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A B S T R A C T

Rapid identification of peanut seed quality is crucial for public health. In this study, we present a terahertz wave
imaging system using a convolutional neural network (CNN) machine learning approach. Terahertz waves are
capable of penetrating the seed shell to identify the quality of peanuts without causing any damage to the seeds.
The specificity of seed quality on terahertz wave images is investigated, and the image characteristics of five
different qualities are summarized. Terahertz wave images are digitized and used for training and testing of
convolutional neural networks, resulting in a high model accuracy of 98.7% in quality identification. The trained
THz-CNNs system can accurately identify standard, mildewed, defective, dried and germinated seeds, with an
average detection time of 2.2 s. This process does not require any sample preparation steps such as concentration
or culture. Our method swiftly and accurately assesses shelled seed quality non-destructively.

1. Introduction

Peanut seeds are a primary source of food and bio-oil, with high
commercial value. About 45% of the world's peanut products are used
for global human food consumption, and about 41% of the remaining
production is used to extract bio-oil (Davis&Dean, 2016; Fletcher& Shi,
2016; Kumar, Rai, et al., 2021; Yang et al., 2020). At the same time,
peanut seeds are also used in the manufacture of automobile fuel and the
reserve of agricultural cultivation (Sorita et al., 2020). Poor-quality
peanut seeds can be mildewy, defective, dried or germinated
(Luparelli et al., 2022; Michelotto et al., 2022; Salgado & Ng, 2019;
Singleton & Pattee, 1991; Sobolev et al., 2019). These can cause serious
harm when consumed or processed. For example, mildewy seeds may
contain aflatoxin, one of the most toxic known mycotoxin (Bediako
et al., 2019). AFT contamination can occur at all stages of cultivation,
collection, storage, transportation and processing (Ezekiel et al., 2012;
Ghiasian et al., 2011). AFT-contaminated foods could increase the
probability of human cancer and neonatal malformations (Ding et al.,
2012). Therefore, the AFT-contaminated seeds cause at least 1.2 billion
food waste (Ajmal et al., 2022; Kumar, Pathak, et al., 2021), at least

thousands of direct or indirect deaths, and tens of billions of dollars in
economic losses worldwide each year (Ajmal et al., 2022; Iqbal et al.,
2012; Kumar et al., 2017; Schmidt et al., 2021). The international
Agency for Research on Cancer (IARC) of theWorld Health Organization
(WHO) classified AFT B1 as a Class I carcinogen in 1993 (Majeed et al.,
2013).

In addition to the significant harm caused by AFT, defective, dried
and germinated seeds also adversely affect grain quality and processing
efficiency. Defective seeds, resulting from shell and kernel damage due
to external factors and insect infection during collection and trans-
portation (Luparelli et al., 2022), not only fail to germinate and grow
properly but also increase the risk of the AFT contamination, thus
compromising seed processing and planting potential. Dried seeds,
caused by moisture loss in the kernel due to temperature factors, contain
less than the 10% water required for germination, rendering them
inactive. While suitable for food processing, if these seeds undergo
further dehydration during processing, carbonization may occur,
potentially producing carcinogenic substances harmful to human health
(Sobolev et al., 2019). Seeds may germinate during transportation and
storage. However, as most seeds maintain an intact shell, internal
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germination is often not directly observable. Using such seeds for food or
fuel processing can lead to food contamination and fuel quality degra-
dation (Singleton & Pattee, 1991). Therefor, quality detection of peanut
seeds can effectively mitigate the impact of inferior seeds on grain and
related processing industries.

