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An ongoing interest towards identification based on biosignals, such as
electroencephalogram (EEG), magnetic resonance imaging (MRI), is growing in
the past decades. Previous studies indicated that the inherent information about brain
activity may be used to identify individual during resting-state of eyes open (REO) and
eyes closed (REC). Electroencephalographic (EEG) records the data from the scalp,
and it is believed that the noisy EEG signals can influence the accuracies of one
experiment causing unreliable results. Therefore, the stability and time-robustness of
inter-individual features can be investigated for the purpose of individual identification.
In this work, we conducted three experiments with the time interval of at least 2 weeks,
and used different types of measures (Power Spectral Density, Cross Spectrum,
Channel Coherence and Phase Lags) to extract the individual features. The Pearson
Correlation Coefficient (PCC) is calculated to measure the level of linear correlation
for intra-individual, and Support Vector Machine (SVM) is used to obtain the related
classification accuracy. Results show that the classification accuracies of four features
were 85–100% for intra-experiment dataset, and were 80–100% for fusion experiments
dataset. For inter-experiments classification of REO features, the optimized frequency
range is 13–40 Hz for three features, Power Spectral Density, Channel Coherence and
Cross Spectrum. For inter-experiments classification of REC, the optimized frequency
range is 8–40 Hz for three features, Power Spectral Density, Channel Coherence and
Cross Spectrum. The classification results of Phase Lags are much lower than the other
three features. These results show the time-robustness of EEG, which can further use
for individual identification system.

Keywords: electroencephalography, identification, resting-state, robustness, time-frequency features

INTRODUCTION

Electroencephalography (EEG), along with the development of neuroscience and computer science,
is becoming a new neuroimaging technique that can be used as an alternative method for
individual biometric identification (Hema et al., 2008; Chuang et al., 2013). EEG signals reflect
individual information about brain anatomy and function, and it can measure the synchronous
activity of brain regions (Wolpaw et al., 2000; Rodriguez, 2015). Compared with other biometric
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identification approaches, such as face, fingerprint, as well as
other types of biometric, the EEG-based identification system
requires users to be alive and EEG signals are hard to be copied
or be hijacked as its sophisticated enough (Wang et al., 2012;
Akhtar et al., 2015; Llanos et al., 2019).

Electroencephalography signals were first recorded in 1924
by Hans Berger. The first research on inter-individual variation
of EEG signals can track back to 1960s (Davis and Davis, 1936;
Berkhout and Walter, 1968), and the relationship between EEG
signals and genetic information has been confirmed for the
first time (Poulos et al., 1999, 2001, 2002a,b). EEG signals can
be quantified by different types of effective measures, such as
event-related potentials (ERPs), spectra, functional connectivity
as well as other parameters. These time-frequency domain
measures can evaluate the inter-individual variability of brain
activity. It is not easy to obtain inherent features from raw
EEG signals as EEG signals are noisy and small amplitude
(Nakanishi et al., 2009; Delpozo-Banos et al., 2015). There are
some studies on the EEG-based identification system in recent
years. Many analytical methods were used to assess the inter-
individual dependence for different types of EEG (Fraschini
et al., 2014; Rocca et al., 2014; Alariki et al., 2018). Resting-
state is a promising condition used as a biometric for individual
identification as it generates synchronous oscillations in specific
frequency ranges and compared with other acquisition protocols,
it reduces fatigue and artifact since it does not require the active
involvement of participants. Lots of studies focus on resting-state
of eye open (REO) and closed (REC), and the studies indicated
that resting-state EEG carrying interesting information in specific
sub-bands have shown significant inter-individual difference
especially using related spectral analysis (Abo-Zahhad et al.,
2015; Busonera et al., 2018; Chan et al., 2018). Power spectrum
of each single electrode can represent the brain oscillation in
terms of physiological and cognitive functions (Ramaswamy
and Mandic, 2007; Di et al., 2019), and it constitutes inherent
information of each region through each channel in different
frequency bands (Nakamura et al., 2017). Functional connectivity
is another method which captures linear or nonlinear statistical
dependencies between distinct channels.

