

Received 3 August 2016 Accepted 16 August 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; *N*-heterocyclic carbene; palladium; thioether; planar chiral; pyrroloimidazolium.

CCDC reference: 1499404

**Supporting information**: this article has supporting information at journals.iucr.org/e



(+)-*trans*-Chlorido{2-[(*R*<sub>p</sub>)-2-(methylsulfanyl)ferrocenyl]-2,5,6,7-tetrahydropyrrolo[1,2-c]imidazol-3ylidene}bis(triphenylphosphane-*κP*)palladium(II) hexafluoridophosphate dichloroform disolvate

# Cody Wilson-Konderka,<sup>a</sup> Alan J. Lough<sup>b\*</sup> and Costa Metallinos<sup>a</sup>

<sup>a</sup>Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada, and <sup>b</sup>Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada. \*Correspondence e-mail: alough@chem.utoronto.ca

The title solvated complex,  $[FePd(C_5H_5)(C_{12}H_{13}N_2S)Cl(C_{18}H_{15}P)_2]PF_6\cdot 2CHCl_3$ , bearing a chiral ferrocenyl pyrroloimidazolylidene *N*-heterocyclic carbene (NHC) ligand, was synthesized by oxidative addition of a chloroimidazolium salt to Pd(PPh\_3)\_4. The Pd<sup>II</sup> ion is coordinated in a slightly distorted square-planar coordination geometry, with the Cl atom *trans* to the coordinating C atom of the pyrroloimidazolylidene ligand. The complex features a pendant thioether group that is not involved in coordination to Pd. In the crystal, weak C-H···F and C-H··· $\pi$  interactions connect the components of the structure, forming chains propagating along [110]. The fused pyrrolidine ring is in an envelope conformation, and the flap atom was refined as disordered over two sets of sites, with occupancies of 0.77 (4) and 0.23 (4).

## 1. Chemical context

N-Heterocyclic carbenes (NHCs), such as imidazolylidenes, are electron-rich  $\sigma$ -donor ligands that may be electronically and sterically fine-tuned by changing the substituents on the azole ring (Clavier, 2006). These ligands exhibit weak  $\pi$ -backbonding, resulting in increased electron density at the metal atom. Their overall electron-donating capacity is similar to that of trialkylphosphane ligands and is a main reason for interest in imidazolylidenes as ancillary ligands for transitionmetal complexes with potential applications in catalysis (Hopkinson et al., 2014). In general, higher electron density at transition metal atomshas been shown to promote oxidative addition steps in catalytic cycles (Peris, 2007). The selective synthesis of homochiral NHC ligands has been investigated concurrently with achiral forms. Particular attention has been paid to developing NHC ligands derived from planar chiral ferrocenes owing to the commercial importance of chiral ferrocene ligands, e.g. Josiphos (Schultz et al., 2005), Xyliphos (Spindler et al., 1990) and PhTRAP (Kuwano et al., 2000). Some early examples of complexes bearing chiral ferrocenyl NHCs include Chung's iridium complex 1, in which the thioether group is not involved in metal ligation (Seo et al., 2003) (Fig. 1). In contrast, bidentate 2 (Debono et al., 2010) or tridentate pincer-like ferrocenyl NHC-phosphane ligands 3 (Gischig & Togni, 2004) have been prepared, which feature seven-membered palladacycles. Complex 2 has been shown to catalyze asymmetric Suzuki-Miyaura coupling of aryl bromides with naphthylboronic acids in up to 42% ee (Debono et al., 2010). The preceding chiral ferrocenyl NHC





Figure 1 Coordination complexes with chiral ferrocenyl NHC ligands.

ligands were prepared by initial diastereoselective lithiation of Ugi's amine (complexes 1 and 3) (Marquarding et al., 1970) or Kagan's ferrocenyl acetal (complex 2) (Riant et al., 1993). We have recently reported that an iridium complex bearing a monodentate imidazolinylidene ligand catalyzes the hydrogenation of 2-substituted quinolines in up to 80% ee (John et al., 2015). This ligand was prepared by diastereoselective lithiation of a ferrocene containing a new pyrroloimidazolone chiral auxiliary in which the N atom was directly attached to the cyclopentadienyl (Cp) ring. The pyrroloimidazolone functionality doubled as a precursor to the NHC. In this sense, the NHC ligand in 4 is distinct from those in complexes 1-3, which have 'pendant' imidazolylidenes. In this paper, we have extended this synthetic approach to prepare an unsaturated pyrroloimidazolylidene analogue of the ligands in complexes 1-3 to study its coordination behaviour with palladium. The crystal structure of the title compound, 8, is presented herein.



#### 2. Structural commentary

The molecular structure of the title compound, **8**, is shown in Fig. 2. The Pd<sup>II</sup> ion is coordinated in a slightly distorted square-planar coordination geometry, with the Cl atom *trans* to the pyrroloimidazolylidene ligand. The ligand is monodentate, with an  $R_p$  absolute configuration of the ferrocene moiety (Schlögl, 1967). The Schlögl convention has been used to assign planar chirality ( $R_p$  or  $S_p$ ) for consistency with our prior ferrocene work. As in iridium complex **1**, the thioether

 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C30–C35, C36–C41 and N1/C1/N2/C5/C6 rings, respectively.

| $D - H \cdot \cdot \cdot A$                                         | D-H                    | $H \cdot \cdot \cdot A$  | $D \cdots A$          | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------|------------------------|--------------------------|-----------------------|--------------------------------------|
| $C6-H6A\cdots F3^{i}$                                               | 0.95                   | 2.40                     | 3.297 (6)             | 158                                  |
| $C40-H40A\cdots F1^{i}$                                             | 0.95                   | 2.52                     | 3.327 (7)             | 143                                  |
| $C50-H50A\cdots F4^{ii}$                                            | 0.95                   | 2.38                     | 3.275 (7)             | 156                                  |
| $C54-H54A\cdots F4$                                                 | 1.00                   | 2.42                     | 3.342 (7)             | 153                                  |
| $C54-H54A\cdots F6$                                                 | 1.00                   | 2.33                     | 3.237 (7)             | 150                                  |
| C55-H55A···F5                                                       | 1.00                   | 2.44                     | 3.228 (7)             | 135                                  |
| C55-H55A···F6                                                       | 1.00                   | 2.33                     | 3.311 (7)             | 168                                  |
| $C2-H2B\cdots Cg1$                                                  | 0.99                   | 2.88                     | 3.682 (6)             | 139                                  |
| $C15 - H15A \cdots Cg2^{iii}$                                       | 1.00                   | 2.93                     | 3.762 (7)             | 141                                  |
| $C35-H35A\cdots Cg3$                                                | 0.95                   | 2.67                     | 3.148 (6)             | 111                                  |
| Symmetry codes: (i)<br>$-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}.$ | $-x, y + \frac{1}{2},$ | $-z + \frac{1}{2};$ (ii) | $-x+1, y+\frac{1}{2}$ | $, -z + \frac{1}{2};$ (iii)          |

group is not involved in coordination to the metal atom in the title complex. The triphenylphosphane ligands are in slightly different chemical environments, an observation that is consistent with the non-equivalency of their P atoms by <sup>31</sup>P NMR spectroscopy. The cyclopentadienyl (Cp) rings of the ferrocenyl group are tilted slightly, by 2.75 (14)°, with respect to each other. The dihedral angle between the fused imidazole ring and the Cp ring to which it is attached is  $46.1 (2)^{\circ}$ . The fused pyrrolidine ring is in an envelope conformation, with atom C3 forming the flap. Atom C3 is disordered over two sites, with refined occupancies of 0.77 (4) and 0.23 (4). Within the cation, there are significant intramolecular  $\pi$ - $\pi$  stacking interactions, with centroid-centroid distances less than 4 Å namely,  $Cg1 \cdots Cg6 = 3.712$  (3) Å,  $Cg2 \cdots Cg5 = 3.861$  (8) Å,  $Cg2 \cdots Cg6 = 3.675 \text{ Å} \text{ and } Cg3 \cdots Cg4 = 3.641 \text{ Å}, \text{ where } Cg1,$ Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of the N1/C1/



#### Figure 2

The molecular structure of the cation of the title compound, shown with 30% probabilty displacement ellipsoids. H atoms have been omitted for clarity. The minor disorder component is not shown.





Part of the crystal structure of **8**, with weak  $C-H\cdots\pi$  interactions shown as dashed lines. The centroids Cg1, Cg2 and Cg3, and the symmetry code are defined in Table 1. Only H atoms involved in weak interactions are shown.

N2/C4/C6, N2/C5/C4*A*/C3*A*/C2*A*, C7–C11, C18–C23, C30–C35 and C36–C41 rings, respectively.

### 3. Supramolecular features

In the crystal, weak C-H···F and C-H·· $\pi$  interactions connect the components of the structure, forming chains propagating along [110] (Table 1, Figs. 3 and 4).

### 4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update February 2015; Groom *et al.*, 2016) revealed only two structures where a Pd<sup>II</sup> ion is coordinated to a tetrahydro-1*H*-pyrrolo[1,2-*c*]imidazol-3-ylidene ligand, *viz. trans*-chloro(2-phenyl-5,6,7,7a-tetrahydro-1*H*-pyrrolo[1,2-*c*]imidazol-3-ylidene)bis(triphenylphosphine)palladium(II) chloride dichloromethane solvate (CSD refcode XAMPOR; Kremzow *et al.*, 2005) and *trans*-chlorido(2-phenyl-5,6,7,7atetrahydro-1*H*-pyrrolo[1,2-*c*]imidazol-3-ylidene)bis(triphenylphosphine)palladium(II) hexafluoridophosphate dichloromethane solvate (XAMPIL; Kremzow *et al.*, 2005). The Pd- $C_{carbene}$  bond length is 1.975 (2) and 1.9687 (17) Å in XAMPOR and XAMPIL, respectively, and these values are the same within experimental error as the value of 1.988 (5)Å in the title compound.

## 5. Synthesis and crystallization

### 5.1. General

The stereoselective synthesis of planar chiral ferrocene 6 by diastereoselective lithiation has been reported previously (Metallinos *et al.*, 2012, 2013). Thus, sequential deprotonation of imidazolone 5, followed by elecrophile quenching with dimethyl disulfide and subsequent acid-induced elimination of silanol, gave the chiral unsaturated urea 6. Heating urea 6 in neat phosphorus oxychloride in a sealed tube at 323 K resulted in the formation of chloroimidazolium salt 7, which was isolated as the hexafluoridophosphate salt upon salt









The reaction scheme.

metathesis. Chloride 7 readily underwent oxidative addition with  $Pd(PPh_3)_4$  according to the method of Fürstner et al. (2003) to give the title palladium complex 8 in 67% yield. Recrystallization of 8 from chloroform solution containing a small amount of pentane gave the product as small yellow crystals that were suitable for X-ray diffraction. The reaction scheme is shown in Fig. 5.

