifolia. The peak numbers
correspond to major compounds as follows: 1—Cyanidin-3,5-glucoside; 2—Chlorogenic acid; 6—
Ecdysterone; 8—Quercetin-glucoside; 10—Rhamnetin-rutinoside; 12—Quercetin-3-rhamnoside; 13—
Kaempferol-3-glucoside; 16—cis-Resveratrol-diglucoside; 17—Kaempferol-rhamnoside; 18—trans-
Resveratrol-diglucoside; 19—Quercetin; 20—Kaempferol.
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3. Discussion

The present work evidenced that the flower extracts isolated from several ornamental
plants cultivated in Colombia contained compounds that could be used as sunscreen
ingredients. Among the eleven plant species studied in our project (data not shown), three
plants (R. centifolia, P. latifolia, and I. horsfalliae) in particular showed good photoprotective
properties. This finding provides new evidence on plant extract applicability as a source of
solar filters (Table 4).

We also showed that the photoprotection efficacy depended on extract concentration.
The photoprotective extracts were also antigenotoxic against UVB. This indicates that they
acted as filters that absorbed or refracted the UV rays and reduced genotoxicity. As in the
previous studies [17,31–33], our data support the use of DNA damage detection assay (in
this case, the SOS Chromotest) as an effective complement that improves the efficacy of
photoprotection measurement.

Table 4. Some plant species with reported sunscreen properties †.

Plant Family Species Name UV Protective Rank References

Adoxaceae Sambucus nigra UVA Jarzycka et al. [34]
Asteraceae Achyrocline satureioides UVB Fuentes et al. [17]

Baccharis antioquensis UVA-UVB Mejía-Giraldo et al. [14,35,36]
Chromolaena pellia UVA-UVB Fuentes et al. [17]

Helichrysum arenarium UVA Jarzycka et al. [34]
Pentacalia pulchella UVA-UVB Mejía-Giraldo et al. [14,35,37]

Bromeliaceae Neoglaziovia variegata UVB de Oliveira-Junior et al. [38]
Calophyllaceae Calophyllum inophyllum UVA-UVB Ku et al. [39]
Convolvulaceae Ipomoea horsfalliae UVB Sierra et al. [40]
Cucurbitaceae Momordica charantia UVB Guimarães de Sousa et al. [41]

Clusiaceae Garcinia brasiliensis UVB Figueiredo et al. [42]
Fabaceae Bauhinia microstachya UVB Reis-Mansur et al. [43]

Dimorphandra gardneriana UVB Nunes et al. [15]
Myricaceae Morella parvifolia UVA-UVB Puertas-Mejía et al. [44]

Nycataginaceae Boerhavia diffusa UVB Guimarães de Sousa et al. [41]
Rosaceae Crataegus monogyna UVA Jarzycka et al. [34]

Verbenaceae Lippia microphylla UVB Nunes et al. [15]
Lippia origanoides UVB Fuentes et al. [17]

Vitaceae Vitis vinifera UVA-UVB Hübner et al. [45]
†, Modified from Fuentes et al. [17].

As we indicated in the Introduction, some organic ingredients of commercial sun-
screens can be toxic to humans and coral reefs [8–10], with inorganic filters (i.e., titanium
dioxide or zinc oxide) being a safer alternative [11]. At photoprotective concentrations,
the extracts were relatively less cytotoxic than a commercial sunscreen (Eau Thermale
Avène SPF 50+), and its active ingredient (titanium dioxide) was used for comparison. In
this sense, the plants studied here could be new and safer sources of ingredients for the
development of commercial sunscreens.

The P. latifolia extract was the most promising for use as a sunscreen, because it
showed high photoprotective efficacy, antigenotoxicity, photostability, and relatively low
cytotoxicity and genotoxicity in human fibroblasts. P. latifolia, commonly known as jasmine
tree—mountain lily (azuceno)—monkey apple, is a native plant from Central and South
America [46]. This tree possesses flowers with a very intense scent, whose main fragrance
compound is (Z)-3-hexenyl acetate [47]. We found that P. latifolia ethanolic extract was rich
in cis- and trans-resveratrol diglucosides, two stilbenoid isomers, which were previously
identified in Vitis vinifera [48] and Glycine max [49]. Chlorogenic acid (35 ± 1 mg/g),
ecdysterone (64 ± 8 mg/g), and rhamnetin-rutinoside (17 ± 1 mg/g) were present as well
at relevant concentrations. Chlorogenic acid, resveratrol, and its derivatives have been
reported as compounds with solar filter activity [50–53]. Resveratrol and its derivatives
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have also shown antigenotoxicity against UV radiation and skin cancer chemopreventive
properties [54–56]. We hypothesized that some of these compounds, or their combinations,
were responsible for the sunscreen/antigenotoxic properties of the extracts studied here.
Among the plant species studied, the P. latifolia extract appeared to be the best candidate
and the safest for use as a sunscreen active ingredient.

