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Numerous retinal prosthetic systems have demonstrated somewhat useful vision can
be restored to individuals who had lost their sight due to outer retinal degenerative
diseases. Earlier prosthetic studies have mostly focused on the confinement of electrical
stimulation for improved spatial resolution and/or the biased stimulation of specific
retinal ganglion cell (RGC) types for selective activation of retinal ON/OFF pathway
for enhanced visual percepts. To better replicate normal vision, it would be also
crucial to consider information transmission by spiking activities arising in the RGC
population since an incredible amount of visual information is transferred from the
eye to the brain. In previous studies, however, it has not been well explored how
much artificial visual information is created in response to electrical stimuli delivered
by microelectrodes. In the present work, we discuss the importance of the neural
information for high-quality artificial vision. First, we summarize the previous literatures
which have computed information transmission rates from spiking activities of RGCs in
response to visual stimuli. Second, we exemplify a couple of studies which computed
the neural information from electrically evoked responses. Third, we briefly introduce
how information rates can be computed in the representative two ways – direct method
and reconstruction method. Fourth, we introduce in silico approaches modeling artificial
retinal neural networks to explore the relationship between amount of information
and the spiking patterns. Lastly, we conclude our review with clinical implications
to emphasize the necessity of considering visual information transmission for further
improvement of retinal prosthetics.

Keywords: retinal prosthetics, visual information, neural computation, information theory, spike trains

INTRODUCTION

Vision is unarguably the most critical sensory modality (Hutmacher, 2019) among the five senses
of humans. Diverse causes can result in low vision or blindness, and there have been numerous
attempts to restore sight to blind individuals by electrically stimulating visual cortex (Dobelle
et al., 1974, 1976), lateral geniculate nucleus (Pezaris and Reid, 2007), optic nerve (Gaillet et al.,
2019), or retina (Humayun et al., 1996). In the case of retina, the electric stimulation is effective to
elicit artificial visual percepts for outer retinal degenerative diseases such as retinitis pigmentosa
and age-related macular degeneration, which primarily damage photoreceptors (Bunker et al.,
1984; Curcio et al., 1996). Microelectronic retinal prostheses including commercialized ones
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(e.g., Argus II, Alpha-IMS/AMS, and PRIMA) reported some
promising clinical outcomes by electrically stimulating the
remaining inner retinal neurons (Humayun et al., 1996; Rizzo
et al., 2003; Fujikado et al., 2007; Zrenner et al., 2011; da Cruz
et al., 2013, Dorn et al., 2013; Stingl et al., 2013; Shivdasani
et al., 2017; Palanker et al., 2020). However, the best visual
acuity of elicited artificial vision (20/460) (Palanker et al., 2020)
is still far below the level of legal blindness (20/200) as well
as normal vision (20/20). To achieve high-resolution visual
prosthetics, various research groups have tried to electrically
activate cells in only targeted small areas using hardware and
software approaches. For example, several groups proposed novel
designs of microelectrodes (Flores et al., 2018, 2019; Seo et al.,
2020) or photovoltaic arrays (Ferlauto et al., 2018; Wang et al.,
2021) to further localize electric current in a smaller region. Also,
Jepson et al. (2014) used spatially patterned electric stimulation,
and Weitz et al. (2015) demonstrated retinal activation in much
smaller area with 25 ms-long pulses.

