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Abstract: Various studies aiming to elucidate the role of the gut microbiome-metabolome co-axis
in health and disease have primarily focused on water-soluble polar metabolites, whilst non-polar
microbial lipids have received less attention. The concept of microbiota-dependent lipid biotrans-
formation is over a century old. However, only recently, several studies have shown how microbial
lipids alter intestinal and circulating lipid concentrations in the host, thus impacting human lipid
homeostasis. There is emerging evidence that gut microbial communities play a particularly signifi-
cant role in the regulation of host cholesterol and sphingolipid homeostasis. Here, we review and
discuss recent research focusing on microbe-host-lipid co-metabolism. We also discuss the interplay
of human gut microbiota and molecular lipids entering host systemic circulation, and its role in
health and disease.

Keywords: microbiome; lipidomics; metabolomics; gut; lipids

1. Lipids and Gut Microbes

Lipids are the major structural constituents of cell membranes. As energy storage
molecules, they also store almost twice the energy as that liberated from protein or carbohy-
drate catabolism. Moreover, lipids regulate many essential biological functions, including
intra-cellular signaling processes. For instance, sphingolipids (SPs), particularly ceramides,
have a part to play in regulation of cell signaling and apoptosis [1]. Other lipids such as dia-
cylglycerols (DGs) act as intermediates of energy metabolism and as signaling molecules [2].
Overall, lipid metabolism exhibits spatial and dynamic complexity at multiple levels. Thus,
it is not surprising that lipid disturbances have important physiological consequences
impacting human health [3].

The human gut, on the other hand, harbors metabolically-active microbial communi-
ties, which have profound impact on the absorption, digestion, metabolism and excretion
of lipids [4]. There is a growing consensus that gut microbes and their metabolic activity
alter the metabolic state of the host. Most recent studies in this field suggest the integration
of the gut microbiome and metabolome, rather than sole focus on microbial taxonomic
profiling, affords better understanding of microbiome-mediated (patho)physiological pro-
cesses [5,6]. Thus, metabolome-based strategies for the study of gut microbial communities
at both structural and functional levels are gaining much-warranted increasing attention.

Previous studies of the gut microbiome-metabolome co-axis have mainly focused on
water-soluble, polar metabolites (e.g., tryptophan catabolites, amino acids, tricarboxylic
acid cycle (TCA) intermediates), while the microbial-host-lipid co-axis has not received
as much attention. In this review, we highlight recent fecal lipidomics studies aimed at

Metabolites 2021, 11, 55. https://doi.org/10.3390/metabo11010055 https://www.mdpi.com/journal/metabolites

https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-0475-2763
https://orcid.org/0000-0003-4241-8950
https://orcid.org/0000-0002-1389-8302
https://doi.org/10.3390/metabo11010055
https://doi.org/10.3390/metabo11010055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/metabo11010055
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/2218-1989/11/1/55?type=check_update&version=2


Metabolites 2021, 11, 55 2 of 15

deciphering the molecular lipids that are secreted, hydrolyzed or transformed by gut
microbial communities. We also discuss mechanistic studies, involving integration of
shotgun metagenomics and lipidomics data, and how these approaches may lead to better
understanding of the impact of microbial lipids on host physiology. To this end, we
highlight the emerging applications of genome-scale metabolic modeling (GSMM) as a
way to study co-metabolism between the microbes as well as host–microbe interactions
via lipidomes.