The flower extracts from R. centifolia had high UVB and broad-spectrum protection
efficacies as well. However, these extracts showed between low and moderate cytotoxicity
and genotoxicity in human fibroblasts measured at the highest concentrations compared
with those Rosa species extracts previously studied [57]. This supported the importance
of establishing safe extract concentrations for use of the extracts as sunscreen ingredi-
ents, as has been previously suggested [22]. Thus, these extracts should be used with
caution until more details on their genotoxicity are known. The R. centifolia extracts were
rich in kaempferol and quercetin and their derivatives (quercetin-glucoside, quercetin-3-
rhamnoside, kaempferol-3-glucoside, kaempferol-rhamnoside), as has also been found
for other Rosa species [26,58–61]. For R. centifolia species, the antimutagenic activity has
been previously reported against ethyl methanesulfonate [62]. Kaempferol and quercetin
showed solar filter activity [52,53,63]. These main compounds were possibly responsible
for the sunscreen/antigenotoxic properties of the R. centifolia extracts studied in this work.

Conversely, the extract obtained from I. horsfalliae, a species with previously reported
sunscreen properties [40], was shown to be cytotoxic and genotoxic to human fibroblast
cells. Little is still known about the genotoxicity of the major compounds (chlorogenic acid,
dicaffeoylquinic acid, and scopoletin) of this extract. Chlorogenic acid and scopoletin have
shown clastogenic activity [64,65], which suggests that flower extract’s genotoxic activity
could be related to these compounds, although, a synergistic effect of these compounds
could also be the cause of their genotoxicity. Confirmation of this hypothesis requires
further studies.

4. Materials and Methods
4.1. Plant Material and Extracts

The flowers from Rosa centifolia (Rosaceae), pink and fuchsia commercial varieties,
were supplied by Flexport—Colombia S.A.S. (Bogotá, Cundinamarca, Colombia). The
flowers from Posoqueria latifolia (Rubiaceae) and Ipomoea horsfalliae (Convolvulaceae) species
were collected from experimental plots at the Agroindustrial Pilot Complex of the Na-
tional Center for Agroindustrialization of Aromatic and Medicinal Tropical Vegetal Species
(CENIVAM). The P. latifolia e I. horsfalliae species were identified at the Colombian Na-
tional Herbarium, where their vouchers (COL; voucher number in parentheses) were
placed (Table 1).

For each specimen, undamaged and fully developed flowers were dried in an Ad-
vantage Plus Tray Lyophilizer (Virtis Co., Gardiner, ME, USA) and were used for solvent
extraction as indicated by Sierra et al. [40]. In brief, dried flowers (1 g) were mixed with
acidified ethanol solution (20 mL, 0.5% HCl, 1:1 v/v) and put for 5 min in an S15H ultra-
sound bath (Elmasonic, Singen, Germany). The mixture was filtered, and the residue was
extracted twice more. Extracts were roto-evaporated and then were dried as indicated
above. Extract stock solutions were prepared from the dried powder (30 mg), which were
dissolved in methanol (1 mL), vortexed (3 min), exposed to ultrasound (10 min, 40 ◦C), and
centrifuged (5000× g, 10 min). The supernatant (1 mL) was then filtered and was stored at
−80 ◦C in a Thermo Scientific® Series-86 DEG C ultra-low-temperature freezer (Thermo
Scientific, Waltham, MA, USA). Before their use, the extract stock solutions were defrosted
and refrigerated (5–8 ◦C) for 24 h.

4.2. Chemicals, Buffer, Enzymes, and Culture Media

The titanium dioxide, Luria–Bertani (LB) media, antibiotics (ampicillin and tetracy-
cline), trypan blue solution (0.4%), Bioultra lyophilized proteinase K, and high-resolution
agarose were obtained from Sigma-Aldrich Corp. (Milwaukee, WI, USA). The YOYO
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solution was purchased from Thermo Scientific (Waltham, MA, USA). The substrates
for β-galactosidase (o-nitrophenyl-β-D-galactopyranoside) and alkaline phosphatase (p-
nitrophenylphosphate) were purchased from Amresco (Slon, OH, USA). The Dulbecco’s
modified Eagle medium (DMEM), Ham’s nutrient mixture F12 (F-12), fetal bovine serum
(FBS), phosphate-buffered saline (PBS), trypsin EDTA solution, and antibiotics (penicillin–
streptomycin mixture) were acquired from Gibco (Grand Island, NY, USA). Other reagents
and solvents were obtained from commercial houses J.T. Baker (Phillipsburg, NJ, USA) or
Merck (Kenilworth, NJ, USA).

