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Processes in Cancer
Itay Sason,1 Damian Wojtowicz,2 Welles Robinson,3 Mark D.M. Leiserson,3 Teresa M. Przytycka,2

and Roded Sharan1,4,*

SUMMARY

The characterization of mutational processes in terms of their signatures of activity relies mostly on

the assumption that mutations in a given cancer genome are independent of one another. Recently,

it was discovered that certain segments of mutations, termed processive groups, occur on the

same DNA strand and are generated by a single process or signature. Here we provide a first proba-

bilistic model of mutational signatures that accounts for their observed stickiness and strand coordi-

nation. The model conditions on the observed strand for each mutation and allows the same signature

to generate a run of mutations. It can both use known signatures or learn new ones. We show that this

model provides a more accurate description of the properties of mutagenic processes than indepen-

dent-mutation achieving substantially higher likelihood on held-out data. We apply this model to char-

acterize the processivity of mutagenic processes across multiple types of cancer.

INTRODUCTION

Mutational processes are key factors in shaping cancer genomes (Alexandrov et al., 2013a, 2013b; Helleday

et al., 2014; Tubbs andNussenzweig, 2017), and their characterization has important implications for under-

standing the disease and choosing targeted therapies (Davies et al., 2017a, 2017b; Polak et al., 2017; Gul-

han et al., 2019). Multiple algebraic and statistical approaches have been suggested for the detection of

mutational processes from somatic mutation data (Alexandrov et al., 2013a, 2013b; Fischer et al., 2013; Shir-

aishi et al., 2015; Kim et al., 2016; Rosales et al., 2016). These methods, which focus on single-base substi-

tutions (consult Figure 1), are based on learning the pattern of mutations of each potential process as well

as its activity (aka exposure) in any given tumor in a way that will best explain the observed mutation data.

State-of-the-art approaches for learning mutational signatures include non-negative matrix factorization

(NMF) methods (Alexandrov et al., 2013a, 2013b; Fischer et al., 2013; Kim et al., 2016; Rosales et al.,

2016) that aim to explain the mutation counts as a sum over all signatures of the probability of a specific

mutation to be generated by the respective signature times its exposure. Other approaches that borrow

from the world of topic modeling (discovery of abstract topics in text documents) aim to provide a prob-

abilistic model of the data so as to maximize the model’s likelihood (Shiraishi et al., 2015; Funnell et al.,

2018). However, most of thesemethods assume that mutations are independent of one another and cannot

capture processes that create dependencies among them.

Recently, it was observed that some signatures operate in a strand-coordinated manner where consecutive

mutations tend to mutate from the same reference allele and occur on the same strand (Nik-Zainal et al.,

2014). Morganella et al. generalized these observations and found segments of such mutations (i.e., same

reference allele and same strand) that they termed processive groups (Morganella et al., 2016). The length

of a processive group, that is, the number of such consecutive mutations attributed to the same signature,

is signature dependent. The significance and abundance of these processive groups suggested that

certain mutational processes display stickiness and strand-coordination properties. In a previous work

we have suggested a hidden Markov-based model for capturing sequential dependencies between

close-by mutations (Wojtowicz et al., 2019). Here we follow a similar path and suggest novel probabilistic

models for consecutive, albeit not necessarily close-by, mutations that occur on the same strand.

The biological reasons for this strand coordination are related, at least in part, to the asymmetric role that

the two strands play in many cellular processes that operate on DNA. For example, the APOBEC C-to-U
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editing enzymes are a major source of mutations in many cancer types and are known to act on single-

stranded DNA (Refsland and Harris, 2013). Many cellular processes, including replication and transcription,

require strand separation leaving one or both strands exposed. Importantly, if the strands are separated,

one of the strands is often more exposed than the other, leading to asymmetric strand coordination of

APOBEC mutations. In particular, during DNA replication, the two DNA strands are processed differently.

In this process, one of the strands (the lagging strand) is more exposed than the other strand (the leading

strand). Owing to these differences, APOBEC asymmetry between these two strands is particularly strong

(Haradhvala et al., 2016; Morganella et al., 2016; Tomkova et al., 2018; Seplyarskiy et al., 2016). In addition,

leading and lagging strands are, among other differences, also processed by different polymerases, which

might introduce different types of error in each strand leading to replication-related strand coordination.