5.2. Preparation of (+)-3-chloro-2-[(R<sub>p</sub>)-2-(methylsulfanyl)ferrocenyl]-2,5,6,7-tetrahydropyrrolo[1,2-c]imidazol-4-ium hexafluorophosphate, 7

A mixture of imidazolone 6 (147 mg, 0.42 mmol) in neat POCl<sub>3</sub> (0.5 ml, 5.36 mmol) was heated at 323 K for 16 h. The resulting solution changed progressively from orange to black during this period. After cooling to room temperature, the volatiles were removed under high vacuum. The black residue obtained was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (10 ml) and treated with a saturated solution of KPF<sub>6</sub> in H<sub>2</sub>O/MeOH (2 ml). The mixture was stirred for 15 min at room temperature, resulting in a colour change from black to deep red. Water was added (10 ml), resulting in a biphasic mixture from which the organic layer was isolated, washed with water, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was taken up in CH<sub>2</sub>Cl<sub>2</sub> (2 ml) and added to an ice-cooled Et<sub>2</sub>O solution in an ice bath. The precipitate was collected by Hirsch funnel filtration and washed with cold Et<sub>2</sub>O to give a gold-beige powder [yield 161 mg, 78%; m.p. 368 K (Et<sub>2</sub>O)]. [α]<sub>D</sub> +30.2 (c 1.0, CHCl<sub>3</sub>); IR (ATR, solid) ν<sub>max</sub>: 3152, 2977, 2923, 2875, 2858, 2851, 1650, 1537, 827 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  8.04 (s, 1H), 4.96 (s, 1H), 4.75 (s, 1H), 4.61 (s, 1H), 4.51 (bs, 7H), 3.23 (s, 2H), 2.80 (s, 2H), 2.21 (s, 3H);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  138.4, 128.1, 120.2, 93.9, 79.1, 72.3, 72.0, 68.1, 67.4, 48.6, 27.2, 24.0, 20.9; ESI-MS

| Table 2                                                                  |                                                                                                                                                                                     |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Experimental details.                                                    |                                                                                                                                                                                     |
| Crystal data                                                             |                                                                                                                                                                                     |
| Chemical formula                                                         | [FePd(C <sub>5</sub> H <sub>5</sub> )(C <sub>12</sub> H <sub>13</sub> N <sub>2</sub> S)Cl-<br>(C <sub>18</sub> H <sub>15</sub> P) <sub>2</sub> ]PF <sub>6</sub> ·2CHCl <sub>3</sub> |
| M <sub>r</sub>                                                           | 1388.34                                                                                                                                                                             |
| Crystal system, space group                                              | Orthorhombic, $P2_12_12_1$                                                                                                                                                          |
| Temperature (K)                                                          | 147                                                                                                                                                                                 |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                       | 11.2517 (5), 16.424 (1),<br>31.1181 (18)                                                                                                                                            |
| $V(Å^3)$                                                                 | 5750.6 (5)                                                                                                                                                                          |
| Ζ                                                                        | 4                                                                                                                                                                                   |
| Radiation type                                                           | Μο Κα                                                                                                                                                                               |
| $\mu (\text{mm}^{-1})$                                                   | 1.07                                                                                                                                                                                |
| Crystal size (mm)                                                        | $0.30 \times 0.19 \times 0.09$                                                                                                                                                      |
| Data collection                                                          |                                                                                                                                                                                     |
| Diffractometer                                                           | Bruker Kappa APEX DUO CCD                                                                                                                                                           |
| Absorption correction                                                    | Multi-scan ( <i>SADABS</i> ; Bruker, 2014)                                                                                                                                          |
| $T_{\min}, T_{\max}$                                                     | 0.663, 0.746                                                                                                                                                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 30535, 13109, 10246                                                                                                                                                                 |
| R <sub>int</sub>                                                         | 0.058                                                                                                                                                                               |
| $(\sin \theta / \lambda)_{\max} ( \mathring{A}^{-1} )$                   | 0.650                                                                                                                                                                               |
| Refinement                                                               |                                                                                                                                                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.044, 0.075, 0.98                                                                                                                                                                  |
| No. of reflections                                                       | 13109                                                                                                                                                                               |
| No. of parameters                                                        | 691                                                                                                                                                                                 |
| H-atom treatment                                                         | H-atom parameters constrained                                                                                                                                                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm A}^{-3})$ | 0.53, -0.61                                                                                                                                                                         |
| Absolute structure                                                       | Flack x determined using 3648<br>quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$<br>(Parsons <i>et al.</i> , 2013)                                                                          |
| Absolute structure parameter                                             | -0.011(13)                                                                                                                                                                          |

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick. 2015a). SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and SHELXTL (Sheldrick, 2008).

[m/z (%)]: 373 (M<sup>+</sup>, 100), 217 (5); HR–MS (ESI) calculated for C<sub>17</sub>H<sub>18</sub>ClFeN<sub>2</sub>S: 373.0229; found: 373.0222.

### 5.3. Preparation of 8

A solution of 7 (150 mg, 0.29 mmol) and  $Pd(PPh_3)_4$ (334 mg, 0.13 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25 ml) was heated under reflux for 5 h. After cooling, the solution was filtered through Celite, evaporated to dryness, and the crude product was recrystallized from CHCl<sub>3</sub>/pentane, to give bright-yellow powdery crystals [yield 246 mg, 67%; m.p. >503 K (CHCl<sub>3</sub>)].  $[\alpha]_D$  +25.1 (c 1.0, CHCl<sub>3</sub>); IR (ATR, solid)  $\nu_{max}$ : 3054, 1708, 1480, 1362 cm<sup>-1</sup>; <sup>1</sup>H NMR (400 MHz, acetone- $d_6$ ):  $\delta$  7.73 (s, 1H), 7.68–7.41 (m, 30H), 5.41 (s, 1H), 4.53 (s, 1H), 4.42 (t, 1H, J = 2.8 Hz), 4.17 (s, 5H), 3.18-3.12 (m, 1H), 3.03-2.97 (m, 1H), 2.36 (t, 2H, J = 7.2 Hz), 1.89 (s, 3H), 1.57 (quin, 2H, J = 7.6 Hz); <sup>13</sup>C NMR (100 MHz, acetone- $d_6$ )  $\delta$  140.6, 134.2, 134.1, 131.7, 131.2, 129.2, 129.1, 128.7, 128.6, 120.5, 95.3, 79.0, 78.3, 71.3, 70.4, 66.1, 65.9, 46.8, 25.9, 22.3, 18.7; <sup>31</sup>P NMR (162 MHz, acetone- $d_6$ ):  $\delta$  30.1 (s, 1P), 20.6 (s, 1P), -144.5 [sept, 1P,  ${}^{1}J({}^{31}P-{}^{19}F) = 708 \text{ Hz}]; \text{ ESI-MS } [m/z (\%)]: 1003 (36),$ 833 (100), 743 (35), 659 (24), 389 (66), 263 (41); HR-MS (ESI) calculated for C53H48N2ClFeP2PdS: 1003.1086; found: 1003.1126. Analysis calculated for C<sub>53</sub>H<sub>48</sub>N<sub>2</sub>ClF<sub>6</sub>FeP<sub>3</sub>PdS--CHCl<sub>3</sub>: C 55.37, H 4.21%; found: C 55.60, H 4.33%.

## 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions, with C-H = 0.95–1.00 Å, and included in a ridingmodel approximation, with  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms or  $1.2U_{eq}(C)$  otherwise. The flap atom, C3, of the fused pyrrolidine ring system was refined as disordered over two sites, with final occupancies of 0.77 (4) and 0.23 (4).

### Acknowledgements

CM thanks NSERC Canada for support under the Discovery Grants program, and L. Qiu and R. Simionescu for assistance with spectroscopic data collection.

### References

- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clavier, M. H. C. (2006). N-Heterocyclic Carbenes in Synthesis, edited by S. P. Nolan, pp. 183–186. Weinheim: Wiley-VCH.
- Debono, N., Labande, A., Manoury, E., Daran, J. C. & Poli, R. (2010). Organometallics, 29, 1879–1882.
- Fürstner, A., Seidel, G., Kremzow, D. & Lehmann, C. W. (2003). Organometallics, 22, 907–909.
- Gischig, S. & Togni, A. (2004). Organometallics, 23, 2479-2487.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.

- Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). *Nature*, **510**, 485–496.
- John, J., Wilson–Konderka, C. & Metallinos, C. (2015). Adv. Synth. Catal. 357, 2071–2081.
- Kremzow, D., Seidel, G., Lehmann, C. W. & Fürstner, A. (2005). *Chem. Eur. J.* 11, 1833–1853.
- Kuwano, R., Sato, K., Kurokawa, T., Karube, D. & Ito, Y. (2000). J. Am. Chem. Soc. 122, 7614–7615.
- Marquarding, D., Klusacek, H., Gokel, G., Hoffmann, P. & Ugi, I. (1970). J. Am. Chem. Soc. 92, 5389–5393.
- Metallinos, C., John, J., Nelson, J., Dudding, T. & Belding, L. (2013). *Adv. Synth. Catal.* **355**, 1211–1219.
- Metallinos, C., John, J., Zaifman, J. & Emberson, K. (2012). *Adv. Synth. Catal.* **354**, 602–606.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Peris, E. (2007). Organomet. Chem. 21, 83-116.
- Riant, O., Samuel, O. & Kagan, H. B. (1993). J. Am. Chem. Soc. 115, 5835–5836.
- Schlögl, K. (1967). Top. Stereochem. 1, 39-89.
- Schultz, C., Dreher, S., Ikemoto, N., Williams, J., Grabowski, E., Krska, S., Sun, Y., Dormer, P. & DiMichele, L. (2005). Org. Lett. 7, 3405–3408.
- Seo, H., Park, H. J., Kim, B. Y., Lee, J. H., Son, S. U. & Chung, Y. K. (2003). Organometallics, 22, 618–620.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spindler, F., Pugin, B. & Blaser, H.-U. (1990). Angew. Chem. Int. Ed. 29, 558–559.