Previous studies pay more attention to the difference of inter-
individual variance in one experiment and did not focus on
the stability over time for individual identification (Pozo-Banos
et al., 2014; Crobe et al., 2016; Zeng et al., 2018). But some
features are susceptible to noise that can only be used for intra-
experiment data. Therefore, the time-robustness of features used
for individual identification is more important when using in
the practical identification system (Arnau-Gonzalez et al., 2017;
Schetinin et al., 2018).

In this work, we conducted three runs experiments and
proposed four feature extraction methods. There are three
sessions of REO and REC with time interval of 20 min in
each experiment and at least 2 weeks for every two experiment.
Support Vector Machine (SVM) was used as the classifier to verify
whether the difference between participants and the similarity for
different trials of the participant in each run or each fusion run.
Then we assessed the stability and time-invariant for individual
identification based on inter-run EEG data. Some frequency

ranges were chosen to find an optimal frequency range that can
obtain a better performance in the frequency range of 1–40 Hz.
The results reveal that there is stability and time-robustness of
features that we proposed for individual identification based on
resting-state EEG data.

MATERIALS AND METHODS

Participants
There are 10 participants (6 males) involved in the experiment,
with average age of 21(±3). They are volunteers from Tianjin
University. Participants have signed the consent form that
include notice and individual right before the beginning of first
experiment. The study is approved by local ethical committee
at Tianjin University. Three sessions are recorded following by
20 min internals in which subjects conduct others protocols.
Three run experiments were conducted for each participant and
the time interval of runs is at least 2 weeks. The experiment
procedure is shown in Figure 1, and the detail of three
experiments is shown in Table 1.

EEG Acquirement
Electroencephalography signals were acquired using the EEG
cap with 64 channels placed at the standard position of the
international 10–20 system. The channel of “AFz” was set as the
ground and the top of head was used as the reference. In this
work, there is 20 channels recorded, including Fz, F3, F4, F7, F8,
Cz, C3, C4, Pz, P3, P4, PO7, PO8, TP7, TP8, Oz, O1, O2, M1, and
M2 (Di et al., 2019).

Pre-processing
Pre-processing, including down-sampling, re-reference and
filtering, is used for EEG data. Firstly, the raw data was down-
sampled from 1,000 to 100 Hz, and re-referenced to the mean
of ear mastoids ((M1+M2)/2). Then, a bandpass filter of 1–
40 Hz was applied. Finally, the data (450s) were epoched into 450
segments (1-s per segment) for each participant in each run.

Features
Power Spectral Density
Power Spectral Density (PSD) is a non-parametric spectrum
analysis that describes the distribution of a signal over frequency
for stationary random process (Campisi and Rocca, 2015; Wang
and Najafizadeh, 2016). The periodogram P̂ (ω) is defined as:

P̂ (ω) =
1t
N

∣∣∣∣∣
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Where xn represents the EEG signal and fn is samples per unit
time. 1t is the sampling interval.

The modified periodogram multiplies the series by a window
function in order to reduce the leakage in the periodogram. The
modified periodogram is defined as:
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FIGURE 1 | Experimental procedure.

TABLE 1 | Three run experiments date of each subject.

Number First RUN Second RUN Third RUN

Sub1 2018/05/25 2018/06/14 2018/07/10

Sub2 2018/05/24 2018/06/14 2018/07/10

Sub3 2018/0527 2018/06/25 2018/07/13

Sub4 2018/05/28 2018/06/26 2018/07/13

Sub5 2018/05/31 2018/06/26 2018/07/16

Sub6 2018/06/02 2018/07/01 2018/07/24

Sub7 2018/06/02 2018/06/28 2018/07/14

Sub8 2018/06/03 2018/06/28 2018/07/15

Sub9 2018/06/04 2018/07/12 2018/08/06

Sub10 2018/06/14 2018/07/11 2018/08/06

Where hn is a suitable window function and 4t is the
sampling interval.