4.3. UV Absorption Capability

Aqueous aliquots (1.5 mL) of each extract, prepared at different concentrations (be-
tween 62.5 and 750.0 µg/mL) using distilled water, were placed in a quartz cuvette (1 cm
step length and 1.5 mm glass thickness), and their UV absorption spectra (λ = 200–400 nm)
were recorded in triplicate using the Skanlt 3.2 function on a Multiskan GO UV spectropho-
tometer (Thermo Scientific, Waltham, MA, USA). Distilled water was used as a blank. A
minimum of three independent experiments were carried out per extract dilution. The ab-
sorbance values were recorded for wavelength intervals of 10 nm. The average absorbance
values and their corresponding standard errors were plotted using the program ggplot2 of
the R platform [66].

4.4. In Vitro Photoprotection Efficacy

We estimated UVB photoprotection efficacy using the sun protection factor (SPFin vitro)
described by Sayre et al. [67] and by further simplification to the UV spectrophotomet-
ric Mansur´s method [68]: SPFspectrophotometric = CF × ∑320

290 EE(λ) × I(λ) × A(λ), where
EE(λ)—erythemal effect spectrum at wavelength λ, I(λ)—solar intensity spectrum at wave-
length λ, A(λ)—absorbance of the extract solution determined by UV spectrophotometry at a
wavelength (λ), and CF—correction factor (CF = 10). The values of EE (λ)× I were constant [67].
The broad-spectrum protection efficacy was determined by calculating critical wavelength [69]:
λc =

∫ λc
290 A(λ)dλ = 0.9

∫ 400
290 A(λ)dλ, where A(λ) was the absorbance at wavelength λ, λc

is the critical wavelength (nm), and dλ is the wavelength step (1 nm). The SPFin vitro val-
ues were classified in categories according to European Commission recommendations [70],
as follows: no protection (0.0 ≤ SPFin vitro ≤ 5.9), low protection (6.0 ≤ SPFin vitro ≤ 14.9),
medium protection (15.0 ≤ SPFin vitro ≤ 29.9), high protection (30.0 ≤ SPFin vitro ≤ 59.9), and
very high protection (SPFin vitro ≥ 60.0). The broad-spectrum protection sunscreens were those
that showed protection efficacy values (SPF ≥ 15 and λc > 370 nm) according to the Food and
Drug Administration (FDA) rule [71].

4.5. In Vitro Photostability

Extract aliquots (1 mL) were distributed into Petri plates with a 5 cm diameter for their
irradiation. The Petri plates were irradiated in darkness using a UVA/UVB irradiation chamber
BS-02 (Dr. Grobel UV-Elektronik GmbH, Etlingen, Germany) equipped with a radiation
controller, UV-MAT, from the same commercial house. This radiation controller continuously
measured the irradiance, calculated the irradiation dose, and switched the lamps after reaching
the target dose. Operating at 100% intensity, the UVB lamps in the irradiation chamber had an
irradiance value of 4 mW/cm2. The UVB radiation doses applied were those corresponding
to minimum erythema dose (MDE) in humans according to the Fitzpatrick skin scale [24].
These were as follows: type I (0.035 J/cm2 = 350 J/m2), type II (0.056 J/cm2 = 560 J/m2), type
III (0.070 J/cm2 = 700 J/m2), and type IV (0.084 J/cm2 = 840 J/m2). The relative photostability
of the extracts was expressed as the percentage of effectiveness (Eff) of SPFin vitro after UV
exposure and was calculated as follows: Eff =

SPFin vitro after irradiation
SPFin vitro before irradiation × 100 [14].