2. Lipid Pool of the Human Gut

A link between host molecular lipids, gut microbiota and human health is already
evident, given the associations between them in several clinical studies [7,8]. Gut microbiota
can both modulate the amount of energy that is extracted from food during digestion, and
synthesize lipids and metabolites that may have an impact on human health. Alterations
in the gut microbiota—host lipidome have been linked obesity and the development of
obesity-related illnesses, among others. In humans, the diversity of the gut microbiome has
been found to have a negative association with BMI and serum triacylglycerols (TGs) [9].
Liu et al. reported that gestational diabetes mellitus comorbidity was strongly associated
with both a specific gut microbial composition and with the circulating lipidome [10]. Here,
relative abundances of Faecalibacterium and Prevotella showed linkage with circulating lipids,
in particular with lysophosphatidylethanolamine, and phosphatidylglycerols. Recently,
Benítez–Páez et al. used a multi-omics approach (metabolomics, lipidomics and shotgun
metagenomics) to characterize the impact of arabinoxylan oligosaccharides in overweight
individuals [11]. They found that an arabinoxylan-enriched diet altered the host metabolic
state, including ceramide and choline levels, which subsequently affected the abundance of
Prevotella and Clostridial species in the gut. Animal studies also posit that gut microbes can
modulate the host’s lipidome. For instance, Albouery et al. investigated how colonization
of germ-free (GF) mice by the fecal microbiota of young or old donor mice impacted
the lipid content of the brain and liver [12]. Mice receiving fecal bacteria from aged
mice exhibited increased total monounsaturated fatty acids, and a reduction in the relative
amounts of cholesterol and total polyunsaturated fatty acids in the brain cortex. In addition,
the transfer of microbiota from aged to young mice modified the relative abundances of
the different lipid classes and the fatty acid content of the liver. In another study, Just et al.
studied how diets enriched with primary bile acids (BAs) with or without addition of lard
or palm oil, impacted gut microbiota composition and function in mice [13]. The authors
reported that the lard + BA-enriched diet increased the fat mass of colonized mice, but not
in the GF mice, as compared to palm oil. Subsequently, these effects were associated with
impaired glucose tolerance and elevated TGs, cholesteryl esters and monounsaturated fatty
acids in the livers of the colonized mice.

From a clinical perspective, understanding the intricate relationship between systemic
and microbial lipids may provide a unique avenue to study human metabolism. The fecal
lipidome provides a non-invasive strategy to study the lipophilic activity of gut microbes,
and their co-metabolism [14]. However, feces represent a highly heterogeneous sample
matrix and, as such, pose several analytical challenges [15]. To extract useful information
from stool samples, optimal sample preparation, handling, along with accurate and reliable
analytical methods are required. Gregory et al. reported the lipidome composition of
human stool samples for the first time [16]. The authors identified over 500 intact lipid
species across six of eight different LIPID MAPS categories: glycerophospholipids, fatty
acyls (FAs), SPs, glycerolipids, sterol lipids and prenol lipids [16]. Van Meulebroek et al.
later optimized the lipidomics protocol for the analysis of stool samples to comprehensively
map the lipidome [17]. More recently, Trošt et al. also screened fecal lipidome profiles
from 10 healthy human volunteers [18]. The authors report that ceramides, DGs and TGs
were the most abundant lipids found in stools. Lipids classes that are commonly detected
at higher concentrations in plasma, e.g., lysophosphocholines, glycerophosphocholines
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and sphingomyelins were also present in the fecal samples, however, they were found at
markedly lower concentrations [19].

One major challenge in fecal lipidome analysis is a largely technical one, i.e., the
ability to identify and quantify the entire set of lipids in the stool. Processing of raw fecal
lipidomics data shares common steps with mass spectrometric (MS)-based metabolomic
analysis [20–22]. At present, identification of ‘unknown’ metabolites using tandem mass-
spectrometry (MS/MS) is challenging, as limited number of reference spectra and/or
authentic standards are available. Gao et al. [23] and Phua et al. [24] have identified
metabolites from fecal samples using NIST MS libraries (www.chemdata.nist.gov). Several
other commercial and non-commercial databases such as FiehnLib [25], Golm Metabolome
Database [26], Human Metabolome Database (HMDB) [27], LIPID MAPS [28] and
METLIN [29], have enabled identification of metabolites, including lipids. Additionally, in
silico tools have also been developed to facilitate lipid identification, including structure
database-dependent methods and spectra library-dependent methods. Spectra library
independent tools such as LipidHunter, MS-DIAL and MZmine2 also provide specific
workflows for profiling the lipidome. The integration of several metabolite databases might
extend the coverage of lipids; however, this results in a markedly more complex workflow.
CEU Mass Mediator [30] is a computationally-efficient integrative framework developed
for this purpose; it can search for molecular lipids using multiple databases. However,
to enable precise identification of lipids, both in silico as well as analytical advances are
needed (reviewed in detail by Wei et al. 2019) [3].