Several methods have been developed to detect the AFT and assess
seed quality, including Thin Layer Chromatography (TLC), High-
Performance Liquid Chromatography (HPLC), immunoassay, and
biosensor techniques. Each method has its advantages and limitations.
The TLC, the earliest and most widely used technique, offers simple and
low-cost detection suitable for monitoring numerous samples. However,
it requires complex sample preparation, which affects detection sensi-
tivity and safety (Var et al., 2007). The HPLC provides accurate quan-
tification and high reliability but shares TLC's drawbacks of complex
sample pretreatment, a long detection cycle, and the need for profes-
sional reagent configuration (Khayoon et al., 2010). The immuno-
chemical methods, particularly the widely used colloidal gold detection,
offer high specificity, sensitivity and simplicity. While they don't require
special instruments, they still involve lengthy sample pretreatment
(Masinde et al., 2013; Raysyan et al., 2020). The biosensor methods,
combining biotechnology and electronics, provide high selectivity and
fast response but are hindered by high detection costs (Liu et al., 2020).
Traditional observation methods can identify seeds with obvious defects
but fail to detect internal issues in seeds with intact shells. Moisture
content measurement techniques, such as the drying method or near-
infrared spectroscopy, either destroy the seed structure or require
shell removal (Li et al., 2019; Xu et al., 2019). Generally, these methods
face challenges of complex processes, long detection times and high
costs, highlighting the need for a more efficient and non-destructive
detection technique.

Traditional detection methods often render seeds unsuitable for
further consumption or processing (Groot et al., 2022), leading to sig-
nificant losses and incomplete detection. This undersores the urgent
need for continuous, non-destructive detection technology at each stage
of seed processing to eliminate inferior seeds and ensure food and fuel
quality.

Recent advances in non-destructive detection technologies,
including X-rays, visible light, and terahertz waves, have gained sig-
nificant attention in seed detection research. Terahertz wave detection
technology, in particular, offers unique advantages over X-rays and
visible light methods. It utilizes low-energy photons and non-ionizing
radiation, making it non-destructive and safe for biological samples
(Han & Gao, 2019; Wang et al., 2018). Terahertz waves are highly
sensitive to moisture content due to their strong interaction with

hydrogen bonds in water molecules. This property enables the detection
of moisture distribution within seeds, providing valuable information
about seed quality (Jiusheng, 2010). The technology has shown promise
in various fields, including material science and biomedical applications
(Afsah-Hejri et al., 2019).

Recent studies have demonstrated the potential of combining
advanced imaging techniques with machine learning for plant stress
detection and seed variety identification. For instance, hyperspectral
imaging (HSI) and chlorophyll fluorescence imaging (CHl-FI), coupled
with Convolutional Neural Networks (CNNs), have achieved high ac-
curacy in detecting herbicide and heavy metal stress in rice plants
(Zhang et al., 2022). similar approaches have been successful in early
detection of rice bacterial leaf blight (Cao et al., 2022) and identification
of rice seed varieties (Jin et al., 2022; Qiu et al., 2018). These ad-
vancements in imaging technology and machine learning algorithms
provide a foundation for developing more efficient and accurate seed
quality assessment methods.

Fig. 1 illustrates the working principle of the terahertz wave imaging
system employed in this study. The system utilizes a pulse signal scan-
ning mechanism to scan the target point-by-point on a two-dimensional
plane. As the target moves perpendicular to the terahertz wave trans-
mission, the system records transmission or reflection information at
different positions, generating time-domain waveforms for each pixel.
Fourier transform techniques extract phase and amplitude information,
enabling spectral analysis for image construction. This approach offers
high signal-to-noise ratios and submillimeter resolution, providing rich,
multidimensional data beyond mere intensity information.

This work study explores the application of terahertz wave imaging
technology for seed quality differentiation. Through comprehensive
analysis, this work identified distinct characteristics associated with
varying seed qualities and established a correlation between seed
quality and internal moisture distribution. This approach enables non-
destructive and rapid evaluation of seeds by analyzing moisture distri-
bution patterns.

This paper presents a novel, highly automated method that combines
terahertz imaging technology with machine learning algorithms (Gao
et al., 2023) to accurately assess peanut seed quality. This method
eliminates the need for traditional sample preparation steps such as
concentration, culture or incubation. It simultaneously detects five
distinct quality types of peanut seeds (standard, AFT contamination,
defects, germination status, and dehydration) throughout the supply
chain, from cultivation to processing. This work methodology demon-
strates robustness in delivering real-time, efficient, and universally
applicable detection results with high accuracy.
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Fig. 1. Terahertz wave imaging system and its application in peanut seed quality assessment.
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2. Materials and methods

2.1. Materials and reagents

Peanut seed samples were from Henan Yuhua 9326, registration
number GPD peanut (2018) 410069; As shown in Fig. 2, terahertz signal
generators, terahertz signal receivers and conveyor belts were pur-
chased from TeraSense; The colloidal gold (aflatoxin B1) detection cards
(Catelog No. G702302) were purchased from Finde; The analytical re-
agent was composed of 70% methanol and 30% deionized water. The
oscillator was purchased from Scientific Industries; The centrifuge was
purchased from Eppendorf; The near-infrared spectroscopy moisture
meter was purchased from Born.