4.6. Antigenotoxicity against UVB Radiation Estimates Based on SOS Chromotest

Before extract antigenotoxic effects were assayed, their genotoxicities were investigated
using the SOS Chromotest [72], as was described previously by Quintero et al. [73]. The
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antigenotoxicity assay was conducted using a co-incubation procedure as described by
Fuentes et al. [74]. Briefly, the cells were simultaneously treated with extracts (between
62.5 and 750.0 µg/mL) and 10 J/m2 of UVB radiation, which largely induced the SOS
function Escherichia coli PQ37 cells [75]. After, they were cultured for 2 h at 37 ◦C and
shaken at 300 rpm in a Thermomixer apparatus (Eppendorf, Sao Paulo, Brazil). Negative
(distilled water) and positive (10 J/m2 of UVB) controls were always included in each
assay. A minimum of four independent experiments per treatment with two replicates were
conducted. β-Galactosidase (βG) and alkaline phosphatase (AP) activities were assayed
in 96-well plates (Brand-GMBH, Wertheim, Germany), as described by Fuentes et al. [74].
The antigenotoxicity (the ability of the plant extract to protect against UV-induced DNA
damage) was measured as a significant reduction in the SOS induction factor (I) in E. coli
PQ37 cells and was expressed as a percentage of the genotoxicity inhibition, as follows:
%GI = 1 − (Ict − Int)/(IUVB − Int) × 100, where Ict was the SOS induction factor in the
co-incubation procedure; Int was the SOS induction factor in non-treated cells, and IUVB
was the SOS induction factor in UVB-treated cells. Negative values of %GI were considered
as zero; therefore, this parameter ranged from 0% to 100%. The minimal concentration that
produces a significant (p ≤ 0.05) genotoxicity inhibition (CGI) in PQ37 cells was used for
comparison of the genoprotective potential of the tested samples.

4.7. Extract Cytotoxicity in Human Fibroblast (MRC5) Cells

Cytotoxicity of flower extracts in MRC-5 cells was evaluated using the trypan blue ex-
clusion assay [76]. The lung embryo fibroblast (MRC5) cells [77] were grown on DMEM/F-
12 medium (5 mL) supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
1% of GIBCO Penicillin-Streptomycin, at 37 ◦C, and under CO2 (5%) conditions in a Midi
40 incubator (Thermo Scientific, Marietta, OH, USA). Every three days, cells were grown
in fresh medium to reach a confluence of 80%. Cell cultures were mixed with each extract
at final concentrations between 62.5 and 750.0 µg/mL, and kept at 37 ◦C (24 h) under
CO2 (5%) atmosphere conditions. After 24 h, trypsin EDTA-treated cells were centrifuged
(4000× g, 6 min), dissolved in PBS buffer (100 µL), and mixed (10 µL) with the same volume
of trypan blue (0.4%) to assess cell viability. Live and dead cells were counted using a
Neubauer chamber and Eclipse E200 optical microscope (Nikon Instruments Inc., NY, USA).
At least three independent experiments were carried out for each treatment. The results are
expressed as percentages of cell viability (%CV) per treatment, as follows: %CV = (Living
cells)/(Total cells) × 100. Lethal concentrations 50% (LC50) and 30% (LC30) for each flower
extract were calculated by interpolation using the graphic method [78]. LC50 and LC30 were
considered as bordering cytotoxic and non-cytotoxic concentrations, respectively. That is,
extracts were cytotoxic at values ≥ LC50 and non-cytotoxic at values ≤ LC30.

4.8. Extract Genotoxicity in Human Fibroblast (MRC5) Cells

Genotoxicity of flower extracts in MRC-5 cells was evaluated using the Comet assay.
For this purpose, a high-throughput Trevigen CometChip® platform (Gaithersburg, MD,
USA) was used as indicated by Sykora et al. [79], with some minor modifications. Firstly, a
CometChip® slide, cleaned previously with ethanol, was covered with an agarose solution
prepared in PBS at 1.3% and tempered at 45 ◦C; then, the agarose was solidified for 24 h
at 4 ◦C. Trypsin-treated cells (3 mL) were collected by centrifugation (2000× g, 6 min),
were washed twice using NaCl solution (0.75%), centrifuged and suspended in fresh NaCl
solution (3 mL), and then were quantified using a Neubauer counting chamber. A cell
suspension (3 mL) prepared at 4.4 × 104 cell/mL was mixed with an equal volume of low-
melting-point agarose prepared in PBS at 1%, and the mix was poured on the CometChip®

slide. The agarose was solidified for 15 min at 4 ◦C. Finally, the CometChip® chamber was
ensembled by hermetically sealing to prevent mixing between the wells.

For cell treatments, 100 µL extract samples (prepared between 62.5 and 750.0 µg/mL)
or standard mutagen used as a positive control (4-nitroquinoline 1-oxide prepared at
0.89 µg/mL) were loaded into wells of the CometChip® chamber. A sample of DMEM
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medium (100 µL) was considered as the negative control. The chamber with treatments was
incubated for 30 min at 37 ◦C under CO2 (5%) atmosphere conditions. The solutions of each
treatment were removed from the wells, and 30 µL of Bioultra Proteinase K (0.19 mg/mL)
was loaded in each well for cell enzymatic lysis (1 h, 37 ◦C).