Together, the fecal lipidome provides information regarding the metabolic interplay
between the host, diet and gut microbiome [31]. An increasing number of studies suggest
that the stool lipidome provides a functional readout of microbial metabolism; however,
quantification of the lipids in the feces will likely result in a combination of host-originating,
microbe-originating or host-microbiome co-metabolic products. Thus, whilst the fecal
lipidome can suggests useful, plausible links between gut microbiota and host molecular
lipids, the analysis of the fecal metabolome alone is incapable of distinguishing such
origins. Bar et al. provides machine-learning algorithms to link factors such as human
genetics, diet and microbiome with circulating small molecules in serum [6]. A similar
approach may shed light on the factors that affect the origin of microbial small molecules
in the gut, including the origin of microbial lipids. Here, the challenge would be to obtain
large-scale measurements of several, potentially confounded variables (diet, microbiome,
metabolome and other clinical variables), as well as the use of analytical methods for
the capture of interactions (gene-metabolite link) between variables [32]. Besides that,
mechanistic studies are required to truly validate these associations [33]. In Section 3,
we highlight several studies that mechanistically demonstrate gut microbiota-dependent
lipid biotransformation, in particular showing the role of stool microbial species in the
regulation of host cholesterol and sphingolipid homeostasis.

3. Synthesis of Lipids by Gut Microbes

Homeostasis between the molecular lipids and gut microbiota is vital for the host
metabolic state. Despite a wide range of metabolite classes being produced by the gut
microbiota [34,35], only a few metabolites have lipophilic characteristics, that is, they are
able to pass through the epithelial barrier and thus directly impact the host metabolism.
Gut microbiota composition and its derived lipids can impact the host metabolic state
by altering plasma lipid levels. Here, we discuss specific classes of lipids of microbial or
potentially-microbial origin, which are involved in the metabolic interplay between the gut
microbiota and the host (Table 1).

3.1. Sphingolipids

SPs are bioactive lipids that regulate various cellular processes including cell differ-
entiation, proliferation, apoptosis and inflammation [36,37]. In humans, some SPs can
be obtained from the diet, while other species are generated by de novo synthesis. The
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biosynthesis of SPs has been extensively studied in eukaryotes [38]; however, recently the
commensal gut microbes (Bacteroides, Prevotella and Porphyromonas) have been reported
to produce SPs. Brown et al. reported these microbial derived SPs included ceramide
phosphoinositol and deoxy-sphingolipids [33]. Intriguingly, these SPs are reported to
aggravate intestinal inflammation and regulate host ceramide pools in animals. In addition,
the authors found that microbially-derived SP deficiency was associated with inflammatory
bowel disease (IBD), and impacted host-derived SP abundances in humans [33]. Similarly,
Johnson et al. mapped the fate of dietary SPs in the gut microbiome, and showed that Bac-
teroides-derived SPs have an adverse effect on host SP metabolism, specifically on hepatic
ceramide levels [39]. Intriguingly, using cell culture, they showed that microbially-derived
SPs are incorporated into mammalian SP pathways. More recently, Lee et al. charted the
pathways of dietary SPs in the gut microbiome (Figure 1) [40]. Taking the Bioorthogonal
labeling-Sort-Seq-Spec (BOSSS) approach, the authors found that dietary SPs were mainly
consumed by Bacteroides. They also found that Bifidobacterium, which do not produce SPs,
could process dietary SPs in a manner similar to that of SP-producer Bacteroides, suggesting
that bioactive lipids which are metabolically-accessible to the gut microbiome could be the
target for the host to control its gut microbial composition [40].
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Figure 1. Transformation of dietary sphinganine into dihydrocermides by the gut microbes. Here,
sphinganine alkyne (SAA) was given to mice by oral gavage (five consecutive days), then the fecal
content from mice was collected and metabolic consequences of SAA exposure were determined
using high-resolution mass spectrometry ion chromatograms. The authors showed a distinct cecal
lipidome chromatograms for mice that orally treated with SAA (blue), which contained the alkyne-
bearing (A) C15-, (B) C15OH-, (C) C16OH-, (D) C17OH-, (E) C18:2- and (F) C22:2- dihydrocermides.
However, these dihydrocermides were absent in treatments with sphinganine (SA, green), vehicle or
no treatment (red). Figure adapted from [40], with permission under CC BY 4.0 license.