# supporting information

# Acta Cryst. (2016). E72, 1330-1334 [doi:10.1107/S2056989016013190]

(+)-*trans*-Chlorido{2-[(*R*<sub>p</sub>)-2-(methylsulfanyl)ferrocenyl]-2,5,6,7-tetrahydropyrrolo[1,2-c]imidazol-3-ylidene}bis(triphenylphosphane-*κP*)palladium(II) hexafluoridophosphate dichloroform disolvate

# Cody Wilson-Konderka, Alan J. Lough and Costa Metallinos

# **Computing details**

Data collection: *APEX2* (Bruker, 2014); cell refinement: *APEX2* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

(+)-*trans*-Chlorido $\{2-[(R_p)-2-(methylsulfanyl)ferrocenyl]-2,5,6,7-tetrahydropyrrolo<math>[1,2-c]$ imidazol-3-ylidenebis(triphenylphosphane- $\kappa P$ )palladium(II) hexafluoridophosphate dichloroform disolvate

## Crystal data

 $[FePd(C_5H_5) (C_{12}H_{13}N_2S)Cl(C_{18}H_{15}P)_2]PF_6 \cdot 2CHCl_3$   $M_r = 1388.34$ Orthorhombic,  $P2_12_12_1$  a = 11.2517 (5) Å b = 16.424 (1) Å c = 31.1181 (18) Å V = 5750.6 (5) Å<sup>3</sup> Z = 4

## Data collection

Bruker Kappa APEX DUO CCD diffractometer Radiation source: sealed tube with Bruker Triumph monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Bruker, 2014)  $T_{\min} = 0.663$ ,  $T_{\max} = 0.746$ 

## Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.075$ S = 0.9813109 reflections 691 parameters F(000) = 2800  $D_x = 1.604 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5526 reflections  $\theta = 2.5-24.4^{\circ}$   $\mu = 1.07 \text{ mm}^{-1}$  T = 147 KPlate, orange  $0.30 \times 0.19 \times 0.09 \text{ mm}$ 

30535 measured reflections 13109 independent reflections 10246 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.058$  $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.4^{\circ}$  $h = -10 \rightarrow 14$  $k = -21 \rightarrow 20$  $l = -40 \rightarrow 40$ 

0 restraints Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0201P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$ 

| $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$ |
|-----------------------------------------------------------|
| $\Delta \rho_{\rm min} = -0.61 \text{ e} \text{ Å}^{-3}$  |

Absolute structure: Flack *x* determined using 3648 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons *et al.*, 2013) Absolute structure parameter: -0.011 (13)

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | v            | Z            | $U_{iso}^*/U_{ea}$ | Occ. (<1) |
|------|--------------|--------------|--------------|--------------------|-----------|
| Pd1  | 0 33330 (3)  | 0.96585 (3)  | 0 41241 (2)  | 0.01254 (9)        | . ,       |
| Fel  | 0.27891 (7)  | 0.73959(5)   | 0.30082(3)   | 0.0125 + (5)       |           |
| Cl1  | 0.49228 (11) | 0.95869 (9)  | 0.46005 (4)  | 0.0200 (3)         |           |
| S1   | 0.00261 (13) | 0.73694 (10) | 0.34952 (5)  | 0.0287 (4)         |           |
| P1   | 0.19986 (12) | 0.91810 (10) | 0.46437 (5)  | 0.0162 (3)         |           |
| P2   | 0.46163 (11) | 1.02430 (9)  | 0.36165 (4)  | 0.0139 (3)         |           |
| N1   | 0.1746 (4)   | 0.8971 (3)   | 0.34336 (13) | 0.0138 (9)         |           |
| N2   | 0.1299 (3)   | 1.0203 (3)   | 0.35635 (13) | 0.0132 (10)        |           |
| C1   | 0.2043 (4)   | 0.9615 (3)   | 0.36879 (15) | 0.0118 (11)        |           |
| C2   | 0.1067 (5)   | 1.1032 (3)   | 0.37085 (19) | 0.0197 (13)        | 0.77 (4)  |
| H2A  | 0.1812       | 1.1351       | 0.3731       | 0.024*             | 0.77 (4)  |
| H2B  | 0.0658       | 1.1036       | 0.3990       | 0.024*             | 0.77 (4)  |
| C3   | 0.0267 (16)  | 1.1362 (6)   | 0.3354 (5)   | 0.034 (4)          | 0.77 (4)  |
| H3A  | 0.0733       | 1.1701       | 0.3152       | 0.041*             | 0.77 (4)  |
| H3B  | -0.0374      | 1.1701       | 0.3478       | 0.041*             | 0.77 (4)  |
| C4   | -0.0263 (5)  | 1.0630 (4)   | 0.3119 (2)   | 0.0287 (16)        | 0.77 (4)  |
| H4A  | -0.1084      | 1.0518       | 0.3217       | 0.034*             | 0.77 (4)  |
| H4B  | -0.0268      | 1.0716       | 0.2804       | 0.034*             | 0.77 (4)  |
| C2A  | 0.1067 (5)   | 1.1032 (3)   | 0.37085 (19) | 0.0197 (13)        | 0.23 (4)  |
| H2AA | 0.1715       | 1.1405       | 0.3620       | 0.024*             | 0.23 (4)  |
| H2AB | 0.0980       | 1.1054       | 0.4025       | 0.024*             | 0.23 (4)  |
| C3A  | -0.011 (3)   | 1.125 (2)    | 0.3482 (13)  | 0.020 (9)*         | 0.23 (4)  |
| H3AA | -0.0786      | 1.1220       | 0.3686       | 0.023*             | 0.23 (4)  |
| H3AB | -0.0077      | 1.1813       | 0.3363       | 0.023*             | 0.23 (4)  |
| C4A  | -0.0263 (5)  | 1.0630 (4)   | 0.3119 (2)   | 0.0287 (16)        | 0.23 (4)  |
| H4AA | -0.1095      | 1.0434       | 0.3103       | 0.034*             | 0.23 (4)  |
| H4AB | -0.0037      | 1.0867       | 0.2838       | 0.034*             | 0.23 (4)  |
| C5   | 0.0553 (5)   | 0.9959 (3)   | 0.32403 (18) | 0.0168 (13)        |           |
| C6   | 0.0827 (5)   | 0.9181 (4)   | 0.31496 (18) | 0.0181 (13)        |           |
| H6A  | 0.0472       | 0.8844       | 0.2937       | 0.022*             |           |
| C7   | 0.1584 (5)   | 0.7435 (3)   | 0.35010 (16) | 0.0176 (12)        |           |
| C8   | 0.2245 (5)   | 0.8181 (3)   | 0.34678 (17) | 0.0151 (12)        |           |
| C9   | 0.3460 (5)   | 0.7996 (3)   | 0.35239 (17) | 0.0189 (13)        |           |
| H9A  | 0.4129       | 0.8396       | 0.3518       | 0.023*             |           |
| C10  | 0.3571 (5)   | 0.7146 (3)   | 0.35824 (18) | 0.0211 (14)        |           |

| H10A | 0.4333      | 0.6843     | 0.3623       | 0.025*      |
|------|-------------|------------|--------------|-------------|
| C11  | 0.2422 (5)  | 0.6793 (4) | 0.35640 (18) | 0.0222 (13) |
| H11A | 0.2231      | 0.6201     | 0.3592       | 0.027*      |
| C12  | 0.1885 (6)  | 0.7210 (4) | 0.24507 (18) | 0.0298 (15) |
| H12A | 0.1001      | 0.7180     | 0.2422       | 0.036*      |
| C13  | 0.2576 (6)  | 0.7922 (4) | 0.24119 (19) | 0.0294 (16) |
| H13A | 0.2271      | 0.8483     | 0.2353       | 0.035*      |
| C14  | 0.3781 (6)  | 0.7700 (4) | 0.24738 (19) | 0.0319 (16) |
| H14A | 0.4480      | 0.8077     | 0.2468       | 0.038*      |
| C15  | 0.3817 (6)  | 0.6846 (4) | 0.25522 (19) | 0.0298 (16) |
| H15A | 0.4549      | 0.6517     | 0.2608       | 0.036*      |
| C16  | 0.2648 (5)  | 0.6545 (4) | 0.25400 (18) | 0.0258 (15) |
| H16A | 0.2402      | 0.5964     | 0.2579       | 0.031*      |
| C17  | -0.0134 (6) | 0.6283 (4) | 0.3475 (3)   | 0.055 (2)   |
| H17A | -0.0972     | 0.6144     | 0.3431       | 0.082*      |
| H17B | 0.0143      | 0.6046     | 0.3746       | 0.082*      |
| H17C | 0.0341      | 0.6066     | 0.3237       | 0.082*      |
| C18  | 0.1928 (5)  | 0.8077 (3) | 0.46366 (17) | 0.0187 (13) |
| C19  | 0.0873 (5)  | 0.7635 (4) | 0.46357 (19) | 0.0259 (14) |
| H19A | 0.0135      | 0.7914     | 0.4621       | 0.031*      |
| C20  | 0.0886 (6)  | 0.6799 (4) | 0.4656 (2)   | 0.0335 (17) |
| H20A | 0.0163      | 0.6501     | 0.4649       | 0.040*      |
| C21  | 0.1954 (6)  | 0.6397 (4) | 0.4685 (2)   | 0.0344 (17) |
| H21A | 0.1966      | 0.5820     | 0.4703       | 0.041*      |
| C22  | 0.3009 (5)  | 0.6824 (4) | 0.4687 (2)   | 0.0301 (16) |
| H22A | 0.3742      | 0.6541     | 0.4710       | 0.036*      |
| C23  | 0.3002 (5)  | 0.7663 (4) | 0.46567 (19) | 0.0260 (14) |
| H23A | 0.3730      | 0.7956     | 0.4649       | 0.031*      |
| C24  | 0.2339 (5)  | 0.9427 (3) | 0.52001 (17) | 0.0185 (13) |
| C25  | 0.1877 (5)  | 0.8926 (4) | 0.55286 (19) | 0.0293 (15) |
| H25A | 0.1502      | 0.8425     | 0.5458       | 0.035*      |
| C26  | 0.1973 (6)  | 0.9165 (5) | 0.5950 (2)   | 0.0417 (18) |
| H26A | 0.1645      | 0.8833     | 0.6170       | 0.050*      |
| C27  | 0.2541 (6)  | 0.9886 (4) | 0.6059 (2)   | 0.0377 (18) |
| H27A | 0.2600      | 1.0046     | 0.6352       | 0.045*      |
| C28  | 0.3021 (5)  | 1.0369 (4) | 0.57395 (18) | 0.0283 (14) |
| H28A | 0.3430      | 1.0855     | 0.5813       | 0.034*      |
| C29  | 0.2906 (5)  | 1.0145 (4) | 0.53135 (19) | 0.0236 (14) |
| H29A | 0.3221      | 1.0487     | 0.5095       | 0.028*      |
| C30  | 0.0494 (4)  | 0.9583 (4) | 0.45903 (16) | 0.0170 (12) |
| C31  | 0.0073 (5)  | 1.0170 (4) | 0.48745 (18) | 0.0243 (14) |
| H31A | 0.0556      | 1.0338     | 0.5109       | 0.029*      |
| C32  | -0.1039(5)  | 1.0510 (4) | 0.4820 (2)   | 0.0292 (16) |
| H32A | -0.1317     | 1.0907     | 0.5018       | 0.035*      |
| C33  | -0.1751 (5) | 1.0276 (4) | 0.44788 (19) | 0.0293 (14) |
| H33A | -0.2513     | 1.0513     | 0.4440       | 0.035*      |
| C34  | -0.1343 (5) | 0.9697 (4) | 0.41967 (19) | 0.0321 (15) |
| H34A | -0.1825     | 0.9536     | 0.3961       | 0.039*      |
|      |             |            |              |             |