In this work, we use Welch’s method to estimate the
PSD of EEG signal. Welch’s average estimation is a method
based on modified periodogram. It divides the signal into
overlapping segments and averages the estimates that are
computed by modified periodogram. This method reduce
variance of periodogram by averaging. Hamming Window was
used and overlap was set as 0.5. The number of FFT is
set as 100 (frequency sampling of signal is 100 Hz). Each
segment was characterized by feature vector of PSD, which the
size is Nch × Nf . Nch = 18 represent the number of channels
we used and Nf = 40 represent the frequency points from
1 to 40 Hz. There are 450 feature vectors of PSD for each
participant in each run.

Cross Spectrum Analysis
In this part, we estimate the spectral connectivity between
channels and compute three features, amplitude spectrum,
channel phase lag and channel coherence, to describe the
spectrum connectivity between channels (Ghorbanian et al.,
2013; Valizadeh et al., 2019). Cross spectrum is a frequency
analysis of cross-correlation between two time series. The cross
power spectral density is the distribution of power per unit
frequency. It is defined as:

Pxy (w) =

∞∑
m=−∞

Rxy (m) e−Jωm

Where Rxy (m) is cross-correlation sequence and is defined as:
The complex cross spectrum is obtained through each

channel pair. Then we compute the amplitude spectrum
and phase lag respectively. The size of amplitude spectrum
for each segment is Np × Nf , where Np = 171 means all
channel pairs and Nf = 40 means the frequency points from

1 to 40 Hz. There are 450 feature vectors of amplitude
spectrum for each participant in each run. The size of
phase lag is as same as the size of amplitude spectrum.
There are 450 feature vectors of phase lag for each
participant in each run.

Coherence estimate is a function which describes how well x
corresponds to y in each frequency, with values 0 to 1. Pxy is cross
power spectral density and Pxx, Pyy are power spectral density.

The coherence is defined as:
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(
f
)
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f
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Where x and y represent two channels EEG data. The result shows
the correlation between two channels at each frequency.

The size of channel coherence is Np × Nf , where Np = 153
represents all channel pairs between channels (exclude self-
channel coherence) and Nf = 40 represents the frequency range
from 1 to 40 Hz.

Pearson Correlation Coefficient
Pearson correlation coefficient (PCC) is a statistic method that
can measure the correlation between two variables X and Y.
Given a pair of variables X and Y, the PCC is defined as:

ρX,Y =
cov (X,Y)

σXσY
=

E
[
(X − µX) (Y − µY)

]
σXσY

Where cov is the covariance, σX is the standard deviation of X
and σY is the standard deviation of Y. µ is the mean and E is
the expectation.

Support Vector Machine
Support Vector Machine (SVM) is a supervised learning
method for classification or regression in machine learning
(Chang and Lin, 2011; Hong et al., 2013). We are given a
dataset of n points X = {X1,X2, · · · ,Xn} and class labels Y =
{y1, y2, · · · , yn}, where Y ∈ {+1,− 1}, indicating the class of
point X. The hyperplane is to divide the group of points Xi for
which yi = 1 from the group of points Xi for which yi = −1. It is
defined as:

ωTxk + b = yk

Where ω represent the vector of the hyperplane.
Support Vector Machine is a maximum-margin classifier so

we can select two hyperplanes that separate the two classes of
data. These two hyperplanes can be described as:

ωTx+ b = 1

ωTx+ b = −1
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The distance between two hyperplanes is 2
||ω||

. In order to
maximum the distance between the hyperplanes, we can
minimum ω. It can be described as:

max
ω,b

2
| |ω| |

s.t.yi(ω
Txi + b) > 0

the paradigm is based on PsychtoolBox in Matlab and the
preprocessing of EEG data is based on EEGLAB in Matlab
(Brunner et al., 2013). All programming codes of feature
extraction and classification were written in Matlab.