3.2. Sterol
3.2.1. Bile Acids and Derivatives

Primary BAs are produced in hepatocytes; however, secondary BAs such as deoxy-
cholic acid (DCA) and lithocholic acids (LCA), ursodeoxycholate (UDCA) and numerous
(≥50) others [41,42] are produced or biotransformed by gut microbiota. Briefly, in the
distal ileum, the conjugated primary BAs are deconjugated by microbial bile salt hydro-
lases expressed predominantly by anaerobic intestinal bacteria of the genera Bacteroides,
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Clostridium, Lactobacillus, and Bifidobacteria. This is then followed by 7α-dehydroxylation
by a bacterial 7α-dehydroxylase mainly expressed by Clostridium and Eubacterium. Further
modifications include oxidation and epimerization of the hydroxyl groups by Bacteroides,
Clostridium, Escherichia, Eggerthella, Eubacterium and Peptostreptococcus [43]. Under normal
physiological conditions, secondary BA synthesis represents less than 10% of total BA
synthesis. Similarly to primary BAs, secondary BAs also modulate host metabolism, the
innate immune system in addition to acting as signaling molecules [35,44]. Ridlon et al.
extensively reviewed the emerging BA-gut-microbiome axis [45]. A summary of the key
BAs and their microbial linkage are presented in Table 1.

Table 1. Significant associations of bioactive lipids, gut microbiome related classes and lipid classes.

Lipid Category Lipid Sub Class Example/Related Lipids Microbes References

Sphingolipids

Ceramide phosphoinositols PI-Cer(d18:1/22:0) Bacteroidetes (genera Bacteroides,
Prevotella, Porphyromonas,

Bacteroides theta,
thetaiotaomicron,

ovatus and fragilis

[33]Ceramide phosphoethanolamines N-Acyl ceramide
phosphoethanolamine

Sphinganines 3-ketosphinganine
sphinganine

N-acylsphinganines dihydroceramide
C15-, C15OH-, C16OH-, C17OH-,

C18:2-, C22:2- dihydrocermide [40]

Sphingoid base 1-phosphates sphinganine-1-phosphate (d17:0)
sphinganine-1-phosphate (d18:0) [39]

Sterol

C24 bile acids, alcohols, and
derivatives

deoxycholic acid
lithocholic acid

ursodeoxycholate
iso-deoxycholic acid
iso-lithocholic acid

7-oxo-lithocholic Acid

Bacteroides, Clostridium,
Lactobacillus, and Bifidobacteria

and Alloscardovia sp.

[15,46–49]
[41,50]

Taurine conjugates tauroursodeoxycholic acid

Cholesterol and derivatives
cholestenone
coprostanone
coprostanol

Eubacterium coprostanoligenes,
Bacteroides intestinalis,

Faecalibacterium prausnitzii
[51,52]

Fatty Acyls Other Octadecanoids

10-hydroxy-12 (Z)-octadecenoic acid
(18:1) (HYA), 10-hydroxy-12,15(Z,Z)

octadecenoic acid (18:2) (αHYA),
10-hydroxy-6,12(Z,Z)-octadecadienoic

acid (18:2) (γHYA),
10-hydroxyoctadecanoic acid (HYB),
10-hydoroxy-trans-11-octade-cenoic

acid (HYC), 10-oxo-12(Z)-octadecenoic
acid (18:1) (KetoA), 10-oxo-12,15(Z,Z)

(18:2) octadecenoic acid (αKetoA),
10-oxo-6,12(Z,Z)-octadecenoic acid

(18:2) (γKetoA), 10-oxo-octadecanoic
acid, 10-oxo-trans-11-octadecenoic acid

Lactobacillus genus (Lactobacillus
plantarum, Lactobacillus salivarius,
Lactobacillus gasseri, Lactobacillus

acidophilus and Lactobacillus
johnsonii) Bifidobacterium spp.,
Eubacterium ventriosum and

Lactobacillus spp.