| C35  | -0.0237 (5)  | 0.9346 (4)   | 0.42521 (18) | 0.0222 (14) |
|------|--------------|--------------|--------------|-------------|
| H35A | 0.0026       | 0.8939       | 0.4057       | 0.027*      |
| C36  | 0.3880 (5)   | 1.0678 (4)   | 0.31492 (17) | 0.0168 (13) |
| C37  | 0.3671 (4)   | 1.1508 (4)   | 0.31238 (18) | 0.0227 (14) |
| H37A | 0.3964       | 1.1858       | 0.3342       | 0.027*      |
| C38  | 0.3035 (5)   | 1.1832 (4)   | 0.2782 (2)   | 0.0351 (17) |
| H38A | 0.2898       | 1.2402       | 0.2767       | 0.042*      |
| C39  | 0.2600 (6)   | 1.1325 (5)   | 0.2462 (2)   | 0.0364 (17) |
| H39A | 0.2165       | 1.1546       | 0.2228       | 0.044*      |
| C40  | 0.2805 (5)   | 1.0496 (4)   | 0.24870 (19) | 0.0304 (16) |
| H40A | 0.2516       | 1.0146       | 0.2267       | 0.036*      |
| C41  | 0.3427 (5)   | 1.0176 (4)   | 0.28306 (17) | 0.0245 (14) |
| H41A | 0.3546       | 0.9604       | 0.2849       | 0.029*      |
| C42  | 0.5453 (5)   | 1.1094 (3)   | 0.38305 (17) | 0.0159 (12) |
| C43  | 0.5069 (5)   | 1.1491 (4)   | 0.41998 (18) | 0.0227 (14) |
| H43A | 0.4395       | 1.1294       | 0.4351       | 0.027*      |
| C44  | 0.5664 (5)   | 1.2172 (4)   | 0.4348 (2)   | 0.0304 (16) |
| H44A | 0.5390       | 1.2442       | 0.4599       | 0.036*      |
| C45  | 0.6653 (5)   | 1.2462 (4)   | 0.4134(2)    | 0.0314 (14) |
| H45A | 0.7071       | 1.2922       | 0.4241       | 0.038*      |
| C46  | 0.7027 (5)   | 1.2079 (4)   | 0.3764 (2)   | 0.0304 (16) |
| H46A | 0.7700       | 1.2280       | 0.3614       | 0.036*      |
| C47  | 0.6437 (5)   | 1.1410 (4)   | 0.36124 (18) | 0.0220 (14) |
| H47A | 0.6699       | 1.1156       | 0.3355       | 0.026*      |
| C48  | 0.5722 (4)   | 0.9546 (4)   | 0.33932 (17) | 0.0181 (13) |
| C49  | 0.6155 (5)   | 0.9647 (4)   | 0.29755 (18) | 0.0257 (13) |
| H49A | 0.5863       | 1.0077       | 0.2801       | 0.031*      |
| C50  | 0.7003 (5)   | 0.9124 (4)   | 0.2818 (2)   | 0.0320 (16) |
| H50A | 0.7295       | 0.9196       | 0.2534       | 0.038*      |
| C51  | 0.7431 (5)   | 0.8503 (4)   | 0.3064 (2)   | 0.0285 (15) |
| H51A | 0.8021       | 0.8148       | 0.2952       | 0.034*      |
| C52  | 0.7008 (5)   | 0.8388 (4)   | 0.3479 (2)   | 0.0259 (15) |
| H52A | 0.7301       | 0.7953       | 0.3650       | 0.031*      |
| C53  | 0.6160 (5)   | 0.8908 (4)   | 0.36398 (19) | 0.0223 (14) |
| H53A | 0.5870       | 0.8829       | 0.3923       | 0.027*      |
| P3   | 0.04207 (14) | 0.39566 (10) | 0.31838 (5)  | 0.0232 (4)  |
| F1   | -0.0651 (3)  | 0.4502 (2)   | 0.30243 (13) | 0.0439 (10) |
| F2   | -0.0473 (3)  | 0.3301 (2)   | 0.33670 (13) | 0.0457 (11) |
| F3   | 0.0451 (3)   | 0.3494 (2)   | 0.27321 (12) | 0.0430 (10) |
| F4   | 0.1341 (3)   | 0.4618 (3)   | 0.30074 (12) | 0.0460 (10) |
| F5   | 0.0423 (3)   | 0.4412 (2)   | 0.36370 (11) | 0.0403 (10) |
| F6   | 0.1518 (3)   | 0.3408 (2)   | 0.33421 (12) | 0.0435 (10) |
| C12  | 0.4768 (3)   | 0.35412 (15) | 0.35456 (11) | 0.1039 (10) |
| C13  | 0.3769 (2)   | 0.48557 (18) | 0.40295 (7)  | 0.0862 (8)  |
| Cl4  | 0.4627 (2)   | 0.51171 (13) | 0.31834 (6)  | 0.0663 (6)  |
| C54  | 0.3937 (6)   | 0.4421 (4)   | 0.3519 (2)   | 0.0364 (17) |
| H54A | 0.3133       | 0.4289       | 0.3401       | 0.044*      |
| C15  | 0.23776 (16) | 0.25871 (15) | 0.45352 (8)  | 0.0708 (7)  |

# supporting information

| C16  | -0.01617 (14) | 0.25246 (11) | 0.44399 (6) | 0.0420 (4)  |
|------|---------------|--------------|-------------|-------------|
| C17  | 0.09639 (14)  | 0.40164 (10) | 0.47042 (5) | 0.0331 (4)  |
| C55  | 0.1110 (5)    | 0.3136 (4)   | 0.4386 (2)  | 0.0331 (16) |
| H55A | 0.1190        | 0.3303       | 0.4078      | 0.040*      |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$     | $U^{22}$   | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$     |
|------------|--------------|------------|--------------|---------------|---------------|--------------|
| Pd1        | 0.01091 (19) | 0.0142 (2) | 0.01251 (18) | -0.00038 (19) | -0.00128 (17) | 0.00038 (18) |
| Fe1        | 0.0189 (4)   | 0.0177 (5) | 0.0190 (4)   | 0.0020 (4)    | -0.0011 (3)   | -0.0042 (4)  |
| Cl1        | 0.0177 (7)   | 0.0258 (8) | 0.0165 (6)   | 0.0011 (7)    | -0.0054 (5)   | 0.0020 (6)   |
| <b>S</b> 1 | 0.0185 (8)   | 0.0246 (9) | 0.0429 (10)  | -0.0025 (7)   | 0.0030 (7)    | -0.0020 (8)  |
| P1         | 0.0159 (8)   | 0.0190 (9) | 0.0138 (7)   | -0.0016 (6)   | 0.0015 (6)    | 0.0000 (6)   |
| P2         | 0.0132 (7)   | 0.0133 (8) | 0.0151 (7)   | 0.0003 (6)    | -0.0004(5)    | 0.0003 (6)   |
| N1         | 0.011 (2)    | 0.014 (2)  | 0.017 (2)    | 0.004 (2)     | -0.004 (2)    | -0.0015 (18) |
| N2         | 0.015 (2)    | 0.010 (3)  | 0.014 (2)    | 0.0006 (19)   | -0.0003 (17)  | -0.0033 (19) |
| C1         | 0.015 (3)    | 0.007 (3)  | 0.013 (2)    | -0.001 (2)    | 0.0049 (19)   | -0.003 (2)   |
| C2         | 0.022 (3)    | 0.010 (3)  | 0.028 (3)    | 0.001 (3)     | 0.000 (3)     | -0.004 (2)   |
| C3         | 0.042 (8)    | 0.023 (6)  | 0.038 (7)    | 0.008 (5)     | -0.012 (6)    | 0.005 (5)    |
| C4         | 0.024 (3)    | 0.024 (4)  | 0.038 (4)    | 0.008 (3)     | -0.010 (3)    | 0.004 (3)    |
| C2A        | 0.022 (3)    | 0.010 (3)  | 0.028 (3)    | 0.001 (3)     | 0.000 (3)     | -0.004 (2)   |
| C4A        | 0.024 (3)    | 0.024 (4)  | 0.038 (4)    | 0.008 (3)     | -0.010 (3)    | 0.004 (3)    |
| C5         | 0.014 (3)    | 0.019 (3)  | 0.017 (3)    | -0.001 (2)    | -0.003 (2)    | -0.001 (2)   |
| C6         | 0.015 (3)    | 0.021 (3)  | 0.018 (3)    | -0.004 (3)    | -0.004 (2)    | 0.002 (3)    |
| C7         | 0.017 (3)    | 0.016 (3)  | 0.021 (3)    | 0.000 (3)     | -0.002 (2)    | -0.002 (2)   |
| C8         | 0.014 (3)    | 0.014 (3)  | 0.017 (3)    | 0.005 (2)     | -0.003 (2)    | -0.005 (2)   |
| C9         | 0.020 (3)    | 0.017 (3)  | 0.021 (3)    | 0.000 (3)     | -0.004 (3)    | -0.003 (2)   |
| C10        | 0.015 (3)    | 0.020 (3)  | 0.028 (3)    | 0.005 (2)     | -0.002 (2)    | -0.002 (3)   |
| C11        | 0.027 (3)    | 0.015 (3)  | 0.024 (3)    | 0.003 (3)     | -0.001 (3)    | 0.001 (2)    |
| C12        | 0.035 (4)    | 0.037 (4)  | 0.018 (3)    | 0.004 (3)     | -0.009 (3)    | -0.009 (3)   |
| C13        | 0.044 (4)    | 0.026 (4)  | 0.018 (3)    | 0.003 (3)     | 0.003 (3)     | 0.000 (3)    |
| C14        | 0.032 (4)    | 0.038 (4)  | 0.025 (4)    | 0.003 (3)     | 0.013 (3)     | 0.001 (3)    |
| C15        | 0.034 (4)    | 0.031 (4)  | 0.025 (4)    | 0.015 (3)     | 0.005 (3)     | -0.003 (3)   |
| C16        | 0.031 (4)    | 0.024 (4)  | 0.022 (3)    | 0.006 (3)     | 0.001 (3)     | -0.012 (3)   |
| C17        | 0.032 (4)    | 0.028 (4)  | 0.105 (7)    | -0.013 (3)    | 0.001 (4)     | 0.006 (4)    |
| C18        | 0.026 (4)    | 0.017 (3)  | 0.013 (3)    | -0.002 (3)    | 0.004 (2)     | 0.001 (2)    |
| C19        | 0.023 (3)    | 0.030 (4)  | 0.025 (3)    | -0.004 (3)    | 0.007 (3)     | 0.005 (3)    |
| C20        | 0.041 (4)    | 0.027 (4)  | 0.032 (4)    | -0.013 (3)    | 0.010 (3)     | 0.008 (3)    |
| C21        | 0.051 (5)    | 0.014 (4)  | 0.038 (4)    | -0.006 (3)    | 0.004 (3)     | 0.004 (3)    |
| C22        | 0.030 (4)    | 0.026 (4)  | 0.034 (4)    | 0.007 (3)     | 0.003 (3)     | 0.002 (3)    |
| C23        | 0.025 (3)    | 0.022 (4)  | 0.030 (3)    | 0.000 (3)     | 0.000 (3)     | 0.004 (3)    |
| C24        | 0.013 (3)    | 0.023 (4)  | 0.019 (3)    | 0.000 (2)     | 0.001 (2)     | 0.000(2)     |
| C25        | 0.034 (4)    | 0.033 (4)  | 0.021 (3)    | -0.006 (3)    | -0.002 (3)    | -0.001 (3)   |
| C26        | 0.052 (5)    | 0.055 (5)  | 0.018 (4)    | -0.010 (4)    | -0.001 (3)    | 0.004 (3)    |
| C27        | 0.039 (4)    | 0.055 (5)  | 0.019 (3)    | 0.009 (3)     | -0.008 (3)    | -0.009 (3)   |
| C28        | 0.024 (3)    | 0.031 (4)  | 0.029 (3)    | 0.004 (3)     | -0.008 (2)    | -0.011 (3)   |
| C29        | 0.018 (3)    | 0.027 (4)  | 0.026 (3)    | 0.001 (3)     | 0.002 (2)     | -0.001 (3)   |
| C30        | 0.014 (3)    | 0.020 (3)  | 0.017 (3)    | -0.001 (3)    | 0.002 (2)     | 0.004 (3)    |