RESULTS AND DISCUSSION

Biometrics is a heated topic and EEG-based biometric system
which draw more attention in a few years. Although there
are some researches about the EEG-based biometrics system,
most of them just focus on the difference between participants
in a single experiment, and ignore the stability and time-
robustness of inter-experiments data independently (Koike-
Akino et al., 2016; Wu et al., 2018; Özdenizci et al., 2019), which
is much more important.

In this section, the relevant results are shown for all
participants based on resting-state (REO and REC) EEG signals.
Both four features extraction approaches which are described in
Section-II are used in this section to investigate the stability of
intra-run and inter-runs features. Figures of extracted features are
visible in Section III-1, and related classification results for inter-
run and intra-runs features are showed in Section III-2 and III-3.
Moreover, our mainly goal is to assess the stability and reliability
of EEG features. We estimate spectral information of each
single channel and functional connectivity with channel pairs by
different feature extraction methods according to the previous
works that spectral density of single channel and coherence
measures of channel pairs can be useful features for identification
with high accuracy (Rocca et al., 2014; Di et al., 2019; Valizadeh

et al., 2019). In this work, we used the approaches which were
given in Section II to obtain the features, and randomly selected
4 participants from all 10 participants to show the difference of
features, visually. The method of PCC is used to measure the
linear correlation for each feature, and the classifier of SVM is
used to obtain the classification accuracy.

Features
In this part, values of four features of each participant are
presented to show the difference. Power Spectral Density,
Cross Spectrum, Phase Lags, and Channel Coherence,
ξPSD, ξspectrum, ξphase and ξCOH , are obtained refer to previous
methods in Section II. In this work, each feature has 450
trials for REO and REC, and in order to reduce the noise, 90
trials for each condition of each participant were obtained
by averaging every five trials. The intra-run coefficients are
also calculated in this part for correlation analysis. Here we
use Fisher’s Z transformation to the Channel Coherence and
logarithmic transformation to the PSD and Cross Spectrum
values (Valizadeh et al., 2019).

The values of PSD, Cross Spectrum, Channel Coherence,
and Phase Lags are visible in Figures 2–5, respectively. Four
participants were randomly chosen for each feature. The X-axis
represents the frequency range from 1 to 40 Hz, and Y-axis
represents each single channel or channel pairs. The upper
and bottom in Figures 2–5 show the condition of REO and
REC, respectively. The change in color from yellow to blue
corresponds to change of value from large to small. Power
Spectral Density can reflect the brain activity for the position of
EEG channels over scalp. All 18 channels are calculated for PSD.
Cross Spectrum, Phase Lags, and Channel coherence can reflect
functional connections of channel pairs. In this work, we get 171
channel pairs overall, with frequency ranges from 1 to 40 Hz,
for Cross spectrum and Phase Lags of each participant, and 153
channel pairs (exclude 18 self-channel pairs), with 1–40 Hz, for
Channel Coherence of each participant.

The values of PSD for participants on REO and REC are
visible in Figure 2. As we can see, there is a numerical difference

FIGURE 2 | Power Spectral Density of REO and REC for four subjects. (A) Shows the condition of REO. (B) Shows the condition of REC.

Frontiers in Human Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 672946

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-672946 September 13, 2021 Time: 11:50 # 5

Di et al. Time-Robustness of EEG Individual Identification

FIGURE 3 | Cross Spectrum of REO and REC for four subjects. (A) Represents the condition of REO. (B) Represents the condition of REC.

FIGURE 4 | Channel Coherence of REO and REC for four subjects. (A) The features of REO. (B) The features of REC.