The other important research topic in retinal prosthetics has
long been the cell-type specific stimulation. As the starting point
of the most complex sensory system, and the mammalian retinas
have numerous types of retinal ganglion cells (RGCs) which
are the output spiking neurons sending neural signals to the
downstream visual centers (Masland, 2001; Rockhill et al., 2004;
Sanes and Masland, 2015; Baden et al., 2016). Among those
types, ON and OFF RGCs are known to play a critical role in
forming visual percepts (Schiller et al., 1986; Schiller, 1992). In
addition to the asymmetricities between light-evoked responses
of the ON vs. the OFF pathways (Ölveczky et al., 2003; Margolis
and Detwiler, 2007; Liang and Freed, 2012; Freed, 2017), retinal
prosthetic studies reported contrasting differences between the
two pathways (Freeman et al., 2010; Kameneva et al., 2010;
Twyford et al., 2014; Im and Fried, 2015, 2016a; Lee and Im,
2019). However, given the unique mosaic arrangement of each
type of RGCs (DeVries and Baylor, 1997; Masland, 2012), it seems
almost inevitable to activate every type of RGCs located near
a given electrode delivering electric stimulation. Nevertheless,
it seems reasonable to aim more biased activation of the ON
system because the earlier clinical trials reported dominantly
bright sensation (Humayun et al., 1996, 2003; Fujikado et al.,
2007; Naycheva et al., 2012). Recent studies demonstrated the
ON/OFF response ratio can be increased by modulating several
stimulus parameters such as stimulus durations (Im et al., 2018),
repetition rates (Cai et al., 2011, 2013; Twyford et al., 2014; Im
and Fried, 2016a), waveform shapes (Lee and Im, 2018), and
current amplitudes (Lee and Im, 2019). The use of penetrating
microelectrode to the specific stratification depth may enhance
the cell-type specific activation of either ON or OFF RGCs (Roh
et al., 2022). To date, however, it appears extremely challenging
to achieve completely selective stimulation of targeted cell type(s)
using electrical stimulation. In contrast, optogenetic approaches
can selectively activate the ON pathway (Lagali et al., 2008;
Gaub et al., 2014; Macé et al., 2015; Lu et al., 2016) but they
need to address potential phototoxicity (Grimm et al., 2001; van
Wyk et al., 2015; Simunovic et al., 2019) and/or low transfection
efficiency of viral vectors (Lagali et al., 2008; Busskamp and
Roska, 2011).

In addition to the aforementioned two important features
(i.e., the spatial resolution and the cell type-specific stimulation),
it may be critical to assess whether retinal prostheses restore
ample enough information. It is because the remarkably complex
retinal circuits compress the visual world in real-time (Kolb,
2003), making RGCs transmit an incredible amount of visual
information to the brain (Figure 1A), which could be estimated
as big as 875,000 bits/s (52.5 Mb/min) (Koch et al., 2006). Thus,
less artificial information may confound the brain, resulting
in unclear artificial visual percepts (Figure 1B), whereas more
transferred information may help the brain more precisely
recognize artificial visual images (Figure 1C). However, there has
been a limited number of retinal prosthetic researches which had
studied neural information aspects of electrically evoked spiking
activities (Eger et al., 2005; Kang et al., 2021). Contrastingly, in
the case of cochlear implants which show great clinical success,
information transmission in the auditory system has been well
studied (Mino, 2007; Zeng et al., 2008; Hannan et al., 2012; Moroz
et al., 2012; Gao et al., 2013). Analyzing the RGC spiking activities
using information theory is likely to help understanding how
the brain deciphers artificial visual information (Quian Quiroga
and Panzeri, 2009). In particular, it has been known that retinal
spike trains are precisely structured to efficiently convey visual
information (Berry et al., 1997). Therefore, other than simply re-
activating RGCs to send spike trains to downstream neurons,
it would be essential to understand how much information
is encoded (Timme and Lapish, 2018) by the ensemble of
prosthetically evoked spikes arising in RGCs (Freeman et al.,
2011) to estimate the quality of artificial vision. Also, information
researches are likely to offer valuable insights for the improved
performance of retinal implants.

NEURAL INFORMATION OF INTRINSIC
VISUAL RESPONSES IN THE HEALTHY
RETINA

The retina divides the complex visual world into several parallel
pathways (Wässle, 2004; Roska et al., 2006; Nassi and Callaway,
2009) using the remarkable variety of RGC types (Baden et al.,
2016). All RGCs in mammalian retinas encode visual information
by spatiotemporal structure of spike trains but differently
across the RGC types (Berry et al., 1997; Masland, 2001; Field
and Chichilnisky, 2007; Zeck and Masland, 2007; Sanes and
Masland, 2015). Much work has studied the relationship between
spiking and information rates in RGC responses to light stimuli
using several computational methods (Koch et al., 2004, 2006;
Passaglia and Troy, 2004; Kang et al., 2021) (see a later section
regarding how direct and reconstruction methods compute
neural information). Particularly, it is notable that distinct RGC
types showed different information rates (Koch et al., 2006). For
example, in guinea pig retinas, two groups of RGCs with brisk
or sluggish responses transmitted information of 21 ± 9 and
13 ± 7 bits/s (n = 19 and n = 23 cells), respectively (Koch et al.,
2004). More recently, Kang et al. (2021) analyzed the amount of
neural information conveyed through brisk transient (BT) and
brisk sustained (BS) subtypes of ON and OFF pathways in rabbit
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FIGURE 1 | Schematic illustration of visual information transfer from the eye to
the visual cortex. The visual information flows through the lateral geniculate
nucleus (LGN) en route to the visual cortex. But, LGN is not shown in this
figure for brevity. (A) Retinal ganglion cells generate spiking activities to visual
stimuli and transmit visual information to the brain (visual cortex) through the
optic nerve and optic radiation. (B) Insufficient visual information and less
natural artificial vision may activate higher visual centers inappropriately.
(C) Rich visual information and more natural artificial vision may activate higher
visual centers more effectively.