2.2. Sample manufacturing

It is important to note that all analyses in this study were conducted
on whole, unshelled peanuts. This approach was chosen to maintain the
integrity of samples and to simulate real-world conditions where peanut
quality assessment often needs to be performed without removing the
shell. The terahertz waves used in the proposed imaging system are
capable of penetrating the peanut shell, allowing for analysis of the in-
ternal kernel quality without the need for deshelling.

In this study, the samples were first subjected to terahertz imaging
equipment to screen out the seeds in the non-standard state of the im-
aging results, and the defective seeds were screened out by observation
method. The terahertz wave images of the defective seeds were saved
and marked. The screened samples were divided into four groups and
numbered, and the seeds in the group were numbered. Four groups of
samples were cultured as follows.

The first group of samples was placed in a semi-open container with
an ambient temperature of 30 ◦C and air humidity of 30% after culturing
for 20 days. A total of 10 cultivated samples were selected by sampling,
and a colloidal gold detection card was used to detect aflatoxin B1. If the
results of the samples were positive, it was considered that mildewed
peanut seeds had been cultivated.

Before the colloidal gold test card detected the sample, the sample
was taken out and crushed. The crushed sample was passed through a
20-mesh sieve, and 2 g was taken out and transferred to a 15 mL covered
centrifuge tube. The tube was added with 4.0 mL of methanol and
deionized water and sealed, and the centrifuge tube was placed in the

oscillator for 5 min. After shaking, the centrifuge tube was placed in a
centrifuge and centrifuged at 4000 rpm for 1 min. After the liquid was
stratified, 2.0 mL of the upper clear liquid was taken to a 50 mL glass
beaker with a scale tube, and the upper clear liquid was heated at a low
temperature to blow dry. The beaker was cooled to room temperature,
and 1.5 mL of diluent was added to redissolve to obtain the test solution.
Removed the pollution-free colloidal gold detection card with a pipette
to absorb the test solution, and then slowly added 3–5 drops of the test
solution to the test card holes, next waited for 5 min after the inter-
pretation of the results.

The second group of samples were placed in a semi-open container
with an ambient temperature of 20 ◦C, air humidity of 50% and soil
humidity of 55% after culturing for 10 days. The samples with surface
mildew were screened and eliminated by observation. A total of 10
samples after culturing were selected, and aflatoxin B1was detected by a
colloidal gold detection card. If the results of the samples were negative,
it was considered that the germinated peanut seeds without mildew
were cultured.

The third group of samples were placed in an open container and sent
to the drying oven, and the ambient temperature was set to a constant
65 ◦C for 5 min, 10 min, and 15 min of drying, respectively. Ten samples
were selected and sent to the near-infrared spectroscopy moisture meter
to detect the moisture of the seeds. If the mean value of the test results
was less than 10%, the peanut seeds with water shortage were consid-
ered to be obtained. The fourth group of samples served as standard
peanut seeds.

For each quality category (standard, mildewed, defective, dried, and
germinated), a total of 8000 samples were prepared. The whole peanuts,
with their shells intact, were placed individually on the scanning plat-
form of the terahertz imaging system for analysis. Terahertz imaging
equipment scanned mildewed, germinated, dried, and standard peanut
seeds, respectively, to obtain terahertz wave images of each sample and
marked them.

2.3. Image dataset preprocessing

The complexity and repeatability of quality analysis made human
visual recognition methods extremely difficult, and convolutional neu-
ral networks provided a highly automated, highly reproducible, and
accurate detection solution. The image needs to be preprocessed before
it was fed into the convolutional neural network and batch produced as
datasets for CNN training and testing. In this study, Matlab was used to
process the captured raw images to form a dataset of peanut seed
quality. The imread() function of MATLAB extracted the collected ter-
ahertz wave imaging results. The imcrop () function of MATLAB was
used to capture the image, so the seed was located in the center of the
image. The imrotate () function of MATLABwas used to rotate the image
to generate multiple sets of image data with different angles. The
imresize () function of MATLAB was used to scale the image to the
standard 32× 32 size. As shown in Fig. 4, the data of images were finally
formed, and the normalisation processing was completed. The image
data was transformed from a 0–255 integer interval to 0–1 floating point
interval data. Finally, each image was labeled, and the label included the
quality type and serial number. Among them, the standard seed was type
0, the mildewed seed was type 1, the defective seed was type 2, the
germinated seed was type 3, and the dried seed was type 4.