[53–57]

Unsaturated fatty acids oleic acid

Glycerolipids
(Endocannabinoid) Monoacylglycerols

2-arachidonoylglycerol (2-AG)
2- oleoylglycerol (2-OG)

2- palmitoyl-glycerol (2-PG)
Akkermansia muciniphila [58–62]

3.2.2. Cholesterol

Cholesterol is a key precursor molecule in the synthesis of many different lipids,
including BAs and Vitamin D (fat-soluble secosteroids) [63]. Circulating cholesterol is either
derived from the diet or produced by de novo synthesis in hepatocytes. Since cholesterol
from both sources pass through the intestine, it has been suggested that the gut microbiota
modulates plasma cholesterol levels [64,65]. Recently, by integrating metabolomics and
shotgun metagenomics data, Kenny et al. identified the gut microbial enzymes involved in
cholesterol metabolism (Figure 2) [52]. They found that the cholesterol dehydrogenases
enzyme (encoded by ismA genes of the gut microbiota) has a significant impact on both fecal
and total serum cholesterol levels in humans [52]. However, whether these metabolically-
active gut microbes are linked to the diet or not remains unknown. In the Dutch LifeLines-
DEEP cohort involving 893 human subjects, Fu et al. showed that the gut microbiome
contributed a substantial proportion of the variation in circulating high-density lipoprotein
cholesterol (HDL), but not to total cholesterol or low-density lipoprotein (LDL) cholesterol
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levels [9]. Taken together, these studies suggest that cholesterol metabolism by gut microbes
is crucial in host cholesterol homeostasis (Figure 2) [52].
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be derived from exogenous sources such as the diet. The endogenous cholesterol level may be also influenced by drugs
such as statins, or via altered bile acid metabolism. In addition, gut microbial metabolism of cholesterol may also serve as
check point for the maintenance of cholesterol homeostasis (B). As shown in panel A, the authors proposed a pathway for
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metabolism of cholesterol in the gut (D). Figure adapted from [52] with permission under CC BY 4.0 license.

3.3. Fatty Acyls and Conjugates

Fatty acids produced by gut microbiota can stimulate synthesis of mono-unsaturated
fatty acids (MUFAs) and the elongation of polyunsaturated fatty acids (PUFAs) in the
host. A multi-omics profiling study found that circulating lipid levels can be affected by
microbial fatty acid metabolism [66]. MUFA (16:1n−7, FA 18:1n−9, 18:1n−7), MUPC (PC
34:1, PC 36:1) and PUFA (20:3n−6, 22:6−3) levels were associated with acetate produc-
tion in the gut. In addition to their free forms, fatty acids can also be found conjugated
to mono-amine neuro-transmitters, such as serotonin, forming arachidonoyl-serotonin
(AA-5-HT), oleoyl-serotonin, palmitoyl-serotonin, and stearoyl-serotonin. The neurotrans-
mitter serotonin (5-hydroxytryptamine) in humans is mainly (90%) synthesized in the
gastrointestinal tract by human gut microbiota [67] (see also related Section 3.4 below, on
endocannabinoids). Serotonin and SCFA concentrations stimulate the formation of N-acyl
ethanolamine (NAE) conjugates [68], which form a novel class of endogenous lipid media-
tors in the intestine. Emerging evidence also indicates a role for the intestinal microbiota
in the production of N-acyl serotonin’s metabolites, which have been shown to modulate
the enteric nervous system [69,70]. Additionally, conjugated fatty acids are also formed
by commensal gut microbes such as Lactobacillus plantarum [53]. In particular, conjugated
linoleic acids (CLAs), such as conjugated diene structures cis-9, trans-11-CLA and trans-
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9,trans-11-CLA, are formed in the gastrointestinal tract passing through the intermediate
10-hydroxy-12-octadecenoic acid [53].