retinas. In responses to spot flashes, 1.83 ± 0.07 and 1.89 ± 0.04
bits/s of information were transmitted by ON BT and OFF BT
cells, respectively; while 2.53 ± 0.08 and 3.00 ± 0.22 bits/s of
information were transmitted by ON BS and OFF BS cells (n = 15
for each type), respectively.

Compared to laboratory stimuli such as stationary spot flashes,
natural stimuli are known to evoke sparser spiking activities in
RGCs (Kayser et al., 2003; David et al., 2004; Felsen et al., 2005;
Puchalla et al., 2005; Touryan et al., 2005; Talebi and Baker,
2012; Im and Fried, 2016b). For example, about 65% of RGCs
do not fire constantly in response to natural stimuli, and it
has been argued that the sparse coding can reduce the number
of activated neurons, thereby saving energy for information
transmission (Wang et al., 2018). Given that natural stimuli

contain much bigger visual information than laboratory stimuli,
it seems important to compare both amount and efficiency of
information conveyed in responses arising from laboratory vs.
natural stimuli.

ARTIFICIAL VISUAL INFORMATION OF
ELECTRICALLY EVOKED RESPONSES
IN THE DEGENERATE RETINA

Aforementioned examples suggest that, for high-quality artificial
vision, it may be crucial to study whether electrically elicited
spiking activities of RGCs in the degenerate retina convey visual
information at a similar level of visually evoked responses
arising in the normal retina (Fried et al., 2006; Freeman et al.,
2011). Surprisingly, however, there are very few studies that
have discussed the neural information produced by electric
stimulation. For example, Eger et al. (2005) stimulated the cat
retina electrically while recording neuronal activities at 15 sites
in the visual cortex. They estimated 20–160 bits/s of information
was transferred at a single recording site when a single electrode
was activated (Eger et al., 2005). They also reported 500 bits/s
of information was transmitted at 15 recording sites when seven
electrodes were activated. However, the information rates varied
noticeably between experiments depending on the positions of
stimulation and recording sites since it was difficult to place
electrodes accurately at corresponding retinotopic loci.

Another example investigated the amount of information
elicited by both light and electric stimulation in more
sophisticated ways (Kang et al., 2021). First, they classified
RGCs into the four major types (i.e., BT and BS subtypes of
ON and OFF pathways) in the healthy rabbit retina, and then
analyzed spiking activities in each type to compare the neural
information between light and electric responses of identical
sets of RGCs. When the number of cells increased up to 15,
electric responses of ON BT and BS RGCs displayed a similar
level of neural information with their light responses, whereas
electrically evoked responses of OFF BT and BS cells showed
greatly reduced information than those of their light responses.
Second, they tried to correlate the neural information and the
cell-to-cell heterogeneity of spiking responses. Interestingly, the
ON RGCs showed similarly heterogeneous responses regardless
of light and electric stimuli. In contrast, the OFF RGCs showed
much more homogeneous responses to electric than light stimuli.
The reduced information by the homogeneous responses of
OFF RGCs is consistent with previous studies which reported
the amount of neural information increases with a higher
cell-to-cell heterogeneity in naturally evoked neural activities
(Chelaru and Dragoi, 2008; Padmanabhan and Urban, 2010).
However, it is also noteworthy that there is an optimal level
of population response heterogeneity which maximizes the
transmission of neural information as well as minimizes the effect
of external noises (Tkačik et al., 2010; Tripathy et al., 2013;
Im and Kim, 2020). Kang et al. (2021) also demonstrated the
ultimate heterogeneity (i.e., completely random spiking) of RGC
responses is not ideal to transfer neural information because
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they are less immune to noise: they showed the increased trial-
to-trial variability (i.e., jitter) reduces the population neural
information more substantially in random spiking responses
than in physiological RGC responses which showed intermediate
levels of the cell-to-cell heterogeneity. Given an earlier study
that reported RGC spiking consistency is gradually reduced with
advancing retinal degeneration (Yoon et al., 2020), the analyses
of Kang et al. (2021) suggest that the amount of information
transmitted to the brain decreases as the retina degenerates. For
further improvement of retinal prosthetics, it may be critical to
investigate how information rates can be enhanced in degenerate
retinas by altering electric stimulation conditions.