2.4. Machine learning and recognition

The collected data sets of different qualities of peanut seeds are
divided into training data and test data in a ratio of 70% and 30% to
train and verify the accuracy of the convolutional neural network. The
advantage of the convolutional neural network architecture is that the
accuracy of recognition is greatly improved with the increased training
data set and repeatability. The accuracy of the test in the study is
expressed by the accuracy curve, which is the standard representation ofFig. 2. The Terahertz test platform of seed quality.
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the neural network results. The test accuracy is an accurate indicator of
the applicability of the model. Pytorch (Facebook, Menlo Park, CA) was
used to perform convolutional neural network training on Spyder Py-
thon 3.7 (MIT, Cambridge, MA). On the eight-layer neural network (an
input node, an output node, two fully connected layers, two convolu-
tional layers, and two pooling layers), 16,000 steps (iterations) were
used to optimise the neural network and test the maximum accuracy.
The image was the input layers of the network model, and the size of
each channel's data was 32 × 32; the convolution layer of each channel
adopted a 3 × 3 convolution kernel to realize the convolution operation
of the input layer image. After the convolution layer, the data was
activated by the ReLU function; the maximum pooling principle was
adopted in the pooling layer; the Softmax function classified the fully
connected layer, and the final output result was obtained. The size of the
output layer was 5, which corresponds to 5 qualities of peanut seeds. The
training parameters of this paper also included a convolution step length
of 2 learning rate of 0.02, and AdamOptimizer optimised the network to
minimised the cross entropy.

3. Results

3.1. Quality verification under terahertz wave imaging technology

The results of terahertz wave detection of standard peanut seeds are
shown in Fig. 3a. The image depicts a thermographic representation of a
peanut seed, where the background, represented in green, signifies an
empty space devoid of physical entities, yet exhibits wave-like patterns.
The delineation of the peanut seed's shell is characterized by a yellow
contour, enveloping the seed's core. The central region, highlighted in
red, corresponds to the endosperm of the seed. The shell's depiction is
one of continuity and smoothness, devoid of discernible irregularities.
The background's wave-like patterns exhibit gradational attenuation
with increasing distance from the seed, suggesting a diffusion effect. The
endosperm region manifests a consistent and homogenous distribution,
with a notable exception at the interface with the shell where an
irregular diminution is observed, potentially indicative of structural or
compositional variances. Fig. 3b is the terahertz wave imaging results of

mildewed seeds. The shell is discontinuous, and the spiculation is
serious; the ripples in the background space appear to be obvious faults
and unevenness; severe mottled distribution appeared in the fruit area,
while voids and unevenness appeared in the central area.

Fig. 3g and Fig. 3h are the interior and exterior of the mildewed
seeds. There is noticeable mildew inside the seeds, and mildew char-
acteristics appear in some exterior areas. This stduy aimed to verify the
effectiveness of terahertz imaging in identifying mildewed seeds and
conducted a comparative analysis using colloidal gold detection cards.
Four batches of 100 seeds each were tested, fifty mildewed seeds and
fifty standard seeds were uniformly mixed, with each batch containing a
mix of mildewed and standard seeds identified by terahertz imaging.
The seeds with similar terahertz wave imaging results and mildew
characteristics were selected as samples for artificial identification. The
colloidal gold test results showed high consistency with the terahertz
imaging identification, with accuracy rates of 95%, 100%, 97.5% and
97.5% for the four batches, respectively. This high level of agreement
demonstrates the reliability of terahertz imaging in detecting mildewed
seeds, with an average accuracy of 97.5% across all tested samples. The
presence of AFT in the sample was verified to prove the mildew in the
seed. The results show that terahertz wave imaging technology can
effectively show the characteristics of mildewed seeds, and the accuracy
of identifying mildewed seeds based on terahertz wave scanning results
is high.