# supporting information

| C31 | 0.018 (3)   | 0.033 (4)   | 0.022 (3)   | -0.002 (3)   | -0.004 (2)   | -0.002 (3)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C32 | 0.023 (3)   | 0.035 (4)   | 0.030 (4)   | 0.011 (3)    | 0.007 (3)    | 0.001 (3)    |
| C33 | 0.012 (3)   | 0.039 (4)   | 0.037 (3)   | 0.003 (3)    | 0.003 (3)    | 0.009 (3)    |
| C34 | 0.019 (3)   | 0.047 (4)   | 0.031 (4)   | -0.006 (3)   | -0.006 (2)   | 0.004 (4)    |
| C35 | 0.016 (3)   | 0.026 (4)   | 0.025 (3)   | -0.006 (3)   | 0.008 (2)    | -0.001 (3)   |
| C36 | 0.013 (3)   | 0.023 (4)   | 0.014 (3)   | -0.001 (2)   | 0.002 (2)    | 0.001 (2)    |
| C37 | 0.018 (3)   | 0.028 (4)   | 0.022 (3)   | 0.001 (3)    | -0.003 (2)   | 0.004 (3)    |
| C38 | 0.034 (4)   | 0.036 (4)   | 0.036 (4)   | 0.009 (3)    | 0.000 (3)    | 0.014 (3)    |
| C39 | 0.030 (4)   | 0.052 (5)   | 0.027 (4)   | 0.003 (3)    | -0.009 (3)   | 0.010 (3)    |
| C40 | 0.032 (4)   | 0.040 (5)   | 0.019 (3)   | -0.005 (3)   | -0.006 (3)   | -0.001 (3)   |
| C41 | 0.023 (3)   | 0.029 (4)   | 0.021 (3)   | -0.004 (3)   | -0.001 (3)   | 0.003 (3)    |
| C42 | 0.015 (3)   | 0.011 (3)   | 0.021 (3)   | 0.000 (2)    | -0.007 (2)   | 0.000(2)     |
| C43 | 0.028 (3)   | 0.020 (3)   | 0.020 (3)   | -0.002 (3)   | -0.001 (3)   | 0.002 (3)    |
| C44 | 0.040 (4)   | 0.025 (4)   | 0.026 (4)   | 0.002 (3)    | -0.004 (3)   | -0.006 (3)   |
| C45 | 0.031 (3)   | 0.022 (3)   | 0.042 (4)   | -0.009 (3)   | -0.018 (4)   | -0.001 (3)   |
| C46 | 0.018 (3)   | 0.026 (4)   | 0.047 (4)   | -0.008 (3)   | -0.002 (3)   | 0.009 (3)    |
| C47 | 0.018 (3)   | 0.026 (4)   | 0.022 (3)   | -0.005 (3)   | -0.001 (3)   | 0.002 (3)    |
| C48 | 0.013 (3)   | 0.017 (3)   | 0.024 (3)   | -0.003 (2)   | 0.001 (2)    | -0.002 (3)   |
| C49 | 0.027 (3)   | 0.024 (3)   | 0.026 (3)   | 0.001 (3)    | 0.008 (2)    | 0.005 (3)    |
| C50 | 0.026 (4)   | 0.041 (4)   | 0.029 (4)   | 0.004 (3)    | 0.010 (3)    | -0.004 (3)   |
| C51 | 0.022 (3)   | 0.029 (4)   | 0.035 (4)   | 0.003 (3)    | 0.003 (3)    | -0.014 (3)   |
| C52 | 0.018 (3)   | 0.024 (4)   | 0.036 (4)   | 0.007 (3)    | -0.004 (3)   | -0.006 (3)   |
| C53 | 0.017 (3)   | 0.029 (4)   | 0.021 (3)   | -0.005 (3)   | -0.004 (2)   | 0.001 (3)    |
| P3  | 0.0225 (8)  | 0.0243 (10) | 0.0228 (8)  | 0.0017 (7)   | -0.0005 (7)  | -0.0012 (7)  |
| F1  | 0.035 (2)   | 0.039 (3)   | 0.057 (3)   | 0.0086 (18)  | -0.0135 (19) | 0.004 (2)    |
| F2  | 0.044 (2)   | 0.032 (2)   | 0.061 (3)   | -0.0056 (19) | 0.012 (2)    | 0.009 (2)    |
| F3  | 0.056 (3)   | 0.045 (3)   | 0.028 (2)   | 0.000 (2)    | -0.0096 (18) | -0.0111 (19) |
| F4  | 0.041 (2)   | 0.047 (3)   | 0.050(2)    | -0.013 (2)   | 0.0207 (18)  | -0.002(2)    |
| F5  | 0.055 (2)   | 0.039 (3)   | 0.027 (2)   | 0.0074 (19)  | 0.0021 (18)  | -0.0083 (17) |
| F6  | 0.038 (2)   | 0.046 (3)   | 0.046 (2)   | 0.019 (2)    | -0.0145 (19) | -0.011 (2)   |
| Cl2 | 0.114 (2)   | 0.0344 (14) | 0.163 (3)   | 0.0246 (14)  | -0.023 (2)   | 0.0040 (17)  |
| Cl3 | 0.0986 (18) | 0.119 (2)   | 0.0407 (13) | 0.0073 (16)  | 0.0180 (11)  | -0.0052 (13) |
| Cl4 | 0.0958 (16) | 0.0643 (16) | 0.0387 (11) | -0.0165 (13) | -0.0048 (11) | 0.0144 (10)  |
| C54 | 0.033 (4)   | 0.032 (4)   | 0.044 (4)   | 0.002 (3)    | -0.007 (3)   | -0.001 (3)   |
| C15 | 0.0399 (11) | 0.0659 (16) | 0.107 (2)   | 0.0233 (11)  | -0.0198 (12) | -0.0372 (14) |
| C16 | 0.0407 (10) | 0.0397 (11) | 0.0455 (11) | -0.0087 (9)  | -0.0010 (8)  | -0.0128 (9)  |
| Cl7 | 0.0367 (9)  | 0.0280 (10) | 0.0346 (10) | -0.0003 (8)  | -0.0027 (8)  | -0.0059 (7)  |
| C55 | 0.034 (4)   | 0.041 (4)   | 0.025 (4)   | 0.000 (3)    | 0.001 (3)    | -0.010 (3)   |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Pd1—C1  | 1.988 (5)   | C20—H20A | 0.9500    |  |
|---------|-------------|----------|-----------|--|
| Pd1—Cl1 | 2.3261 (13) | C21—C22  | 1.379 (8) |  |
| Pd1—P1  | 2.3416 (15) | C21—H21A | 0.9500    |  |
| Pd1—P2  | 2.3454 (14) | C22—C23  | 1.381 (8) |  |
| Fe1—C8  | 2.020 (5)   | C22—H22A | 0.9500    |  |
| Fe1—C16 | 2.025 (6)   | C23—H23A | 0.9500    |  |
| Fe1—C9  | 2.029 (5)   | C24—C29  | 1.386 (8) |  |
|         |             |          |           |  |

| Fe1—C10          | 2.033 (6)             | C24—C25           | 1.412 (8)            |
|------------------|-----------------------|-------------------|----------------------|
| Fe1—C12          | 2.034 (6)             | C25—C26           | 1.372 (8)            |
| Fe1—C11          | 2.035 (6)             | C25—H25A          | 0.9500               |
| Fel—C15          | 2.041 (6)             | C26—C27           | 1.387 (9)            |
| Fel—C7           | 2.048 (5)             | C26—H26A          | 0.9500               |
| Fe1—C13          | 2.061 (6)             | C27—C28           | 1.382 (8)            |
| Fe1—C14          | 2.064 (6)             | C27—H27A          | 0.9500               |
| S1—C7            | 1.757 (6)             | C28—C29           | 1.381 (8)            |
| S1—C17           | 1.795 (7)             | C28—H28A          | 0.9500               |
| P1-C18           | 1 814 (6)             | C29—H29A          | 0.9500               |
| P1               | 1.819 (6)             | $C_{30}$ $C_{31}$ | 1 391 (8)            |
| P1               | 1.815(0)<br>1.825(5)  | $C_{30}$ $C_{35}$ | 1.391(0)<br>1 391(7) |
| $P_2 C_{42}$     | 1.823(5)              | $C_{31}$ $C_{32}$ | 1.391(7)             |
| $P_2 = C_{42}$   | 1.813 (5)             | $C_{31} = C_{32}$ | 1.380(7)             |
| $P_2 = C_{48}$   | 1.019(0)<br>1.929(6)  | $C_{22}$ $C_{22}$ | 1 296 (9)            |
| F2               | 1.828 (0)             | C32—C33           | 1.580 (8)            |
| NI-CI            | 1.302 (0)             | C32—G34           | 0.9300               |
| NI-Co            | 1.403 (6)             | C33—C34           | 1.372 (9)            |
| NI-C8            | 1.419 (6)             | C33—H33A          | 0.9500               |
| N2—C1            | 1.335 (6)             | C34—C35           | 1.382 (8)            |
| N2—C5            | 1.369 (6)             | C34—H34A          | 0.9500               |
| N2—C2            | 1.459 (7)             | C35—H35A          | 0.9500               |
| N2—C2A           | 1.459 (7)             | C36—C41           | 1.386 (7)            |
| C2—C3            | 1.524 (10)            | C36—C37           | 1.387 (8)            |
| C2—H2A           | 0.9900                | C37—C38           | 1.387 (8)            |
| C2—H2B           | 0.9900                | С37—Н37А          | 0.9500               |
| C3—C4            | 1.529 (12)            | C38—C39           | 1.387 (9)            |
| С3—НЗА           | 0.9900                | C38—H38A          | 0.9500               |
| С3—Н3В           | 0.9900                | C39—C40           | 1.384 (9)            |
| C4—C5            | 1.483 (8)             | C39—H39A          | 0.9500               |
| C4—H4A           | 0.9900                | C40—C41           | 1.382 (8)            |
| C4—H4B           | 0.9900                | C40—H40A          | 0.9500               |
| C2A—C3A          | 1.55 (3)              | C41—H41A          | 0.9500               |
| C2A—H2AA         | 0.9900                | C42—C43           | 1.390(7)             |
| C2A—H2AB         | 0.9900                | C42—C47           | 1.398 (7)            |
| C3A—C4A          | 1.53 (3)              | C43—C44           | 1.382 (8)            |
| СЗА—НЗАА         | 0.9900                | C43—H43A          | 0.9500               |
| СЗА—НЗАВ         | 0.9900                | C44—C45           | 1.381 (8)            |
| C4A—C5           | 1.483 (8)             | C44—H44A          | 0.9500               |
| C4A—H4AA         | 0.9900                | C45—C46           | 1.379 (9)            |
| C4A—H4AB         | 0.9900                | C45—H45A          | 0.9500               |
| $C_{5}$          | 1.345(7)              | C46-C47           | 1 367 (8)            |
| С6—Н6А           | 0.9500                | C46—H46A          | 0.9500               |
| C7-C11           | 1.427(8)              | C47—H47A          | 0.9500               |
| C7 - C8          | 1.727(0)<br>1 436 (7) | C48 - C53         | 1 300 (8)            |
| $C_{N} = C_{N}$  | 1.412(7)              | C48 - C49         | 1 308 (7)            |
| $C_{0} = C_{10}$ | 1.712(7)<br>1 413(7)  | C40 - C50         | 1.390(7)<br>1.374(8) |
|                  | 1,0000                | $C_{40} = H_{40}$ | 0.0500               |
| $C_{J}$          | 1,0000                | $C_{49} = 1149A$  | 1 264 (0)            |
| U10-U11          | 1.410(0)              | 0.50-0.51         | 1.304 (0)            |