FIGURE 5 | Phase Lags of REO and REC for four subjects. (A) Represents the condition of REO. (B) Represents the condition of REC.

between participants for REO and REC, respectively. The values
of 1–10 Hz are higher than other frequency ranges for each
channel of REO, and for REC, the values of 1–15 Hz are

higher than other frequency ranges. Figures 3, 4 show similar
conclusion. The feature values of 1–10 Hz are much higher than
other frequency ranges for REO and REC, and for each figure
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of the same participant, from figures, we can see that a little less
difference between REO and REC, except the frequency range of
10–15 Hz, in which the values of REC are much higher than that
of REO. As for the feature of Phase Lags, there is distinct between
participants, and the values of frequency range around 10 Hz are
positive for REO, in which the values are negative in the same
frequency range for REC.

The above shows the difference of intra-run data visually and
statistically. Moreover, Pearson correlation coefficients (PCC)
are calculated to show whether features of intra-subject have
the similarity and features of inter-subjects have the difference
statistically, respectively. In this part, as before, every five trials
of each feature were averaged and finally got 90 averaged trials.
The PCC results of PSD, Cross Spectrum, Channel Coherence,
and Phase Lags are visible in Figure 6. The X-axis and Y-axis
represent trials for all participants of the same experiment,
and number of 1 to 10 represent the subject number. The
coefficient values are ranged from −1 to +1, in which close to
‘0’ represents lower correlation and close to “(±)1” represents
higher correlation (positive or negative) of intra-run. The upper
in Figure 6 shows the condition of REO. The bottom of Figure 6
shows coefficients for the condition of REC. To show the contrast
significantly, the minimum values of figures were changed.

From the figures we can see that the diagonal of each figure,
which means the intra-run correlation coefficients for each
subject, shows a more significant correlation than the correlation
of different subjects, although four features show the correlation
of intra-run data in a different level. It seems that the correlation
of two features, PSD and Channel Coherence, is more significant
than the other two features, and the correlation of Phase Lags is
less more significant in four features for intra-run data.

Classification Results
In this part, the classification results are shown using SVM as
the classifier. The 10-fold cross-validation is used to obtain the

average accuracies. Three runs are defined as RUN1, RUN2, and
RUN3, respectively, and we also define four fusion runs which
consist of three experiment data as F-RUN, in which F-RUN1
consist of data of RUN1 and RUN2, F-RUN2 consist of data of
RUN1 and RUN3, F-RUN3 consist of data of RUN2 and RUN3,
F-RUN4 consist of data of RUN1, RUN2, and RUN3. We divide
the F-RUN into two sets, train set and test set, which both include
part of two or three runs data.

Intra-Run
Table 2 shows the classification results of four features comprised
PSD, Cross Spectrum, Channel Coherence, and Phase Lags, for
two protocols of REO and REC, to investigate the stability for
intra-run and fusion-runs.

The classification results of intra-run and fusion-runs data
are obtained using SVM. The results revealed in Table 2. The
lowest accuracy can reach 80% and the highest accuracy can reach
100%. The accuracies of three features, PSD, Cross Spectrum and
Channel Coherence, are approximately equal for intra-run or
fusion-runs data on REO and REC. The classification results of
Phase Lags based on REC for fusion-runs data, which only reach
80%, are lowest in the table, compared with other results. From
the results of the table, given the interfere of noise, it seems that
the features we used in this work are distinct for intra-run and
fusion-runs data between different subjects.

Inter-Runs
The primary task of this work is to assess the stability and time-
robustness of each feature we used for inter-runs EEG data.
Further, we test the features of inter-runs respectively.

In this part, we mainly show the results of inter-runs
classification. Here we define three conditions and investigate
the time-robustness and stability of inter-runs features,
independently. The conditions are: (1) Using RUN1 and RUN2
as train set and validation set, and RUN3 as test set; (2) Using
RUN1 and RUN3 as train set and validation set, and RUN2

FIGURE 6 | Pearson Correlation coefficient (PCC) for 90 trials of each subject in single run based on REO and REC. (A) Represents the condition of REO.
(B) Represents the condition of REC.
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TABLE 2 | The classification results.