Transcription-coupled repair is another source of strand-specific mutagenesis. Another process leading to

coordinatedmutations and strand asymmetry is the formation DNA/RNA duplexes—the so-called R-loops.

R-loops are thought to form co-transcriptionally when nascent messenger RNA hybridizes with the DNA

template and thus can protect this strand from APOBEC activity and other types of mutations that act

on single-stranded DNA. Indeed, multiple signatures have been found to have mutation strand bias in tem-

plate versus non-template strands (Alexandrov et al., 2013a, 2013b; Haradhvala et al., 2016; Morganella

et al., 2016; Tomkova et al., 2018).

Our suggested probabilistic model, StickySig, accounts for the stickiness and strand coordination of muta-

tional signatures. The model captures independent mutations as well as processive groups in one proba-

bilistic framework. In cross-validation tests on multiple datasets, StickySig outperforms independent-mu-

tation models or sticky models that do not account for the strand information. We apply our model to gain

(Watson strand, +)

(Crick strand, –)

(pyrimidine)
(reference)

A

B

C

D

Figure 1. Definitions and Conventions

The figure shows normal DNA, mutated DNA, representation and characteristics of DNAmutations, and different types of

stickiness used in StickySig model variants.

(A) The genome consists of the reference strand (the strand whose 50-end is on the short arm of the chromosome), also

known as theWatson strand or the plus strand, and the complementary strand, also known as the Crick strand or theminus

strand.

(B) In the mutated DNA, changes in DNA base pair sequence are shown in red.

(C) Single base-pair substitution (SBS) can be represented as a transition in which one base pair in normal DNA is replaced

by another in mutated DNA. The reference allele refers to the nucleotide that is found in the reference strand of normal

genomic DNA. The pyrimidine strand is the strand (+or –) containing the pyrimidine base (C or T) in normal DNA. It is

usually not known which base in a pair was the source of amutation; thus, the convention is to annotatemutations from the

pyrimidine base of the mutated base pair, leading to 6 substitution types (when context is not considered) or to 96

possible combinations of substitution types and neighboring bases.

(D) The StickySig model can use several types of stickiness opportunities: all mutations can be sticky, same strand

stickiness, mutations having a pyrimidine base in the normal DNA on the same strand as the previous mutation; same

allele stickiness, mutations having the same reference allele as the previous mutation; same substitution stickiness,

mutations having exactly the same base-pair substitution as the previous mutation; same mutation stickiness, mutations

having the same mutation features (96 mutation category and pyrimidine strand) as the previous mutation; and none, no

stickiness allowed that leads to MMM model. Other types of stickiness can be also considered.
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new insights about the stickiness and exposures of known signatures, as well as in a de novo setting to learn

new signatures.

RESULTS AND DISCUSSION

Mutation Data

For each dataset, we followed the standard approach introduced by Alexandrov et al. (2013a, 2013b) and

classified mutations intoM = 96 categories based on the 50 flanking base, substitution type, and 30 flanking
base, following the convention that simple base-pair substitutions can be classified into six subtypes (Fig-

ures 1A–1C). (It is usually not known which base in a pair was the source of amutation, thus the convention is

to annotate substitutions from the pyrimidine base, i.e., G:C > A:T is written as C > T rather than G > A.)

These mutations are assumed to be the result of the activity of K mutational processes, each of which is

associated with a signature Si=(ei(1), .,ei(M)) of probabilities to emit each of the mutation categories.

Henceforth, we denote the mutation categories observed in a given tumor by o1, .,oT. We assume that

oi was emitted by signature si (whose identity is hidden from us).

In addition to mutation categories, the mutation data include information on the reference allele (the

nucleotide that is on the Watson strand) and the pyrimidine strand (the Watson or Crick strand containing

the pyrimidine base in normal DNA). By convention, theWatson strand is the reference genome strand (the

strand whose 50-end is on the short arm of the chromosome) and the Crick strand is the complementary

strand. See Figures 1A–1C.

Data Description

We analyzed breast cancer (BRCA), chronic lymphocytic leukemia (CLLE), and malignant lymphoma (MALY)

mutation datasets from whole-genome sequences from the International Cancer Genome Consortium

(ICGC) (more information is available in the Data and Code Availability supplement section). We chose

to study BRCA, CLLE, and MALY because they are known to have active signatures (Signatures 2 and 13)

that were previously shown to display strand coordination (Morganella et al., 2016). In addition, each of

the corresponding datasets contained at least 100 samples.