TWO METHODS FOR NEURAL
INFORMATION CALCULATION

Information theory can quantify how much information about
a given external stimulus is conveyed by neural responses; and
there are two representative ways to compute the information
from neural spike trains (Borst and Theunissen, 1999; Passaglia
and Troy, 2004). First, direct method can be applied to calculate
average information transmitted by the difference between total
entropy of the neural response and noise entropy (Figure 2A;
Koch et al., 2004; Osborne et al., 2008; Stone, 2018; Kang et al.,
2021). In this method, before calculating the entropy, spikes of
each cell are allocated into time bins in a fixed duration which
may differ depending on experimental methods (Koch et al.,
2004). Then, if one or more spikes are present in a given time bin,
1 is assigned; while 0 is assigned if there are no spikes (Osborne
et al., 2008; Kang et al., 2021). Before using this binary code array
to calculate entropy, it is important to choose an appropriate
length of binary code combinations depending on the particular
context being experimented (Theunissen and Miller, 1995). Then,
total entropy is calculated from the probability of particular
binary code combinations in the entire recording. Similarly, noise
entropy is also estimated but from the probability of particular
binary code combinations at a specific given time relative to
the identical stimuli (see Osborne et al., 2008; Stone, 2018
for more details).

Second, reconstruction method can be used which is a variant
of the abovementioned direct method (Figure 2B; Borst and
Theunissen, 1999). The reconstruction method can determine
the neural responses based on the stimulus or predict what
stimulus is given based on the response (Eger and Eckhorn,
2002; Victor, 2006). Unlike the direct method requiring no
assumption, the reconstruction method estimates upper or lower
bound of information depending on assumptions. When we
assume neural responses have a Gaussian distribution over the
frequency range then the upper bound is placed since Gaussian
distribution has the maximum entropy (Borst and Theunissen,
1999; Passaglia and Troy, 2004). Alternatively, the lower bound
is placed when we assume information can be decoded linearly
to estimate the best possible stimulus from the neural responses
(Borst and Theunissen, 1999). Because we cannot include all
of the information with this assumption since neural responses
are predominantly non-linear and Poisson process (Felsen and

Dan, 2005), it becomes the lower bound of the information. For
the computation of information rates using the reconstruction
method, the signal to noise ratio in the frequency domain must
be calculated (see Passaglia and Troy, 2004 for more details).

In comparison between these two methods, the direct method
needs a lot of experimental data to calculate since it has
no assumptions with signals and it does not reveal which
stimulus aspects are being encoded. In sharp contrast, the
reconstruction method needs significantly less data than the
direct method, making it useful for the field that has limited
amount of available data.

RECENT IN SILICO COMPUTATIONAL
NEUROSCIENCE APPROACHES FOR
NEURAL INFORMATION ANALYSIS

As an alternative to population responses recorded in vivo or
in vitro, we can simulate population codes using computational
tools. A few preceding studies suggest that the artificial retina
model helps understand how the retina responds to stimuli
and how the retina encodes visual information (Wohrer et al.,
2006; Pei and Qiao, 2010). Also, Brette (2009) introduced an
in silico approach to generate population codes based on the
designed firing rate and pairwise correlation of spike trains. With
the computational approaches using artificial spike trains, it is
possible to more precisely analyze the relationship between the
spiking elements and neural information.

Recently, Roh et al. (2021) used a modified version of “Brian
2” (Brette, 2009) to generate various sets of spike trains which
have different levels of correlations; spike time tiling coefficients
(STTCs) were calculated to quantify the correlations across
spike trains (Cutts and Eglen, 2014). Then, they analyzed neural
information as a function of the correlation level for a wide
range of average STTC values. According to the abovementioned
study of Roh et al., the increased spiking heterogeneity across
cells can enhance information transmission. Earlier, Hunsberger
et al. (2014) reported the heterogeneity may better encode the
stimulation by expressing complementary aspects of stimuli. In
addition to the cell-to-cell spiking heterogeneity, other spiking
features may be also crucial in better encoding visual information.
For example, as a follow-up study of Roh et al. (2021) and
Kim et al. (2022) further explored the relationship between
information and other spiking elements such as mean firing
rate and spiking duration. These in silico approaches may
expedite future studies regarding how different stimulation
parameters of retinal prostheses make RGCs transmit sufficient
information to the brain.