Protocols Features RUN1 RUN2 RUN3 F-RUN1 F-RUN2 F-RUN3 F-RUN4

REO PSD 96.3% 97.4% 98.6% 97.6% 98.2% 97.5% 96.9%

Cross Spectrum 98.9% 100% 100% 100% 100% 100% 100%

Channel coherence 100% 100% 100% 98.3% 100% 100% 100%

Phase Lags 96.7% 96.9% 96.6% 97.3% 94.8% 94.8% 94.9%

REC PSD 98.3% 98.6% 97.9% 99.8% 100% 99.2% 99.8%

Cross Spectrum 100% 100% 99.6% 99.8% 99.8% 100% 99.6%

Channel Coherence 98.6% 100% 99.2% 98.9% 98.6% 99.3% 98.1%

Phase Lags 90.1% 94.2% 87.6% 88.6% 83.5% 88.7% 86.3%

The classification results show in this table, for four features of each single run and fusion run on REO and REC.

as test set; and (3) Using RUN2 and RUN3 as train set and
validation set, and RUN1 as test set. We named these as COND1,
COND2, and COND3, respectively, and use the abbreviations in
the content behind.

The classifier of SVM is used for all three conditions to show
the stability of inter-runs features. The classification results of
different features for inter-runs data, which are based on REO
and REC, are visible in Tables 3–6. In this part, 13 frequency
ranges were chosen as shown in tables. Four familiar frequency
ranges refer to brain activity are used, including θ (4–7 Hz),
α (8–13 Hz), β(13–20 Hz, 20–30 Hz), and a part of γ (30–40 Hz).
The classification results of some combined ranges, including
4–20 Hz, 4–30 Hz, 8–20 Hz, 8–30 Hz, 8–40 Hz, 13–30 Hz, and
13–40 Hz, are calculated, and the classification result of original
range (1–40 Hz) is also calculated as a benchmark compared with
the results of others.

Table 3 shows the classification results of inter-runs PSD for
REO and REC. As we can see that the results of the frequency
range of 4–7 Hz are lowest (1, 18, and 20%) for three conditions
on REO and REC, and the highest average result is at the
frequency range of 13–40 Hz on REO, which can reach up to
84%. The results at 4–7 Hz, 8–13 Hz, and 4–20 Hz are lower
than the results at 1–40 Hz, and the results of 4–30 Hz are
equal to the results at 1–40 Hz, approximately. The results of the
frequency range at 13–20 Hz, 20–30 Hz, and 30–40 Hz are higher
than the results of 1–40 Hz, which means that the frequency
ranges of these three ranges consist of inherent information
about the difference between participants. Next, compared with
the results of 4–20 Hz and 4–30 Hz, the results of frequency
ranges at 8–20 Hz and 8–30 Hz are significantly increased.
Considering the poor results of the frequency range at 4–7 Hz,
it is believed that the frequency range at 4–7 Hz of PSD does not
have the stability for identification. Compared with the results of
frequency ranges at 8–30 Hz and 8–40 Hz, the results we obtained
at 13–30 Hz and 13–40 Hz have increased. Therefore, we think
that the frequency range of PSD that contains more stability
information for inter-run data is 13–40 Hz. The optimized
frequency range is at 13–40 Hz for REO, in which the average
accuracy can reach 82.33%.

As for REC, the lowest accuracies are at 4–7 Hz, which
are 1, 10, and 16%, for three conditions, respectively, and the
highest average accuracies are at 8–40 Hz, which can reach 80%.
Compared with the results of the frequency range at 1–40 Hz,

TABLE 3 | Classification results of PSD for different ranges on REO and REC.

Frequency REO (%) REC (%)

Range (Hz) COND1 COND2 COND3 COND1 COND2 COND3

4–7 1 18 20 1 10 16

8–13 34 31 34 28 43 41

13–20 71 73 84 67 65 71

20–30 69 78 72 66 69 75

30–40 59 77 68 62 71 68

4–20 25 34 44 12 23 28

4–30 49 54 61 36 38 45

8–20 60 59 73 63 64 69

8–30 71 75 82 74 76 83

8–40 77 81 80 74 83 83

13–30 76 81 84 71 71 81

13–40 80 84 83 75 82 82

1–40 51 55 62 25 33 44

TABLE 4 | Classification results of cross spectrum for different frequency
ranges on REO and REC.