3.4. Endocannabinoids

The endocannabinoid system is comprised of lipid-derived endogenous cannabinoid
receptor ligands (endocannabinoids), enzymes involved in their synthesis and degradation,
and the cannabinoid 1 and 2 receptors (CB1R and CB2R), which have differential affinities
for endocannabinoids. Growing evidence suggests that gut microbes and the endocannabi-
noid system are interlinked [58,71]. Rousseaux et al. initially proposed the link between the
gut microbes (Lactobacillus acidophilus) and the endocannabinoid system [71]. Later, Cani
et al. demonstrated indirect crosstalk between the gut microbiota and the endocannabinoid
system, which modulated host adipogenesis [72]. The authors found that peripheral (e.g.,
intestine and adipose tissue) endocannabinoid (specifically, anandamide; AEA) levels were
influenced by gut microbiota in the experimental animals. In another study, Everard et al.
showed that A. muciniphila (which represents 3–5% of the human microbial community)
treatment in obese mice increased the levels of glycerolipids intestinal 2- oleoylglycerol
(2-OG), 2-arachidonoylglycerol (2-AG) and 2- palmitoyl-glycerol (2-PG) [73]. More recently,
endocannabinoid–like molecule N-acyl-3-hydroxypalmitoyl-glycine (commendamide) was
reported to be produced by the commensal microbe Bacteroides [74,75]. These findings
suggest that specific gut microbes produce specific classes of lipids which impact these
host signaling and metabolic pathways.

3.5. Carnitine and Acyl Carnitines

De novo synthesis of carnitines occurs in all domains of life [76]. Carnitines that
are not digested or absorbed in the small intestine are excreted to the large intestine,
where they are catabolized by gut microbes. Some microbes (Pseudomonas species) utilize
carnitine as a source of carbon and nitrogen, while Acinetobacter calcoaceticus catabolize
carnitine into trimethylamine (TMA), which is then converted into trimethylamine N-
oxide (TMAO) by hepatic flavin monooxygenases (FMOs). TMAO is strongly linked
with cardiovascular diseases [77,78]. Also, phosphatidylcholines (PCs), a major a class of
phospholipids, forming the major structural components of cellular plasma membranes
are also converted to trimethylamine (TMA) by gut microbes. These PCs are abundant
in foods such as fish, eggs and milk, suggesting that dietary lipids regulate host lipid
metabolism through interaction with the gut microbiota [79]. Interestingly, Hulme et al.
identified two structural analogs of carnitine, 3-methyl-4-(trimethylammonio) butanoate
and 4-(trimethylammonio) pentanoate, which are produced by anaerobic commensals from
the Clostridiales family [80]. Acyl carnitines (fatty acyl esters of L-carnitine) have also been
reported in human feces [81,82]. However, information about the microbes that facilitate
the biotransformation of acyl carnitines in the gut is still unknown [52,58,80].

4. Functional Profiling and Metabolic Modeling of Human Gut Microbiome for
Understanding Microbial-Host-Lipid Co-Metabolism

At present, there are many tools, strategies and approaches available for the inte-
gration of microbiome–metabolome data [83]. In recent years, whole genome shotgun
metagenomic sequencing (WGS) [84] has been used for phylogenetic and functional profil-
ing of the gut microbiome [85]. WGS datasets have aided in the identification of microbial
dysbiosis in metabolic disorders [8,86] and helped to observe strain-level perturbations of
the gut microbiota by fecal microbiome transplantation (FMT) [87]. Several bioinformatics
pipelines, e.g., MOCAT2 [88], Metagenomics Rast (MG-RAST) [89], HMP Unified Metabolic
Analysis Network (HUMAnN2) [90], were designed for microbiome profiling and func-
tional analysis. In addition, MEtaGenome ANalyzer (MEGAN) [91], CAMERA [92] and
GALAXY (https://usegalaxy.org/, accessed on 10 December 2020) provide standalone
and/or web-based platforms to analyze large-scale metagenomics datasets. A detailed
overview of metagenomics data acquisition and processing is reviewed in [93]. Recently,
deep learning (DL)-based neural networks, as applied to WGS data, have improved gene

https://usegalaxy.org/
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prediction [94], and phylogenetic classification [95] of human gut microbiota. DeepMi-
crobes, a DL-based framework was trained on the bacterial repertoire of the human gut
microbiome [96]. The DL model outperformed (fewer false positives) the state-of-the-art
taxonomic classification tools for microbiome profiling (identification and quantification),
at species and genus levels. In addition, DeepMicrobes have identified several novel
microbial signatures in inflammatory bowel disease [95].