A Comparative Evaluation

We evaluated our suggested models and compared them with previous approaches using the datasets

outlined above (Table 1). Here MMM serves as a stand-in for state-of-the-art non-probabilistic mutation

signature methods such as non-negative matrix factorization, as MMM is a probabilistic method that en-

codes the standard assumption that each mutation in a tumor is independent of all others. In the Supple-

mental Informationwe show that MMM is in fact equivalent to a statistical variant of NMF, which is widely

used for mutational signature analysis (Fischer et al., 2013; Kim et al., 2016).

We performed this comparison in two modes; the first was testing the models in a refittingmode when the

signatures are known, and the second was testing the models in a de novo mode when the signatures are

unknown. In the following comparisons, owing to running time considerations, we used a maximum of 100

iterations.

First, we focused on the refitting scenario, using the known COSMIC signatures. To this end, we use the

leave-one-chromosome-out (LOCO) method. Specifically, we split samples by chromosomes and learned

for each sample i the exposure vector pi and the stickiness for the cosmic signatures a using all the chro-

mosomes but one. We then report the log likelihood of the model on the left-out chromosome (summed

Cancer Type #Samples #Mutations COSMIC Signatures

BRCA 560 3,479,652 1, 2, 3, 5, 6, 8, 13, 17, 18, 20, 26, 30

MALY 100 1,220,526 1, 2, 5, 9, 13, 17

CLLE 100 270,870 1, 2, 5, 9, 13

Table 1. Datasets Analyzed in This Study: Breast Cancer (BRCA), Malignant Lymphoma (MALY), and Chronic

Lymphocytic Leukemia (CLLE)
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across all samples and chromosomes). The results are summarized in Table 2 and clearly show the superi-

ority of StickySig across the three cancer types analyzed. In each cancer type, StickySig has higher held-out

likelihood than the independent mutation MMM, demonstrating that mutation signatures have stickiness

that is shared across samples and that modeling this stickiness provides greater predictive power for held-

out data. Furthermore, the difference between the variants of StickySig and MMM becomes much larger

when StickySig is restricted to allow stickiness only between mutations with the same reference allele or

the same base-pair substitution.

Next, we study the de novo scenario, where signatures are learned as part of the model training. For com-

parison purpose, we set the number of signatures to be the same as the number of active COSMIC signa-

tures used above. To evaluate the models with respect to signature learning we used 10-fold sample cross-

validation, where we learned e and a across all samples of the train data; then, for each sample X in the test

set we fitted p and computed Pr[X|p,e,a] and summed across all samples. This tests the model’s capability

to produce meaningful signatures that can explain well a new given sample. The results are summarized in

Table 3 and show again that stickiness adds power to the model. Here again the leading models are

StickySig-same-allele and StickySig-same-substitution.

Finally, we wished to assess the signatures learned by the algorithm. We trained the two best performing

variants of StickySig (StickySig-same-allele and StickySig-same-substitution) on each of the three data-

sets. For evaluation purpose, we matched each signature learned by each model to its most similar COS-

MIC signature known to be active in the corresponding cancer type (measured via cosine similarity). The

results are summarized in Figure 2. Evidently, StickySig-same-allele yields signatures that are more

similar to the COSMIC ones. Note that the definition of signatures in our model is different from the stan-

dard one since they are coupled with a stickiness value, which in this application was always one. This

may partially explain the deviation (particularly in the same-substitution case) from the COSMIC

signatures.

Strand-Coordinated StickySig Defines Processive Groups in Breast Cancers

Morganella et al. defined processive groups as sets of adjacent substitutions of the samemutational signa-

ture sharing the same reference allele (Morganella et al., 2016). Our model, StickySig-same-allele, allows us

to compute maximum likelihood estimates that sequences of mutations are generated in processive

groups; hence, we could apply it to characterize the processivity of the different signatures in breast cancer.