Fig. 3c and Fig. 3d are the imaging results of THz detection of
germinated peanut seeds. The un-obviously germinated seeds have no
obvious change in the shell. The circle indicates the germination point,
showing a distinct moisture distribution. However, the ripples in the
background space are discontinuous and faulted, and the ripples in the
germination point area are open; the color distribution in the fruit area is
uneven, and shallow color holes appear near the germination point.
Fig. 3e is the imaging result of terahertz wave detection of defective
seeds. The background space ripples at the current defect vacancy and
large-scale fracture; the shell has prominent vacancies, but it can still
present the overall contour; the fruit area is obviously missing at the
defect site, and cavities and blue spots appear, showing a mottled dis-
tribution as a whole.

Fig. 3. Terahertz imaging results (a-f) and actual appearances (g-l) of peanut seeds with different qualities. (a,g) Standard, (b,h) Mildewed, (c,i) Germinated
(Obviously), (d,j) Germinated (Un-obviously), (e,k) Defective, (f,l) Dried.
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Fig. 3f shows the imaging results of THz detection of dried seeds. The
ripple of the background space is intact and continuous; the distribution
of the fruit area shows a slightly mottled distribution but is significantly
different from the imaging results of the defective seeds. According to
statistical analysis, the number of cavities in the center of the fruit
corresponds to the number of internal fruits, which is 1–3, and the shape
of the cavity is related to the shape of the fruit.

3.2. Machine learning pattern recognition using convolutional neural
networks

The variety and morphology of peanut seeds are different, and the
number of actual detection scenarios is huge. The pattern library method
based on the artificial visualization principle is time-consuming and
difficult to achieve. As shown in Fig. 4, we developed and trained a
convolutional deep neural network to extract the characteristics of
peanut seeds with different qualities and realize the quality identifica-
tion and classification of peanut seeds.

The classification accuracy of the convolutional neural network for
five kinds of peanut quality is shown in Fig. 5a. The results show that the
accuracy of the recognition method reached 98.7% in the test dataset.
The convolutional neural network is fundamentally different from the
analysis method of artificial identification. It does not depend on pre-
determined standard features. The size and position of the image
output from the terahertz device are changed by image preprocessing
operations. Set appropriate model parameters and iterative learning
training times to minimize the cross entropy and loss function values.
The loss curve in Fig. 5a tends to a stable value as the number of iter-
ations increases, indicating that the network is convergent. The accuracy
of the proposedmethod for quality classification is further verified. 1200
samples of peanut seeds for each quality are selected as dataset of the
CNN, the training dataset and test dataset are 70% and 30% respec-
tively. Fig. 5b shows the results of the classification test for five different
peanut qualities. The average results of quality identification are
98.75%, 99.08%, 97.92%, 97.75% and 98.58%.

Taking the detection of mildewed seeds as an example, the average
detection time (including sample pretreatment time) of the proposed
method and the colloidal gold detection method is 0.04 min and 15 min,
respectively, and the detection time is shortened by about 375 times.
This method can detect multiple peanut seeds simultaneously in one
treatment cycle and identify different seed qualities.

4. Discussion

This study proves a new non-destructive testing method for peanut
seed quality that is universal, efficient and automated, which can meet
the real-time detection of actual detection scenarios. This method can be

extended to the quality inspection of most shelled crops. This can pre-
vent the occurrence of food poisoning and infection caused by untimely
detection and long cycle during the planting, picking, transportation and
processing of similar crops. Traditional quality detection methods rely
on rich experience in manual identification, expensive detection in-
struments and cumbersome detection processes. Before detection, the
structure of the seeds needs to be destroyed, and the seeds that have
been detected cannot continue to be used. As a sampling method,
traditional methods cannot screen all seeds, so there is a risk of
contamination. The detection method proposed in this paper can
effectively identify the quality of seeds, such as standard, mildewed,
defective, dried and germinated. This method does not require sample
pretreatment before detection, suitable for a rapid and comprehensive
on-site environment to achieve low-cost real-time non-destructive
testing.