On the other hand, amplicon-based metataxonomic sequencing has been used to
stratify microbes at taxonomic levels (Operational Taxonomic Unit, OTU) [97]. OTUs
represent the phylogenetic diversity and microbial richness, between or among the samples
and/or the environment [98,99]. Several curated taxonomy databases such as Greengenes
(16S) [100], Silva (16S + 18S) [101] and Unite (ITS) [102] have been developed, and these
provide full-length 16S rRNA reference gene sequences. Computational tools such as
QIIME2 [103] and MEGAN [91] are commonly used for 16S rRNA analysis. Metataxonomic
data analysis is reviewed elsewhere [104].

Together, WGS and amplicon sequencing [105] can be used for microbiome profiling.
In addition, WGS data can be used for functional characterization of gut microbiota.
Furthermore, WGS can be used for gene discovery [106]. In contrast, amplicon-based
metataxonomic sequencing is biased by the high copy number of marker genes [107].
Moreover, it lacks the ability to characterize the genes’ functions (e.g., metabolic, immune)
in the gut community [107,108]. Neither of these techniques can provide a mechanistic
overview of gut microbial metabolism and their underlying processes. To study the
intricate relationships between microbial genes and molecular lipids, in the context of
metabolic pathways, taxon-specific metabolic reconstructions of microbes (provided the
genome is sequenced) have been developed. These genome-scale microbial reconstructions
and models have enhanced our understanding of host-microbiome interactions (e.g., co-
regulation) in healthy vs. disease conditions [109,110].

Therefore, genome-centric methods might not provide mechanistic insight into the
interactions of microbial species or strains in a gut ecosystem. To understand the intri-
cate relationship between gut microbes, diet and their metabolic interplay with the host,
several computational models have been developed [83,109–112]. Among various com-
putational modeling approaches, genome-scale metabolic modeling (GSMM), which is
a constraint-based mathematical modeling approach, has enhanced our understanding
of host-microbiome interactions under different clinical conditions. Moreover, genome-
scale metabolic models (GEMs) of gut microbes have provided testable hypotheses on
diet-microbe-host axis interactions in healthy vs. disease states [109,113–115]. Several tools
such as Kbase [116], ModelSEED [117], COnstraint-Based Reconstruction and Analysis
(COBRA) [118] and RAVEN (Reconstruction, Analysis, and Visualization of Metabolic
Networks) [119], have enabled and/or aided in the reconstruction of microbial-GEMs from
available genomic and metagenomic data. A detailed overview of GSMM, as applied to
human gut microbiota, is reviewed elsewhere [109,110].

As an example, GSMM was used to study metabolic interactions in the diet-microbiota-
host axis in 45 obese and overweight individuals [114]. GSMM was able to estimate the
metabolic capabilities and fluxes of the gut microbes for these groups of individuals. In
addition, it predicted an abrupt change in amino acid and short-chain fatty acid (SCFA)
fluxes in response to a dietary intervention. The results from GSMM were validated by fecal
and blood metabolomics data. Furthermore, GSMM has also been used to elucidate the
metabolic pathway(s) of human gut microbes in malnourished children from Bangladesh
and Malawi. Here, GSMM identified a significant increase in intestinal butyrate production
which was associated with a pair of gut microbes [120]. In another study, GSMM was used
to study BA biotransformation by human gut microbiota [115]. The results here showed that
Bacteroides and R. gnavus species can, together, produce ursodeoxycholate (UDCA) [115].
This work was performed using AGORA (Assembly of Gut Organisms through Reconstruc-
tion and Analysis); AGORA is a compendium of semi-curated metabolic reconstructions
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of the human gut microbiota [121]. Microbial GEMs are publicly available via Virtual
Metabolic Human (VMH) [122] and the BiGG [123] database.