In order to compare and contrast our findings with those of Morganella et al. (2016), we used the same sta-

tistical test for the significance of a processive group of a given length. We confirmed the association of

processive groups with Signatures 2, 6, 13, 17, and 26 when using the same length threshold of more

than 10 (Morganella et al., 2016). In addition, our strand-coordinated model revealed that processivity is

also a feature of Signature 18 (Figure 3A). The number of processive groups of length more than 10 was

particularly high for Signatures 2 and 13 (Figure 3B), which is consistent with previous studies showing

that APOBEC-related signatures demonstrated strand-coordinated mutagenesis (Nik-Zainal et al., 2014;

Morganella et al., 2016).

Model LOCO Log likelihood

BRCA MALY CLLE

MMM �13743198 �5235042 �1178024

StickySig �13739451 �5232119 �1177527

StickySig-same-strand �13736711 �5233842 �1177905

StickySig-same-allele �13696283 �5205381 �1173271

StickySig-same-substitution �13549757 �5206208 �1173221

StickySig-same-mutation �13683356 �5227289 �1176916

Table 2. Performance Evaluation of MMM and StickySig Variants in a Refitting Setting Using the Leave-One-

Chromosome-Out (LOCO) Method

In bold are the best values for each dataset.
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Next, we tested whether using the strand-coordinated StickySig rather than the mutation-independent

MMM or the regular StickySig was important for the accurate discovery of processive groups. On average,

the StickySig-same-allele model uncovered 133.9 groups of length greater than 10 in 41.9 patients,

whereas MMM and StickySig models captured only 38.5 in 11 patients and 38.3 in 11.9 patients, respec-

tively (Figure 3B). This is consistent with the large number of sticky mutations found by StickySig-same-

allele model, even though StickySig has more sticky opportunities (Figures 3C and 3D). All these differ-

ences underscore the higher sensitivity of the strand-coordinated model for detecting processive groups,

which may in part explain the observed differences in likelihood between MMM and StickySig models on

held-out data (Table 2).

Processive groups, as summarized in Figures 3A and 3B, capture statistically significant patterns in cancer

genomes and are considered features of specific signatures. An alternative characterization signature

could be provided by the model parameter a—the ‘‘stickiness’’ of a signature—which is learned by the

strand-coordinated model. Thus, we analyzed how these two views of strand-coordinated mutagenesis

relate to each other. We considered only signatures for which there is a sufficient number of sticky muta-

tions to properly learn this parameter (Figure 3E). For comparison purposes, we also included stickiness

values computed with the strand-oblivious StickySig. We found that, in the strand-coordinated variant,

the most sticky signatures were 1, 2, 6, 13, 17, 18, 26, and 30 (Figure 3F). Signatures 2, 6, 13, 17, 18, and

26 are exactly the same signatures that were found to be associated with processive groups. Although

Signature 30 did not make the length 10 cutoff for processive groups, its processive segments are also rela-

tively long. Interestingly Signatures 3 and 5 were not found to be sticky despite the fact that their processive

groups were also quite long. In contrast, there is some stickiness to Signature 1 while its processive groups

Model 10-Fold CV Log likelihood

BRCA MALY CLLE

MMM �13713230 �5200582 �1167727

StickySig �13708734 �5187470 �1167238

StickySig-same-strand �13702999 �5202680 �1167628

StickySig-same-allele �13231739 �4987710 �1121929

StickySig-same-substitution �13135156 �5020921 �1128093

StickySig-same-mutation �13597846 �5187859 �1165856

Table 3. Performance Evaluation of MMM and StickySig Variants in a De Novo Setting Using 10-Fold Sample Cross-

Validation (CV)

In bold are the best values for each dataset.
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Figure 2. Signatures Learning

Performance of signature learning by StickySig-same-allele (A) and StickySig-same-substitution (B) on the three cancer

datasets. For each case, depicted are the cosine similarities of the learned signatures to known COSMIC signatures,

sorted from highest to lowest and computed by a maximum matching algorithm to prevent repetitions.
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are shorter than for 3, 5, and 30. The signature stickiness in the strand-oblivious StickySig model is minimal.

The meaning of these intriguing findings is a subject for further investigation.