| C10—H10A    | 1.0000      | С50—Н50А      | 0.9500    |
|-------------|-------------|---------------|-----------|
| C11—H11A    | 1.0000      | C51—C52       | 1.388 (8) |
| C12—C13     | 1.409 (9)   | C51—H51A      | 0.9500    |
| C12—C16     | 1.418 (8)   | C52—C53       | 1.375 (8) |
| C12—H12A    | 1.0000      | С52—Н52А      | 0.9500    |
| C13—C14     | 1.418 (8)   | С53—Н53А      | 0.9500    |
| C13—H13A    | 1.0000      | P3—F2         | 1.579 (4) |
| C14—C15     | 1.425 (9)   | P3—F1         | 1.583 (4) |
| C14—H14A    | 1.0000      | P3—F5         | 1.596 (4) |
| C15—C16     | 1.406 (8)   | P3—F3         | 1.598 (4) |
| C15—H15A    | 1.0000      | P3—F4         | 1.599 (4) |
| C16—H16A    | 1.0000      | P3—F6         | 1.606 (4) |
| C17—H17A    | 0.9800      | Cl2—C54       | 1.723 (7) |
| C17—H17B    | 0.9800      | Cl3—C54       | 1.751 (7) |
| C17—H17C    | 0.9800      | Cl4—C54       | 1.733 (7) |
| C18—C23     | 1.389 (7)   | C54—H54A      | 1.0000    |
| C18—C19     | 1.391 (8)   | Cl5—C55       | 1.750 (6) |
| C19—C20     | 1.375 (8)   | Cl6—C55       | 1.756 (7) |
| C19—H19A    | 0.9500      | Cl7—C55       | 1.760 (6) |
| C20—C21     | 1.373 (9)   | С55—Н55А      | 1.0000    |
|             |             |               |           |
| C1—Pd1—Cl1  | 173.96 (16) | Fe1—C13—H13A  | 126.2     |
| C1—Pd1—P1   | 89.50 (14)  | C13—C14—C15   | 107.7 (6) |
| Cl1—Pd1—P1  | 92.08 (5)   | C13—C14—Fe1   | 69.8 (3)  |
| C1—Pd1—P2   | 90.25 (14)  | C15—C14—Fe1   | 68.8 (4)  |
| Cl1—Pd1—P2  | 88.65 (5)   | C13—C14—H14A  | 126.2     |
| P1—Pd1—P2   | 175.39 (6)  | C15—C14—H14A  | 126.2     |
| C8—Fe1—C16  | 157.8 (2)   | Fe1—C14—H14A  | 126.2     |
| C8—Fe1—C9   | 40.8 (2)    | C16—C15—C14   | 108.4 (5) |
| C16—Fe1—C9  | 159.0 (2)   | C16—C15—Fe1   | 69.2 (3)  |
| C8—Fe1—C10  | 68.8 (2)    | C14—C15—Fe1   | 70.6 (3)  |
| C16—Fe1—C10 | 121.8 (2)   | C16—C15—H15A  | 125.8     |
| C9—Fe1—C10  | 40.7 (2)    | C14—C15—H15A  | 125.8     |
| C8—Fe1—C12  | 123.2 (2)   | Fe1—C15—H15A  | 125.8     |
| C16—Fe1—C12 | 40.9 (2)    | C15—C16—C12   | 107.5 (6) |
| C9—Fe1—C12  | 159.0 (2)   | C15—C16—Fe1   | 70.4 (3)  |
| C10—Fe1—C12 | 159.3 (3)   | C12—C16—Fe1   | 69.9 (3)  |
| C8—Fe1—C11  | 69.3 (2)    | C15—C16—H16A  | 126.2     |
| C16—Fe1—C11 | 105.1 (3)   | C12—C16—H16A  | 126.2     |
| C9—Fe1—C11  | 68.9 (2)    | Fe1—C16—H16A  | 126.2     |
| C10—Fe1—C11 | 40.8 (2)    | S1—C17—H17A   | 109.5     |
| C12—Fe1—C11 | 123.4 (3)   | S1—C17—H17B   | 109.5     |
| C8—Fe1—C15  | 161.1 (2)   | H17A—C17—H17B | 109.5     |
| C16—Fe1—C15 | 40.4 (2)    | S1—C17—H17C   | 109.5     |
| C9—Fe1—C15  | 123.6 (2)   | H17A—C17—H17C | 109.5     |
| C10—Fe1—C15 | 106.1 (2)   | H17B—C17—H17C | 109.5     |
| C12—Fe1—C15 | 67.9 (3)    | C23—C18—C19   | 119.1 (5) |
| C11—Fe1—C15 | 119.4 (3)   | C23—C18—P1    | 116.8 (4) |

| C8—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.3 (2)             | C19—C18—P1                   | 124.0 (4)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|----------------------|
| C16—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.6 (2)            | C20—C19—C18                  | 120.8 (6)            |
| C9—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68.8 (2)             | C20—C19—H19A                 | 119.6                |
| C10—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68.6 (2)             | C18—C19—H19A                 | 119.6                |
| C12—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.2 (2)            | C21—C20—C19                  | 119.5 (6)            |
| C11—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.9 (2)             | C21—C20—H20A                 | 120.3                |
| C15—Fe1—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 155.4 (2)            | C19—C20—H20A                 | 120.3                |
| C8—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5 (2)            | C20—C21—C22                  | 120.6 (6)            |
| C16—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68.5 (3)             | C20—C21—H21A                 | 119.7                |
| C9—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.5 (2)            | C22—C21—H21A                 | 119.7                |
| C10—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157.8 (2)            | $C_{21} - C_{22} - C_{23}$   | 120.1 (6)            |
| C12—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.3 (2)             | C21—C22—H22A                 | 119.9                |
| C11—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161.0(2)             | $C^{23}$ $C^{22}$ $H^{22A}$  | 119.9                |
| C15—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 680(3)               | $C_{22} = C_{23} = C_{18}$   | 119.8 (5)            |
| C7—Fe1—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1257(2)              | $C^{22}$ $C^{23}$ $H^{23}$ A | 120.1                |
| C8—Fe1—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125.7(2)<br>125.4(3) | C18 - C23 - H23A             | 120.1                |
| $C_{16}$ $E_{e1}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 68 3 (3)             | $C_{20}$ $C_{24}$ $C_{25}$   | 120.1<br>118.8(5)    |
| $C_{10} = C_{11} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.5(3)             | $C_{29} = C_{24} = C_{25}$   | 110.0(3)             |
| $C_{2} = C_{1} = C_{1} + C_{1} + C_{1} + C_{2} + C_{2$ | 108.0(3)<br>121.5(2) | $C_{25} = C_{24} = P_1$      | 121.9(4)<br>118.8(4) |
| C10— $Fe1$ — $C14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.3(2)             | $C_{23} = C_{24} = F_{1}$    | 110.0(4)             |
| C12—FeI—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/./(3)              | $C_{20} = C_{23} = C_{24}$   | 119.7 (0)            |
| C11—FeI— $C14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 155.8 (2)            | $C_{20}$ $C_{25}$ $H_{25A}$  | 120.2                |
| C15—Fe1—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.6 (2)             | $C_{24} = C_{25} = H_{25A}$  | 120.2                |
| C/-FeI-CI4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 162.5 (2)            | $C_{25} = C_{26} = C_{27}$   | 121.0 (6)            |
| CI3—FeI—CI4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.2 (2)             | C25—C26—H26A                 | 119.5                |
| C/S1C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.3 (3)             | C27—C26—H26A                 | 119.5                |
| C18—P1—C24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.1 (3)            | C28—C27—C26                  | 119.5 (6)            |
| C18—P1—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.6 (3)            | С28—С27—Н27А                 | 120.2                |
| C24—P1—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101.6 (2)            | С26—С27—Н27А                 | 120.2                |
| C18—P1—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.76 (18)          | C29—C28—C27                  | 120.1 (6)            |
| C24—P1—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116.59 (18)          | C29—C28—H28A                 | 120.0                |
| C30—P1—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.26 (18)          | C27—C28—H28A                 | 120.0                |
| C42—P2—C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103.2 (3)            | C28—C29—C24                  | 120.9 (6)            |
| C42—P2—C48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.6 (2)            | С28—С29—Н29А                 | 119.5                |
| C36—P2—C48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104.6 (3)            | С24—С29—Н29А                 | 119.5                |
| C42—P2—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.85 (19)          | C31—C30—C35                  | 118.3 (5)            |
| C36—P2—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.75 (18)          | C31—C30—P1                   | 120.6 (4)            |
| C48—P2—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 114.77 (19)          | C35—C30—P1                   | 121.1 (4)            |
| C1—N1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.8 (4)            | C32—C31—C30                  | 120.7 (5)            |
| C1—N1—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.7 (4)            | C32—C31—H31A                 | 119.6                |
| C6—N1—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.3 (4)            | C30—C31—H31A                 | 119.6                |
| C1—N2—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.7 (4)            | C31—C32—C33                  | 120.3 (6)            |
| C1—N2—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 134.2 (4)            | C31—C32—H32A                 | 119.8                |
| C5—N2—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 113.0 (4)            | C33—C32—H32A                 | 119.8                |
| C1—N2—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 134.2 (4)            | C34—C33—C32                  | 119.3 (5)            |
| C5—N2—C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113.0 (4)            | С34—С33—Н33А                 | 120.3                |
| N2—C1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103.8 (4)            | С32—С33—Н33А                 | 120.3                |
| N2—C1—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.0 (4)            | C33—C34—C35                  | 120.7 (6)            |
| N1—C1—Pd1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.1 (4)            | C33—C34—H34A                 | 119.7                |