After that, the CometChip® slide was removed from the CometChip® chamber and
submerged for 15 min at 4 ◦C in a Comet electrophoresis tank (Cleaver Scientific Ltd.,
Rugby, Warwickshire, UK), which contained alkaline buffer (0.3 N NaOH, 1 mM EDTA,
pH 13). The electrophoresis was carried out for 30 min at 300 mA and 25 V. The CometChip®

slide was submerged for 15 min in a tray containing neutralizing solution (0.4 M TRIS,
pH 7.5); then, it was washed with distilled water and dried at 37 ◦C in a Midi 40 incubator.
Finally, cell nuclei contained in each microgel were stained with 7 µL of YOYO solution
(1 mM prepared in 5% DMSO) and were immediately scored using a Zeiss Axio Observer
7 fluorescence microscope (GmbH, Oberkochen, Germany).

DNA damage was expressed in arbitrary units based on the classification of Comets into five
categories (0–4), as was proposed by Collins et al. [80]. A genetic damage index (GDI) was cal-
culated for each treatment, as follows: GDI = (N0 × 0 + N1 × 1 + N2 × 2 + N3 × 3 + N4 × 4)/n,
where Ni was the number of nuclei scored in each category and n was the number of scored
cells per slide [81]. Two hundred cells per slide and two slides per treatment were analyzed. The
results from at least three independent experiments were averaged to obtain the GDI values for
each treatment.

4.9. UHPLC–ESI+–Orbitrap–MS Analysis

The flower extracts were analyzed by a UHPLC Dionex™ UltiMate™ 3000 (Thermo
Fisher Scientific, Bremen, Germany) coupled to an Orbitrap™ mass detector (Exactive
Plus, TFS, Bremen, Germany), using a heated-electrospray interface (HESI-II) operated in
positive-ion acquisition mode (350 ◦C). The extract component separation was carried out
on a Hypersil GOLD™ aQ column (TFS, Sunnyvale, CA, USA), of 100 mm × 2.1 mm id,
×1.9 µm particle size, at 30 ◦C. The mobile phase was as follows: A: water (0.2% formic
acid) and B: acetonitrile (0.2% formic acid). Analysis started with 100% A and changed
linearly up to 100% B in 8 min, remained for 4 min, and then returned to 100% A in 1 min;
then, it remained in equilibrium for 3 min. The mobile phase flow was 0.3 mL/min, and the
injection volume was 1 µL. Capillary voltage (3.5 kV, 320 ◦C) and higher-energy-collisional
dissociation cell (HCD) were used in 10–40 eV range. Mass range in all experiments
was set at m/z 80–1000. The data obtained were processed with the Thermo XCalibur™
Roadmap software, version 3.1.66.10. Compound identification was based on the extracted
ion currents (EICs) of the protonated molecules, the exact masses of the ions, mass spectra
fragmentation patterns, and by comparison of the experimental mass spectra with those of
standards compounds.

4.10. Statistical Analysis

The SPFin vitro, λc, Eff, %GI, survival (%), and GDI values and their corresponding
standard errors were calculated. In all cases, the data passed the Kolmogorov–Smirnov
and F-maximum tests for normality and variance homogeneity, respectively; therefore,
the parametric tests were used in subsequent data analyses. When a significant F-value
was obtained in one-way analysis of variance (ANOVA), the groups were subsequently
compared with Tukey’s test. The Pearson correlation analysis was used to examine the
relationship between extract and compounds concentrations, SPFin vitro, and %GI estimates.
For all statistical analyses, a value of p < 0.05 indicated significance. The R program [66]
was used for all analyses.

5. Conclusions

Our findings show that flower extracts from ornamental plants were rich in photo-
protective compounds. Several studied flower extracts showed solar filter activity and
photoprotection, which was attributed to their major compounds or to their combinations.
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P. latifolia extract, which is photostable and safe, appeared to be the best candidate for use as
a sunscreen active ingredient. R. centifolia extracts showed between low and moderate cyto-
toxicity and genotoxicity in human fibroblasts at the highest concentrations assayed, while
the I. horsfalliae extract was unequivocally cytotoxic and genotoxic. Therefore, R. centifolia
and I. horsfalliae extracts should be used with caution until more details on their toxicity and
genotoxicity are obtained. In addition, it is necessary to test these phytochemicals using
in vivo mammalian assays for practical use of these extracts in photoprotection. Sunscreen
based on phytochemicals will require cost-effective processes that combine plant tissue
culture and enriched-fraction extraction techniques, to guarantee a stable supply of these
raw materials.
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