Limitations of the Study

Although in this work we focused on Watson/Crick strands, there is compelling evidence that other strand

definitions may affect signatures and their activities. As we reviewed above, such categorization may be

based on replication-based characteristics such as leading and lagging or transcription-based character-

istics such as template and non-template. In that vein, a promising next step may be modeling multiple

strand characteristics simultaneously, rather than considering them individually. For example, there is ev-

idence in humans and other species that transcription and replication are co-oriented (Huvet et al., 2007;

Srivatsan et al., 2010). Testing these different variants may reveal the role of strand characteristics in

mutagenesis.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

For BRCA, we used the data from (Nik-Zainal et al., 2016) (ICGC release 22). For CLL and MALY we used

ICGC release 27, analyzed the sample with the most mutations per patient, and restricted to those samples

A B

C

D

E

F

Figure 3. Stickiness in BRCA

(A) Relationship between processive group lengths (columns) and mutational signatures (rows) modeled by StickySig-

same-allele. The size of each circle represents the number of groups (log10) observed for the specified group length and

for each signature. The color of each circle corresponds to the p value of detecting a processive group of a given length in

randomized data (-log10).

(B) The number of processive groups of length more than 10 for all signatures modeled by MMM (gray), StickySig (blue),

and StickySig-same-allele (red).

(C) The total number of mutations can be sticky in StickySig (blue) and StickySig-same-allele (red).

(D) The total number of sticky mutations as modeled by StickySig (blue) and StickySig-same-allele (red).

(E) The number of sticky mutations for each signature as modeled by StickySig (blue) and StickySig-same-allele (red).

(F) Signature stickiness a as learned by StickySig (blue) and StickySig-same-allele (red). All bar plots show mean values

with standard error of the mean (small black bars) from 10 random initializations of StickySig models.
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annotated as ‘‘study = PCAWG’’ (Campbell et al., 2017). We used version 2 COSMIC signatures (https://

cancer.sanger.ac.uk/cosmic/signatures) (Forbes et al., 2017) known to be active in the corresponding can-

cer type (enumerated in Table 1). StickySig and data download and processing is implemented in Python 3

and is available at https://github.com/itaysason/StickySig.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100900.
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Transparent Methods

Model specification and training

A multinomial mixture model (MMM) assumes the following generative pro-
cess for the mutation data. For each mutation, independently of all others, a
signature s ∈ S is drawn from a multinomial distribution π = (π1, . . . , πK);
subsequently, the mutation category is drawn from Si according to the sig-
nature’s emission probabilities. The model parameters can be learned using
the Expectation-Maximization (EM) algorithm (Wojtowicz et al. 2019).

Here we propose a sticky MMM model, StickySig, that allows signa-
tures to emit more than one mutation at a time. In the basic model, any
two consecutive mutations can stick. In a refined version of the model, two
consecutive mutation can stick if they share some predefined property, such
as being on the same strand. Examples of stickiness opportunities are shown
in Figure 1D and the StickySig model is sketched in Figure 1S.

Stickiness opportunities q1 q2 q3 qT

r1 r2 r3 rT

s1 s2 s3 sT

o1 o2 o3 oT

Stickiness indicators

Signatures

Mutations

. . .

. . .

. . .

Figure 1S: A sketch of StickySig. Related to Figure 1.

Formally, StickySig is parameterized by a K ×M matrix e of signa-
ture emission probabilities, signature start probabilities π = (π1, . . . , πK)
that are assumed to be sample-specific, and signature stickiness values α =

1



(α1, . . . , αK) that are shared across samples. The observed data for this
model are the mutations sequence O and the stickiness opportunity Q which
is 1 if there is opportunity and 0 otherwise. The hidden variables for this
model are the signatures S and the stickiness indicator R which indicates
whether or not the current mutation came from the same signature as the
previous one. For simplicity, we omit sample indices below and focus the
description on a single sample. The model can be described by the following
conditional probability distributions:

• Pr [ot = m|st = Si] = ei(m)

• Pr [rt+1 = 1|st = Si, qt+1 = q]

{
0 q = 0

αi q = 1

• Pr [st+1 = Sj|rt+1 = 1, st = Si] =

{
0, i 6= j

1, i = j

• Pr [st+1 = Si|rt+1 = 0] = πi

Here, t is a mutation index that ranges from 1 to T (T – number of mutations)
and m is a mutation category. Note that if we choose qt to be always 0, the
model reduces to MMM.