| N2—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102.3 (5)          | C35—C34—H34A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| N2—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.3              | $C_{34}$ — $C_{35}$ — $C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.7 (6)            |
| C3—C2—H2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.3              | C34—C35—H35A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| N2—C2—H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.3              | C30—C35—H35A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| C3-C2-H2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.3              | C41 - C36 - C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.8 (5)            |
| $H^2A - C^2 - H^2B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.2              | C41 - C36 - P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1204(4)              |
| $C_{2}-C_{3}-C_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.2              | $C_{37}$ $C_{36}$ $P_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 120.1(1)<br>120.6(4) |
| $C_2 - C_3 - H_3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.3              | $C_{36} - C_{37} - C_{38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.6 (6)            |
| C4-C3-H3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.3              | $C_{36} = C_{37} = H_{37A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7                |
| $C_2 - C_3 - H_3B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.3              | $C_{38}$ $C_{37}$ $H_{37A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.7                |
| $C_2 = C_3 = H_3 B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110.3              | $C_{30}$ $C_{38}$ $C_{37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.1 (6)            |
| $H_{3A}$ $C_{3}$ $H_{3B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.5              | $C_{39}$ $C_{38}$ $H_{38A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.0                |
| $C_5 C_4 C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.7 (6)          | $C_{37} = C_{38} = H_{38A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110.0                |
| $C_5 = C_4 = H_4 \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102.7 (0)          | $C_{30} = C_{30} = C_{38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.9                |
| $C_3 = C_4 = H_{4A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.2              | $C_{40} = C_{30} = C_{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.3                |
| $C_5 = C_4 = H_4 R_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.2              | $C_{40} = C_{59} = H_{59} \times C_{40} \times C$ | 120.3                |
| $C_3 = C_4 = H_4 P_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.2              | $C_{30} = C_{39} = 1139 \text{ A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.5                |
| $C_3 - C_4 - H_4 D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.2              | C41 = C40 = C39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1 (0)            |
| $\mathbf{M} = \mathbf{M} = $ | 109.1<br>102.4(14) | $C_{41} = C_{40} = H_{40A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.9                |
| $N_2 = C_2 A = C_3 A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.4 (14)         | $C_{39} = C_{40} = H_{40} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.9                |
| $N_2 - C_2 A - H_2 A A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111.1              | C40 - C41 - C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.9 (0)            |
| $C_{2A}$ $H_{2A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 111.1              | C40 - C41 - H41A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.0                |
| N2 - C2A - H2AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111.1              | $C_{30} - C_{41} - H_{41} - H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.0                |
| $C_{A} = C_{A} = H_{A} D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111.1              | $C_{43} = C_{42} = C_{47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.3(3)             |
| H2AA—C2A—H2AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0              | C43 - C42 - P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.3 (4)            |
| C4A - C3A - C2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106 (2)            | C47 - C42 - P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.3 (4)            |
| C4A - C3A - H3AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.6              | C44 - C43 - C42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3 (6)            |
| C2A - C3A - H3AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.6              | C44—C43—H43A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.8                |
| C4A - C3A - H3AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.6              | C42—C43—H43A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.8                |
| C2A—C3A—H3AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110.6              | C45 - C44 - C43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.5 (6)            |
| НЗАА—СЗА—НЗАВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108.7              | C45—C44—H44A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| C5—C4A—C3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103.9 (13)         | С43—С44—Н44А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| C5—C4A—H4AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0              | C46—C45—C44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.4 (6)            |
| СЗА—С4А—Н4АА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.0              | С46—С45—Н45А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.3                |
| C5—C4A—H4AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.0              | С44—С45—Н45А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.3                |
| C3A—C4A—H4AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111.0              | C47—C46—C45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.5 (6)            |
| H4AA—C4A—H4AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.0              | С47—С46—Н46А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| C6—C5—N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.9 (5)          | C45—C46—H46A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                |
| C6—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142.6 (5)          | C46—C47—C42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.9 (6)            |
| N2—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 110.5 (5)          | С46—С47—Н47А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.5                |
| C6—C5—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142.6 (5)          | С42—С47—Н47А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.5                |
| N2—C5—C4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.5 (5)          | C53—C48—C49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.7 (5)            |
| C5—C6—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105.7 (5)          | C53—C48—P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.3 (4)            |
| С5—С6—Н6А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 127.2              | C49—C48—P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.1 (5)            |
| N1—C6—H6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 127.2              | C50—C49—C48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 119.9 (6)            |
| C11—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 107.3 (5)          | С50—С49—Н49А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                |
| C11—C7—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 127.9 (5)          | C48—C49—H49A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0                |
| C8—C7—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124.6 (4)          | C51—C50—C49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.9 (6)            |
| C11-C7-Fe1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69.1 (3)           | С51—С50—Н50А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.5                |

| C8—C7—Fe1                                                                                                                  | 68.3 (3)   | C49—C50—H50A                                                     | 119.5     |
|----------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------|-----------|
| S1—C7—Fe1                                                                                                                  | 130.6 (3)  | C50—C51—C52                                                      | 120.1 (6) |
| C9—C8—N1                                                                                                                   | 126.1 (5)  | C50—C51—H51A                                                     | 119.9     |
| C9—C8—C7                                                                                                                   | 108.0 (5)  | С52—С51—Н51А                                                     | 119.9     |
| N1—C8—C7                                                                                                                   | 125.6 (5)  | C53—C52—C51                                                      | 119.5 (6) |
| C9—C8—Fe1                                                                                                                  | 69.9 (3)   | С53—С52—Н52А                                                     | 120.2     |
| N1—C8—Fe1                                                                                                                  | 130.6 (4)  | С51—С52—Н52А                                                     | 120.2     |
| C7—C8—Fe1                                                                                                                  | 70.4 (3)   | C52—C53—C48                                                      | 120.9 (6) |
| C8-C9-C10                                                                                                                  | 1083(5)    | C52—C53—H53A                                                     | 119.6     |
| C8—C9—Fe1                                                                                                                  | 69 3 (3)   | C48—C53—H53A                                                     | 119.6     |
| C10-C9-Ee1                                                                                                                 | 69.8 (3)   | $F_2 P_3 F_1$                                                    | 90.8(2)   |
|                                                                                                                            | 125.0      | $F_2 = F_3 = F_5$                                                | 90.0(2)   |
| $C_{10}$ $C_{0}$ $H_{00}$                                                                                                  | 125.9      | $F_2 = F_3 = F_3$                                                | 90.1(2)   |
| $C_{10}$ $C_{9}$ $H_{0A}$                                                                                                  | 125.9      | $\Gamma 1 - \Gamma 5 - \Gamma 5$<br>$\Gamma 2 \Gamma 2 \Gamma 2$ | 90.0(2)   |
| $\begin{array}{c} FeI \longrightarrow C9 \longrightarrow G11 \\ C0 \longrightarrow C10 \longrightarrow C11 \\ \end{array}$ | 123.9      | $\Gamma 2 - \Gamma 3 - \Gamma 3$                                 | 90.4(2)   |
| $C_9 = C_{10} = C_{11}$                                                                                                    | 108.5(5)   | F1 - F3 - F3                                                     | 90.6 (2)  |
| C9-C10-Fel                                                                                                                 | 69.5 (3)   | F5                                                               | 1/8.6 (2) |
| CII—CIO—Fel                                                                                                                | 69.7 (3)   | F2—P3—F4                                                         | 178.8 (2) |
| C9—C10—H10A                                                                                                                | 125.7      | F1—P3—F4                                                         | 90.1 (2)  |
| С11—С10—Н10А                                                                                                               | 125.7      | F5—P3—F4                                                         | 89.1 (2)  |
| Fe1—C10—H10A                                                                                                               | 125.7      | F3—P3—F4                                                         | 90.4 (2)  |
| C10—C11—C7                                                                                                                 | 107.8 (5)  | F2—P3—F6                                                         | 89.8 (2)  |
| C10-C11-Fe1                                                                                                                | 69.5 (3)   | F1—P3—F6                                                         | 179.4 (3) |
| C7—C11—Fe1                                                                                                                 | 70.0 (3)   | F5—P3—F6                                                         | 89.4 (2)  |
| C10—C11—H11A                                                                                                               | 126.1      | F3—P3—F6                                                         | 89.2 (2)  |
| C7—C11—H11A                                                                                                                | 126.1      | F4—P3—F6                                                         | 89.3 (2)  |
| Fe1—C11—H11A                                                                                                               | 126.1      | Cl2—C54—Cl4                                                      | 109.8 (4) |
| C13—C12—C16                                                                                                                | 108.8 (6)  | Cl2—C54—Cl3                                                      | 110.9 (4) |
| C13—C12—Fe1                                                                                                                | 70.9 (3)   | Cl4—C54—Cl3                                                      | 109.0 (4) |
| C16-C12-Fe1                                                                                                                | 69.2 (3)   | Cl2—C54—H54A                                                     | 109.0     |
| C13—C12—H12A                                                                                                               | 125.6      | Cl4—C54—H54A                                                     | 109.0     |
| C16—C12—H12A                                                                                                               | 125.6      | Cl3—C54—H54A                                                     | 109.0     |
| Fe1—C12—H12A                                                                                                               | 125.6      | Cl5—C55—Cl6                                                      | 110.1 (4) |
| C12—C13—C14                                                                                                                | 107.7 (6)  | Cl5—C55—Cl7                                                      | 110.5 (3) |
| C12—C13—Fe1                                                                                                                | 68.8 (3)   | C16—C55—C17                                                      | 109.9 (3) |
| C14—C13—Fe1                                                                                                                | 70.0 (4)   | C15—C55—H55A                                                     | 108.8     |
| С12—С13—Н13А                                                                                                               | 126.2      | C16—C55—H55A                                                     | 108.8     |
| C14—C13—H13A                                                                                                               | 126.2      | C17—C55—H55A                                                     | 108.8     |
|                                                                                                                            | 120.2      |                                                                  | 100.0     |
| C5 N2 C1 N1                                                                                                                | -0.4(6)    | C30 P1 C18 C23                                                   | 177.5(4)  |
| $C_2 = N_2 = C_1 = N_1$                                                                                                    | 176.1.(5)  | Pd1 P1 C18 C23                                                   | 512(5)    |
| $C_2 = N_2 = C_1 = N_1$                                                                                                    | 170.1(5)   | 101 - 11 - 018 - 023                                             | 101.6(5)  |
| $C_2A = N_2 = C_1 = N_1$                                                                                                   | 170.1(3)   | $C_{24}$ PI $C_{18}$ $C_{19}$                                    | 101.0(3)  |
| $C_{2} N_{2} - C_{1} - Pd_{1}$                                                                                             | 1//.4(4)   | $C_{30}$ PI $-C_{18}$ $-C_{19}$                                  | -0.1(0)   |
| $L_2$ N2 $L_1$ $P_1$                                                                                                       | -0.0(8)    | $\mathbf{ra1} - \mathbf{r1} - \mathbf{C18} - \mathbf{C19}$       | -132.3(4) |
| $C_{A}$ N1 C1 N2                                                                                                           | -0.0(8)    | 123 - 118 - 119 - 120                                            | 0.2 (9)   |
| Co-NI-CI-N2                                                                                                                | 0.9 (6)    | P1—C18—C19—C20                                                   | -176.2(5) |
| C8—N1—C1—N2                                                                                                                | -1/5.5 (4) | C18—C19—C20—C21                                                  | 1.2 (10)  |
| C6—N1—C1—Pd1                                                                                                               | -177.0 (4) | C19—C20—C21—C22                                                  | -1.0 (10) |
| C8—N1—C1—Pd1                                                                                                               | 6.6 (7)    | C20—C21—C22—C23                                                  | -0.6 (10) |