The absorbance of the terahertz wave scanner is proportional to the
content of the measured object's polar substance, which is water. The
polar substance can increase the attenuation value of the terahertz
waves (Jiusheng, 2010). Jiusheng (2010) pointed out that the moisture
distribution of seeds was related to the diseased tissue, and standard
seeds' carbohydrate and protein mass accounted for about 40% of the
total nutrients. During the growth of fungal organisms, the hyphae
secrete specific enzymes that will decompose the nutrients in the seeds.
This reaction process requires a lot of water to participate, so the
moisture of mildewed seeds is small. This explains the discontinuous
phenomena of the terahertz wave imaging results of mildewed, mottled,
and corrugated seeds.

Based on the theory of Jiusheng (2010), we conducted several ex-
periments and found that the moisture distribution of seeds can be used
as a basis for identifying germinated defective and dried seeds. The
moisture distribution in seeds is related to the integrity of seeds, which is
mainly reflected in the trend of ripples in the background space. The
ripples of standard seeds are continuous and have regular dense distri-
bution. On the contrary, the defective seeds show discontinuous, sparse
and broken ripples. To determine the presence of fungi, an invasive
method of detection was used (Masinde et al., 2013). The detection and
recognition model proposed in this paper can detect the quality of
peanut seeds in real time and accurately without destroying the seed
structure and causing radiation damage after training. This model relies
on a weakly supervised training method, so it requires the scanning
results of the terahertz wave to be preprocessed to generate an new
image. The R channel, the G channel and edge detection data of the
image are extracted as the model's input data to realize the identification
of seed quality.

Fig. 5a shows that as the number of training iterations increases, the
algorithm's accuracy is improved. As the size of the training iterations
increases, the trained neural network will provide higher accuracy and
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less loss of overall change. However, it is necessary to avoid over-
training neural networks, which may amplify potential features, cause
over-fitting, and reduce the recognition accuracy. Here, the results are
observed after 16,000 iterations of training, and there is no significant
decrease in training accuracy.

Fig. 5c illustrates the classification efficacy of the seed categorization
algorithm, encapsulated within a 5 × 5 confusion matrix. Diagonal
values represent accurate predictions, with a majority class-wise preci-
sion ranging from 97.75% to 99.08%. Notably, misclassifications are
uniformly scattered across other classes, indicating an absence of sys-
temic bias. Despite the high accuracy observed, the “Defect” and
“Germinated” classes evidenced marginal decrements in predictive
performance, suggesting potential avenues for model refinement.
Overall, the algorithm demonstrates robust classification capabilities
with balanced error distribution, thus reinforcing its applicability in
automated seed quality assessment.

In conclusion, the terahertz imaging technology and convolutional
neural network detection method proposed in this paper can be used as
fast, non-destructive and universal detection equipment to identify the
quality of peanut seeds. Compared with the traditional detection
methods, the neural network model using cross entropy and loss func-
tion can automatically process a large amount of data, reduce data

acquisition work (reduce training repetition) and calculation work, and
have a standard unified judgment standard. As the size of the training
data set increases, the recognition accuracy can be improved to meet the
actual production quality inspection and consumer terminal detection
scenarios.

5. Conclusion

This study demonstrates the efficacy of combining terahertz imaging
technology with convolutional neural networks for rapid and non-
destructive detection of peanut quality. The proposed methods ach-
ieved a high accuracy of 98.7% in distinguishing five different seed
qualities: standard, mildewed, defective, dried and germinated. The
terahertz wave images revealed distinct characteristics for each quality
type, enabling precise identification without damaging the seed struc-
ture. The developed system significantly reduced detection time to an
average of 2.2 s per seed, approximately 375 times faster than tradi-
tional methods. This substantial improvement in speed, coupled with
the elimination of sample preparation steps, makes this study approach
highly suitable for real-time, continuous quality assessment in industrial
settings. This paper's findings represent a significant advancement in
seed quality detection technology, offering potential benefits for food

Fig. 5. Performance Analysis of Convolutional Neural Network for Peanut Seed Classification.
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safety and quality control in the peanut industry. The high accuracy,
speed and non-destructive nature of the proposed method make it
particularly valuable for large-scale quality assessment throughout the
peanut supply chain. Future research could explore the application of
the proposed method to other crop types and its integration into existing
production lines to enhance quality control processes in the food
industry.
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