We developed an Expectation Maximization (EM) algorithm to learn
the parameters of this model from data. The EM algorithm is described
in (Sason et al. 2019) and runs in O(Tn) time per iteration for T mutations
and n signatures. The EM model training is controlled by two parameters:
Maximum number of iterations and Tolerance, which is used to decide on
convergence when the relative improvement in log-likelihood falls below it,
and is set to 1e− 10 throughout.

Model variants

We derived several model variants implementing different types of stickiness
(Figure 1D):

• MMM - no stickiness allowed, i.e qt = 0.

• StickySig - this is the regular StickySig with no strand information,
thus any pair of consecutive mutations can stick, i.e qt = 1.
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• StickySig-same-strand - same-strand stickiness, i.e qt =

{
0, pst−1 6= pst
1, pst−1 = pst

where pst is the pyrimidine strand of mutation t.

• StickySig-same-allele - same reference allele stickiness, i.e qt =

{
0, rat−1 6= rat

1, rat−1 = rat

where rat is the reference allele of mutation t.

• StickySig-same-substitution - same base-pair substitution stickiness,

i.e qt =

{
0, bst−1 6= bst

1, bst−1 = bst
where bst is the base-pair substitution of

mutation t.

• StickySig-same-mutation - same mutation stickiness, i.e qt =

{
0, mft−1 6= mft

1, mft−1 = mft
where mft are the mutation features (mutation category – ot, and
pyrimidine strand – pst) of the mutation in position t.

For each model variant, we performed training in two modes: refit, where
signatures are fixed in advance, and de-novo, where the signatures are learned
as part of the training.

Equivalence of MMM and statistical-NMF

In statistical-NMF (Lee and Seung 2000; Regli and Silva 2018), which is
widely used for analyzing mutational signatures (Fischer et al. 2013; Kim
et al. 2016), we optimize following optimization problem:

min
W,H

∑
i,j

(
K∑
k=1

wikhkj)− vij log(
K∑
k=1

wikhkj)

subject to wik, hkj ≥ 0

(1)

where V is the mutation counts matrix of size N ×M and W,H are of size
N ×K,K ×M respectively. In the MMM model we optimize the following:

min
W,H

−
∑
i,j

vij log(
K∑
k=1

wikhkj)

subject to (wi1, ..., wiK) ∈ ∆K

(hk1, ..., hkM) ∈ ∆M

(2)
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Where ∆n = {(x1, ...xn)|xi ≥ 0 &
n∑

i=1

xi = 1} the simplex.

We begin by observing that for equation (1), each solution is a actually a
class of solution by moving the weights of H’s rows to W ’s columns. We can
lose this ambiguity by requiring that H’s rows will sum to 1:

min
W,H

∑
i,j

(
K∑
k=1

wikhkj)− vij log(
K∑
k=1

wikhkj)

subject to wik ≥ 0

(hk1, ..., hkM) ∈ ∆M

(3)

Now denote by ri the weight of row i in W , and W̃ to be W with rows

summed to 1, i.e ri =
K∑
k=1

wik, w̃ik = wik/ri. We change the optimization

problem again:

min
R,W̃ ,H

∑
i,j

ri(
K∑
k=1

w̃ikhkj)− vij log(
K∑
k=1

w̃ikhkj)− vij log ri

subject to ri ≥ 0

(w̃i1, ..., w̃iK) ∈ ∆K

(hk1, ..., hkM) ∈ ∆M

Because of the conditions we see that
∑
j,k

w̃ikhkj = 1, so we can re-write this

as:

min
R,W̃ ,H

∑
i

(
ri − log(ri)

M∑
j=1

vij −
M∑
j=1

vij log(
K∑
k=1

w̃ikhkj)

)
subject to ri ≥ 0

(w̃i1, ..., w̃iK) ∈ ∆K

(hk1, ..., hkM) ∈ ∆M

We can derive this function with respect to ri and get:

∂f

∂ri
= 1−

M∑
j=1

vij

ri
= 0
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And from here we can see that
M∑
j=1

vij is the value for ri to optimize this

problem. After assigning the optimal value for R and dropping constants we
are left with the optimization problem (2).
We can now use this process to go from a solution of the MMM problem to a
solution of the statistical-NMF problem: Given (W,H) that solves (2), denote

R = diag(
M∑
j=1

v1j, ...,
M∑
j=1

vNj), then (RW,H) is a solution for (1). Similarly

we can convert a solution for (1) to a solution for (2).
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