Frequency REO (%) REC (%)

Range (Hz) COND1 COND2 COND3 COND1 COND2 COND3

4–7 2 10 10 2 10 7

8–13 28 27 39 45 49 64

13–20 75 75 88 70 74 79

20–30 74 79 76 77 77 79

30–40 70 80 75 70 67 68

4–20 24 29 44 21 22 28

4–30 46 48 58 30 34 48

8–20 60 53 59 66 68 28

8–30 73 74 81 78 80 86

8–40 74 74 81 81 82 82

13–30 78 79 85 77 81 80

13–40 80 81 86 78 84 86

1–40 47 54 57 20 28 43

the results of other frequency ranges, exclude frequency range at
4–7 Hz and 4–20 Hz, are little or much higher. The results of two
frequency ranges, 8–30 Hz, and 8–40 Hz, are higher than then
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TABLE 5 | Classification results of channel coherence for different frequency
ranges on REO and REC.

Frequency REO (%) REC (%)

Range (Hz) COND1 COND2 COND3 COND1 COND2 COND3

4–7 14 2 12 7 8 11

8–13 29 29 37 56 50 67

13–20 58 61 73 63 64 79

20–30 63 77 70 54 72 74

30–40 63 79 73 60 73 62

4–20 20 17 26 21 18 34

4–30 29 32 43 27 32 44

8–20 49 48 60 66 61 74

8–30 69 68 70 76 75 81

8–40 73 76 72 74 83 83

13–30 69 76 77 69 76 77

13–40 70 79 76 68 82 81

1–40 34 36 44 25 28 35

TABLE 6 | Classification results of phase lags for different frequency
ranges on REO and REC.

Frequency REO (%) REC (%)

Range (Hz) COND1 COND2 COND3 COND1 COND2 COND3

4–7 12 16 11 7 14 14

8–13 26 33 34 56 40 47

13–20 31 31 35 46 51 54

20–30 25 27 28 37 40 39

30–40 24 37 27 30 32 31

4–20 33 35 40 45 51 53

4–30 35 40 40 49 54 54

8–20 33 35 39 46 52 56

8–30 35 40 42 50 56 57

8–40 38 46 46 49 53 52

13–30 35 36 40 47 50 53

13–40 37 43 42 50 58 55

1–40 28 41 24 35 60 39

results of frequency ranges at 13–30 Hz and 13–40 Hz, which are
higher than the results of 4–20 Hz and 4–30 Hz. Like the results
of REO, the frequency range of 4–7 Hz contain less information
about the stability for inter-runs feature of PSD, but other than
the results of REO, the frequency range of 8–13 Hz seems to
be related to inherent information for identification. Therefore,
the classification results of REC show that it seems the frequency
range at 8–40 Hz contains much information that can be used as
an optimized frequency range of PSD for identification.

Table 4 reveals the classification results of Cross Spectrum for
inter-runs on REO and REC. From the table we can see that the
accuracies of the frequency range at 1–40 Hz are much lower,
which are around 50% for REO and around 30% for REC. For
the results of REO, the lowest accuracies are at 4–7 Hz, which are
2, 10, and 10% for three conditions, respectively, and the highest
average result is at frequency range of 13–40 Hz, which can reach
82.33%. The results of frequency ranges at 13–30 Hz and 13–
40 Hz are higher than the results at 8–30 Hz and 8–40 Hz, which
are higher than the results of 4–30 Hz. Like the results of PSD

on REO, the frequency ranges of 4–7 Hz and 8–13 Hz of inter-
runs are not suitable for individual identification. It seems that
the frequency range of 13–40 Hz is an optimized range that can
be used for inter-runs classification.