However, modeling the lipid metabolism in human gut microbiota on a genome-scale
poses several challenges. Firstly, mapping of the experimentally-measured lipidome data
on to the genome-scale metabolic network is highly challenging, and as such, it limits to
constrain an individual lipid reaction of a GEM towards production of biomass, and thus,
making the model predictions poorly comparable with the experimental data. Different
identifiers or annotations of the molecular lipids are also used in different experimental
datasets and in GEMs. GEMs assemble individual lipids (e.g., PC (45:0), and SM (36:1)) into
a pool of their generic classes (e.g., PCs and SMs). Therefore, it is necessary to annotate the
lipids both in the experimental data and in the GEMs based on their ontology, and chemical
identifiers (InChl, SMILES). Recently, Poupin et al. suggested a matching strategy using
ChEBI ontology to bridge the gap between lipidomics data and genome-scale metabolic
network (GSMN). Ontology-based mapping provided intricate links between generic
classes of lipids present in the GSMN, with its congener molecular species identified in the
lipidomics datasets [124].

Recently, several tools such as LION/web [125], LipidLynxX [126] and Reference Set
of Metabolite Names (RefMet) [127] have been developed with a view to solving these
issues. LION/web [125] aims to translate and interpret the involvement of lipid species in
various biological systems. LipidLinxX is a data transfer hub which facilitates integration
of large-scale lipidomic datasets by standardizing lipid identifiers to the same level of
annotation and thereby facilitate cross-level matching between different datasets [126].
RefMet seeks to provide unifying nomenclature for the metabolites detected by analytical
methods [127]. Furthermore, Gerhard Liebisch et.al. [128] proposed a comprehensive and
standardized system to report lipid structures analyzed by MS data. In the future, such
guidelines should be followed for the reporting of lipidomics data which, in turn, can
improve the integration of lipids into GSMNs.

Additionally, the Split Lipids Into Measurable Entities reactions (SLIMEr) [128] tool
has the ability to divide lipid species into their respective classes and compute their acyl
chain carbon distributions. Therefore, it can constrain a lipid pathway when given the
lipid classes and acyl chain distributions of its substrates. SLIMEr was developed to
determine the biomass requirements of lipids in S. cerevisiae. Although these approaches
have improved integration of lipidomics data into GSMNs [124,128], the mapping of
lipidomics data still requires extensive harmonization between individual lipid species
annotated in the GSMN and in the lipidomics datasets [124]. Even so, some lipid pathways
in the gut microbes remain uncharacterized due to a lack of bibliographic evidence and/or
experimental data.

5. Conclusions and Future Perspectives

Human gut microbiota metabolize, transform and hydrolyze complex lipids, which,
in turn, modulate host lipid homeostasis, and thereby affect other physiological processes.
Fecal lipidomic analysis may thusly reveal causal slink between gut microbes and circu-
lating lipids. However, identification of potential microbial lipids in the stool lipidome
remains a challenging task, and is limited by both analytical techniques (due to complexity
of stool specimen) and annotation of lipids from the metabolite databases (due to lack
of microbial-lipid specific databases). Recently, several studies using animal models, as
well as in humans, have identified an interplay between microbial lipids, systemic lipids
and states of disease. It is also evident that different gut microbial species are involved in
lipid metabolism. Furthermore, it remains to be investigated as to how combinations of
lipids and dietary fiber affects gut microbial composition and, subsequently, host systemic
lipid levels., Gut microbial lipid pathways are not fully characterized, owing to the lack of
metagenomic annotation or reference genomes for ‘uncultured’ or ‘unknown’ microbes in
the human gut. We envisage that advancements in the field of GSMM, together with emerg-
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ing mechanistic studies and meta-‘omics’ techniques will aid the study of host-microbial
lipid co-metabolism across different health and disease states.
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