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The popularity of mathematical models applied in biologi-
cal systems has increased exponentially since the early
2000s with the advent of fields like Systems and Syn-
thetic Biology. In this perspective, I would like to focus
on a particular kind of model used to explain dynamic
behaviours of biological systems. In this case, we use
models to explain the changes in the concentration of
elements over time, regardless of the ‘size’ of these ele-
ments. The same equations that are used to explain
macroscopic changes in the ecology of a niche (species,
cells, viruses) may also be used to explain the dynamics
of molecular components of the cell (proteins, transcrip-
tion factors, mRNAs, etc.). These models capture in just
a few elegant equations the macroscopic behaviour of a
biological system and have had an undeniable impact in
biology (Jungck, 1997). To cite a couple of famous
examples, we now refer to Lotka–Volterra or Turing
models to explain, respectively, oscillatory processes in
molecular biology and developmental mechanisms of
cells and organs.
All these models share a common property. They use

a mathematical abstraction to explain empirical observa-
tions and data that were made prior to the development
of the model. In other words, the relevant biological data
exist before the model is built. Initial versions of the
model are based on these data, and subsequently, fur-
ther experiments can be designed to refine the model
structure and identify relevant parameters to make the
abstraction as realistic as possible. Such models are
extremely useful and can help to identify new properties
or elements of biological systems.
What is considered the first mathematical model in

biology falls into a different category. In the year 1202,
long before calculus was invented, the mathematician
Fibonacci tried to predict how many rabbits could breed

over time in ideal circumstances starting from a pair of
female–male rabbits. He assumed that the animals
would never die and that females could only give birth to
a new pair of female and male rabbits each time. This is
clearly an oversimplified model that is far from biological
reality. It renders a series of numbers – the celebrated
‘Fibonacci numbers’ – that are very different from the
numbers of animals that would have been determined
empirically. The discrepancy between prediction and
observation in this case highlights the difficulty of build-
ing models with predictive power prior to having appro-
priate empirical evidence. Engineers often use models to
explore the ‘design space’ of new products before actu-
ally building them, but are generally working with sys-
tems assembled from well-defined components. In the
context of Synthetic Biology, which has among its goals
the standardized design and construction of novel
dynamic systems, such as genetic circuits, the underly-
ing components (‘parts’) are often quite poorly character-
ized, and this leads to a corresponding decrease in the
predictive power of our models.
Synthetic biologists have managed to address the prob-

lem of the discrepancies between model predictions and
experimental observations by following the so-called engi-
neering cycle. This consists of employing successive iter-
ations of design, modelling, construction and testing of
novel biological systems. Although this iterative cycle has
proven to be a useful tool, it is time and resource inten-
sive. Thanks to advances in DNA synthesis and screen-
ing, it is now possible to automate the design and
construction of certain genetic circuits (Nielsen et al.,
2016). This method shows great promise and allows sig-
nificant reductions in the time required to obtain working
constructions. It requires, however, the use of well-charac-
terized parts that may not be suitable for all applications.
Besides automation, another possibility to facilitate the

design of genetic circuits is to improve the way we build
models. The question that remains open and that many
people are trying to answer is why are models inaccu-
rate? I have posed this question to different audiences
showing for illustration the side-by-side comparison of
the theoretical and experimental behaviour of a synthetic
oscillator. The model predicts elegant and periodical
oscillations, whereas the results obtained in the labora-
tory show minimal damped oscillations that are

Received 25 November, 2016; accepted 25 November, 2016.
*For correspondence. E-mail j.jimenez@surrey.ac.uk; Tel. +44 1483
68 4557.
Microbial Biotechnology (2017) 10(1), 43–45
doi:10.1111/1751-7915.12489

ª 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

bs_bs_banner

http://creativecommons.org/licenses/by/4.0/


attenuated over time. Despite the fact that the model
captures, at least qualitatively, the behaviour of the sys-
tem, in most cases, the audience agrees that the dis-
crepancy is too high to consider the model to be
acceptable as a design tool. I would argue that in this
particular case, and in many others, the difference
between prediction and observation results from the poor
assumptions on which the model is based. Unfortu-
nately, these assumptions are rather common in the
context of genetic circuits: the models are normally built
by considering the interactions between the components
of the circuit while neglecting the potential interplay with
the cell containing the circuit. Essentially, the cell is con-
sidered as a black box, a mere vessel wherein the circuit
is contained.
Most mathematical biologists would agree that a

model is only as good as the assumptions on which it
is based. Some, like the mathematician Jeremy
Gunawardena (Harvard Medical School), would even go
further and argue that models are ‘accurate descriptions
of our pathetic thinking’ (Gunawardena, 2014). So, how
do we improve models of genetic circuits? The answer
is obvious: by making better assumptions, starting with
the fact that the cell itself is not a black box but rather,
a complex economy in which scarce resources are
carefully invested depending on fluctuating environmen-
tal conditions. This means that synthetic genetic circuits
do not exist in isolation but in competition with the rest
of the genes of the cell. Therefore, to increase the pre-
dictive power of models, we would need to shed light
on the black box, by building a model of the whole cell.
Given the high number of chemical species inside a
cell, obtaining a dynamical model that explains how the
concentrations of all of them change over time is far
from a trivial problem. Progress is being made in the
global understanding of bacteria with small genomes
composed of just a hundred genes. Unfortunately, this
kind of approach is beyond our current computational
capabilities when considering commonly used bacteria,
such as Escherichia coli, which contains around 4,400
genes. The solution is to use the appropriate level of
abstraction. For example, recent studies have come up
with imaginative ways of building global models that do
not consider all genes and proteins as individual spe-
cies but rather model the cell behaviour as the result of
trade-offs between limited amounts of three elements:
energy (i.e. ATP and NADPH), proteins and free ribo-
somes (Weiße et al., 2015). By incorporating previous
phenomenological evidence, this model is capable of
capturing the interplay between growth rate and the
amount of ribosomes, as well as predicting some host–
circuit interactions. Although this model may be seen
as an oversimplification of the physiology of the cell, it
provides us with a valuable framework that over time

can be populated with more accurate descriptions of
other relevant cellular components that can describe
more complex interplays between genetic circuits and
the host.
This brings us to the following question: What key addi-

tional features of the cell should be incorporated in current
models while retaining a tractable level of complexity?
There are some, despite the limitations. Metabolic net-
works, for a start, can be described using flux balance
analysis and have been successfully merged with regula-
tory networks (Covert et al., 2004). Additionally, global
allocation of transcriptional and translational resources
could be implemented with little computational cost (Ler-
man et al., 2012). Finally, it is now becoming widely
accepted that bacterial cells are not mere containers of
homogenously distributed chemical species. Instead,
recent evidence indicates that the cell cytoplasm has a
structure and the different partitions in which it is orga-
nized have an effect on the way genes are expressed
(Castellana et al., 2016). Accounting for the physical loca-
tion of genetic circuits, competing host genes, and cell
resources, is necessary to understand unexpected cou-
plings in protein synthesis.
All these properties would help to improve our current

models in such a way that that they remain computation-
ally tractable, while being based on a more realistic set
of assumptions. This would greatly improve the accuracy
of their predictions, increase their usefulness as design
tools and contribute to making biology a more engineer-
ing-friendly discipline.
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