For classification results of Cross Spectrum on REC, the lowest
results are at 4–7 Hz, which are 2, 10, and 7%, respectively. The
highest results are at 8–40 Hz, which is as same as the frequency
range of PSD on REC. The accuracies of Cross Spectrum on
REC at 8–30 Hz and 8–40 Hz are higher than the results of
frequency ranges at 13–30 Hz and 13–40 Hz, which are higher
than the results of frequency range of 4–20 Hz and 4–30 Hz.
Therefore, like the conclusion we obtained from PSD of REC,
the frequency range at 8–40 Hz is an optimized range for inter-
runs identification, which is much higher than the results at
1–40 Hz that the accuracies are only 20, 28, and 43% for three
condition, respectively.

The classification results of Channel Coherence are visible in
Table 5. As we can see that the highest accuracy can achieve
79% for REO, and 83% for REC. The lowest accuracy is less than
10% for REO and REC. The classification accuracy is lower when
frequency range include the range of 4–7 Hz, such as 1–40 Hz,
4–20 Hz, 4–30 Hz, and 4–7 Hz. The result of 4–7 Hz is lowest
than results of other frequency ranges. The results of 4–20 Hz
and 4–30 Hz are significantly lower than results of 8–20 Hz and
8–30 Hz. These results show that frequency range of 4–7 Hz
contain more irrelevant information than other frequency ranges
for REO and REC.

For classification results of REO, the results of three
frequency ranges, which are, 13–20 Hz, 20–30 Hz, and 30–
40 Hz, are higher than frequency range of 1–40 Hz for three
conditions, and it seems that each of these frequency ranges
may contains part of information about individual stability
and time-invariant. Results of combined frequency ranges (13–
30 Hz and 13–40 Hz) show higher classification performance
than other frequency ranges, which can reach 80% for three
conditions, Therefore, there is no doubt that 13–40 Hz is
a more appropriated frequency range of REO for inter-runs
classification of Channel Coherence which can be used in
individual identification. For classification results of REC, the
highest average accuracy is at frequency range of 8–40 Hz,
which can reach 80%, and the lowest accuracy is at 4–7 Hz.
The frequency range of 8–13 Hz for REC seems contain some
more related information about stability and time-invariant than
that for REO. The appropriate optimized frequency range of
REC is 13–40 Hz.

The classification results of Phase Lags show in Table 6. The
results of all chosen frequency ranges show poor performance
for inter-runs classification, and the highest accuracy only reach
60%, which is much lower than the classification results of other
three features. Unlike the other three features, optimization of
frequency range cannot get a satisfied performance for inter-runs
classification. The classification results obtained for inter-runs
data also much lower than the results we obtained for intra-run
and fusion-runs classification, which can reach 80% or higher.
Therefore, it seems that Phase Lags is not the useful feature of
inter-run data for individual identification.

There are some limitations in this study. First, the number of
sample size is relatively small. Considering it is a pilot study, the
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further study needed to verify the reliability of results. Second, the
sex differences may influence the results and it will be investigated
with extending the number of sample size in the further study.

CONCLUSION

In this paper, we mainly analyze the stability and time-robustness
of resting-state EEG features for individual identification. The
number of participants is 10 and three runs are conducted for
each participant. The time interval between each experiment is
at least 2 weeks.

The results show that:
(1) The similarity of intra-individual and the difference

of inter-individual for intra-run features based on REO and
REC. Perfect classification results for intra-run and fusion-runs
features on REO and REC.

(2) For inter-runs features classification of REO, the optimized
frequency range is at 13–40 Hz for three features, which are
PSD, Cross Spectrum and Channel Coherence. For inter-runs
features classification of REC, the optimized frequency range is
at 8–40 Hz for three features, which are PSD, Cross Spectrum
and Channel Coherence. The classification results of Phase Lags
are poor for REO and REO, and it seems not to be used for
individual identification.

(3) The results suggested that features of PSD, Channel
Coherence and Cross Spectrum are stability and time-invariant
that can be used for individual identification and will help to
develop a more stable identification system based on EEG data.
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