CLINICAL IMPLICATIONS OF
ARTIFICIALLY EVOKED VISUAL NEURAL
INFORMATION

Other than the aforementioned studies (Eger et al., 2005;
Kang et al., 2021; Roh et al., 2021; Kim et al., 2022),
retinal prosthetics has not paid enough attention on how

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 911754

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-16-911754 May 31, 2022 Time: 15:33 # 5

Kim et al. Artificial Visual Information of Retinal Prostheses

FIGURE 2 | The direct method and the reconstruction method can be applied to calculate information rates. (A) In the direct method, average information rates are
the difference between total entropy and noise entropy. N represents the total number of possible binary code combinations, i represents binary code combination.
Pi indicates probability of particular binary code combinations and similarly Pi,t indicates the probability of particular binary code combinations at a specific time, t.
(B) In the reconstruction method, average information rates are obtained from the signal to noise ratio (SNR). Signal and noise are calculated differently in each
bound (see Passaglia and Troy, 2004 for how signal and noise are calculated). In here, S(f) means signals which are the Fourier transforms of the stimulus, R(f)
means responses which are also the Fourier transforms of the response, respectively. Ŝ(f) means the best estimate of stimulus. In upper bound, Ŝ(f) is obtained by
averaging R(f) [i.e,. R̄(f)]. In lower bound, Ŝ(f) is obtained by the linear decoder filter, Hs(f). N(f) represents noise, and noise is also different in each bound. In upper
bound, noise is the difference between response and average response, while noise is the difference between signals and estimated stimulus in lower bound.

their microelectronic devices and/or stimulation strategies
improve electrically produced neural information. Although
there is no direct clinical evidence supporting that prosthetic
responses which transmit more information would be better
perceived, it is important to note a recent sight restoration
study demonstrated better animal behavior responses when
the restored spiking activities were more heterogeneous across
RGCs (Berry et al., 2017). Given the correlation between
the cell-to-cell spiking heterogeneity and the transmitted
neural information (Tripathy et al., 2013; Kang et al., 2021),
the improved behavior of the animals is likely due to
the enhanced visual information transmission. The optical
stimulation using optogenetic approaches (Bi et al., 2006; Sahel
et al., 2021), photoswitch compound (Tochitsky et al., 2016),
and photoactivatable G protein-coupled receptor (Berry et al.,
2017) must be promising vision restoration methods because they
would not require any surgical implantation of microelectronic
devices. However, in those fields as well, it is difficult to find
analyses of artificially evoked neural information.

In the past clinical trials of microelectronic retinal prostheses,
the most prosthetic users with retinitis pigmentosa were at
the near-end stage of degeneration, who showed no light
perception or hand motion (Humayun et al., 2003; Zrenner
et al., 2011; Stingl et al., 2013; but, see Palanker et al.,
2020, 2022 for prosthetic users with age-related macular
degeneration who had still periphery vision). In such an
advanced stage, their retinas were likely to send less neural
information to the brain in response to electric stimulation.

It is because both direct and indirect activation of RGCs
are likely to result in low information transmission rates as
follow: (1) direct activation which can precisely elicit spike at
intended timing may produce too homogeneous spiking across
RGCs compared to natural spiking activity, and (2) indirect
activation generates highly inconsistent (i.e., big trial-to-trial
variability in each RGCs) network-mediated responses in severely
degenerate retinas (Yoon et al., 2020), increasing noise which
reduces information transmission (Kang et al., 2021). Numerous
previous literatures have studied synchronous/correlated spiking
activities of neighboring RGCs in responses to visual stimuli
(Meister et al., 1995; DeVries, 1999; Puchalla et al., 2005;
Shlens et al., 2008). Depending on the extent of response
synchrony/correlation of neighboring RGCs, the brain might
recognize different visual messages as argued earlier (Puchalla
et al., 2005). However, systematic understanding is still lacking
regarding electrically evoked responses, raising the need for such
measurements.

CONCLUSION

The retina is remarkably complicated in both anatomic and
functional aspects. Given the incredible complexity of the retina,
it seems insufficient to simply make RGCs fire again for high-
quality artificial vision. However, the field of retinal prosthetics
has paid little attention on how much artificial visual information
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could be created by implanted retinal prostheses and transmitted
from the retina to the brain, compared to other aspects of
electrically evoked retinal responses such as spike counts, firing
rates, and so on. For the further improved quality of prosthetic
vision, it may be critical to explore whether sufficient amount of
visual information is transmitted from the retina to the brain.
Probably, more information enhances the perception quality of
artificial vision.
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