| C1—N2—C2—C3                                          | 169.7 (10)          | C21—C22—C23—C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0 (10)             |
|------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C5—N2—C2—C3                                          | -13.8 (10)          | C19—C18—C23—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.8 (9)             |
| N2-C2-C3-C4                                          | 20.0 (15)           | P1-C18-C23-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 174.8 (5)            |
| C2—C3—C4—C5                                          | -19.1 (15)          | C18—P1—C24—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154.7 (5)            |
| C1—N2—C2A—C3A                                        | -166.8 (18)         | C30—P1—C24—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -92.5(5)             |
| C5-N2-C2A-C3A                                        | 9.7 (19)            | Pd1—P1—C24—C29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.4 (5)             |
| N2-C2A-C3A-C4A                                       | -17(3)              | C18 - P1 - C24 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -33.7(5)             |
| $C_2A - C_3A - C_4A - C_5$                           | 18 (3)              | $C_{30}$ P1 $C_{24}$ C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79.2 (5)             |
| C1 - N2 - C5 - C6                                    | -0.3(6)             | Pd1 - P1 - C24 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -156.0(4)            |
| $C_{2} = N_{2} = C_{5} = C_{6}$                      | -1776(5)            | $C_{29}$ $C_{24}$ $C_{25}$ $C_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15(9)                |
| $C_2 = N_2 = C_5 = C_6$                              | -177.6(5)           | P1 C24 C25 C26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1704(5)             |
| $C_{1} N_{2} C_{5} C_{4}$                            | 177.0(3)            | $C_{24} = C_{25} = C_{20} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.5(10)             |
| $C_1 = N_2 = C_5 = C_4$                              | 1/9.2(3)            | $C_{24} = C_{25} = C_{20} = C_{27} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.2(10)             |
| $C_2 - N_2 - C_3 - C_4$                              | 1.9(0)<br>170.2(5)  | $C_{25} = C_{20} = C_{27} = C_{28} = C_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2(10)              |
| $C_1 = N_2 = C_3 = C_4 A$                            | 1/9.2(5)            | $C_{20} = C_{21} = C_{28} = C_{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7(9)               |
| $C_{2A}$ $N_{2}$ $C_{3}$ $C_{4A}$                    | 1.9(0)              | $C_2 = C_2 $ | -1.0(9)              |
| $C_{3}$ $C_{4}$ $C_{5}$ $N_{2}$                      | -1/0.0(11)          | $C_{23} = C_{24} = C_{29} = C_{28}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0(8)               |
| $C_3 - C_4 - C_5 - N_2$                              | 10.9 (11)           | PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/1./(4)             |
| C3A—C4A—C5—C6                                        | 166 (2)             | C18—P1—C30—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 129.8 (5)            |
| C3A—C4A—C5—N2                                        | -12.7 (19)          | C24—P1—C30—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.5 (5)             |
| N2—C5—C6—N1                                          | 0.8 (6)             | Pd1—P1—C30—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -106.0(4)            |
| C4—C5—C6—N1                                          | -178.3 (7)          | C18—P1—C30—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -53.8 (5)            |
| C4A—C5—C6—N1                                         | -178.3 (7)          | C24—P1—C30—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -163.1(5)            |
| C1—N1—C6—C5                                          | -1.1 (6)            | Pd1—P1—C30—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.4 (5)             |
| C8—N1—C6—C5                                          | 175.3 (5)           | C35—C30—C31—C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.3 (9)             |
| C17—S1—C7—C11                                        | -11.5 (6)           | P1-C30-C31-C32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176.2 (4)            |
| C17—S1—C7—C8                                         | 172.7 (5)           | C30—C31—C32—C33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.5 (9)             |
| C17—S1—C7—Fe1                                        | 82.6 (5)            | C31—C32—C33—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5 (9)              |
| C1—N1—C8—C9                                          | -43.9 (8)           | C32—C33—C34—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3 (9)              |
| C6—N1—C8—C9                                          | 140.2 (6)           | C33—C34—C35—C30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.2 (9)             |
| C1—N1—C8—C7                                          | 128.4 (6)           | C31—C30—C35—C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2 (8)              |
| C6—N1—C8—C7                                          | -47.5 (8)           | P1-C30-C35-C34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -175.3 (4)           |
| C1—N1—C8—Fe1                                         | -137.7 (5)          | C42—P2—C36—C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 161.6 (5)            |
| C6—N1—C8—Fe1                                         | 46.4 (7)            | C48—P2—C36—C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51.4 (5)             |
| C11—C7—C8—C9                                         | -1.8(6)             | Pd1—P2—C36—C41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -75.2 (5)            |
| S1—C7—C8—C9                                          | 174.7 (4)           | C42—P2—C36—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -24.1(5)             |
| Fe1—C7—C8—C9                                         | -60.0(4)            | C48—P2—C36—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -134.3 (4)           |
| C11—C7—C8—N1                                         | -175.3(5)           | Pd1—P2—C36—C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 99.1 (4)             |
| S1-C7-C8-N1                                          | 12(8)               | C41 - C36 - C37 - C38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.0(8)              |
| Fe1 - C7 - C8 - N1                                   | 1.2(0)<br>1265(5)   | $P_{-C36-C37-C38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1754(4)             |
| $C_{11} - C_{7} - C_{8} - F_{e1}$                    | 58 2 (4)            | $C_{36} - C_{37} - C_{38} - C_{39}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2(9)               |
| S1-C7-C8-Fe1                                         | -1252(4)            | $C_{37}$ $C_{38}$ $C_{39}$ $C_{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2(9)               |
| N1 - C8 - C9 - C10                                   | 123.2(4)<br>1747(5) | $C_{38}$ $C_{39}$ $C_{40}$ $C_{41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0(10)              |
| C7 C8 C9 C10                                         | 174.7(5)            | $C_{30} = C_{40} = C_{41} = C_{41}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.6(9)              |
| $E_{1} = C_{8} = C_{9} = C_{10}$                     | -591(4)             | $C_{37}$ $C_{36}$ $C_{41}$ $C_{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 (9)              |
| $N_1 = C_8 = C_9 = C_{10}$                           | -1262(5)            | $D_{2} = C_{26} = C_{41} = C_{40}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7(0)<br>176 1 (4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 120.2(3)            | 12 - 0.30 - 0.41 - 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/0.1(4)<br>105.2(5) |
| $C_{1} = C_{0} = C_{10} = C_{11}$                    | 00.3(4)             | $C_{49}$ D2 $C_{42}$ $C_{42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.2(3)             |
|                                                      | -0.1 (/)            | $V_{40}$ $P_{2}$ $V_{42}$ $V_{43}$ $V_$ | -145.5(4)            |
| rei—C9—C10—C11                                       | -38.9 (4)           | ru1—r2—C42—C43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -19.2 (3)            |

| C8-C9-C10-Fe1   | 58.8 (4)   | C36—P2—C42—C47  | -69.5 (5)  |
|-----------------|------------|-----------------|------------|
| C9—C10—C11—C7   | -1.0 (7)   | C48—P2—C42—C47  | 40.0 (5)   |
| Fe1—C10—C11—C7  | -59.8 (4)  | Pd1—P2—C42—C47  | 166.1 (4)  |
| C9-C10-C11-Fe1  | 58.8 (4)   | C47—C42—C43—C44 | -1.1 (8)   |
| C8—C7—C11—C10   | 1.8 (6)    | P2-C42-C43-C44  | -175.9 (4) |
| S1—C7—C11—C10   | -174.6 (4) | C42—C43—C44—C45 | -0.6 (9)   |
| Fe1—C7—C11—C10  | 59.5 (4)   | C43—C44—C45—C46 | 1.6 (9)    |
| C8-C7-C11-Fe1   | -57.7 (4)  | C44—C45—C46—C47 | -0.9 (9)   |
| S1-C7-C11-Fe1   | 125.9 (4)  | C45—C46—C47—C42 | -0.8 (9)   |
| C16—C12—C13—C14 | 0.5 (7)    | C43—C42—C47—C46 | 1.8 (8)    |
| Fe1-C12-C13-C14 | 59.5 (4)   | P2-C42-C47-C46  | 176.6 (4)  |
| C16-C12-C13-Fe1 | -59.1 (4)  | C42—P2—C48—C53  | 94.1 (5)   |
| C12—C13—C14—C15 | -0.2 (7)   | C36—P2—C48—C53  | -157.4 (4) |
| Fe1-C13-C14-C15 | 58.6 (4)   | Pd1—P2—C48—C53  | -30.8 (5)  |
| C12-C13-C14-Fe1 | -58.8 (4)  | C42—P2—C48—C49  | -85.2 (5)  |
| C13—C14—C15—C16 | -0.2 (7)   | C36—P2—C48—C49  | 23.3 (5)   |
| Fe1-C14-C15-C16 | 59.0 (4)   | Pd1—P2—C48—C49  | 149.9 (4)  |
| C13-C14-C15-Fe1 | -59.2 (4)  | C53—C48—C49—C50 | -0.5 (8)   |
| C14—C15—C16—C12 | 0.4 (7)    | P2-C48-C49-C50  | 178.8 (5)  |
| Fe1-C15-C16-C12 | 60.3 (4)   | C48—C49—C50—C51 | 0.1 (9)    |
| C14-C15-C16-Fe1 | -59.9 (4)  | C49—C50—C51—C52 | 0.3 (9)    |
| C13—C12—C16—C15 | -0.6 (7)   | C50—C51—C52—C53 | -0.4 (9)   |
| Fe1-C12-C16-C15 | -60.6 (4)  | C51—C52—C53—C48 | 0.0 (8)    |
| C13-C12-C16-Fe1 | 60.1 (4)   | C49—C48—C53—C52 | 0.5 (8)    |
| C24—P1—C18—C23  | -74.8 (5)  | P2-C48-C53-C52  | -178.8 (4) |
|                 |            |                 |            |

# Hydrogen-bond geometry (Å, °)

Cg1, Cg2 abd Cg3 are the centroids of the C30–C35, C36–C41 and N1/C1/N2/C5/C6 rings, respectively.

| D—H···A                                         | D—H  | H···A | D····A    | D—H···A |
|-------------------------------------------------|------|-------|-----------|---------|
| C6—H6A····F3 <sup>i</sup>                       | 0.95 | 2.40  | 3.297 (6) | 158     |
| C40—H40 $A$ ···F1 <sup>i</sup>                  | 0.95 | 2.52  | 3.327 (7) | 143     |
| C50—H50A…F4 <sup>ii</sup>                       | 0.95 | 2.38  | 3.275 (7) | 156     |
| C54—H54A…F4                                     | 1.00 | 2.42  | 3.342 (7) | 153     |
| C54—H54A…F6                                     | 1.00 | 2.33  | 3.237 (7) | 150     |
| C55—H55A…F5                                     | 1.00 | 2.44  | 3.228 (7) | 135     |
| C55—H55A…F6                                     | 1.00 | 2.33  | 3.311 (7) | 168     |
| C2—H2 <i>B</i> ··· <i>Cg</i> 1                  | 0.99 | 2.88  | 3.682 (6) | 139     |
| C15—H15 <i>A</i> ··· <i>Cg</i> 2 <sup>iii</sup> | 1.00 | 2.93  | 3.762 (7) | 141     |
| C35—H35 <i>A</i> … <i>Cg</i> 3                  | 0.95 | 2.67  | 3.148 (6) | 111     |

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) -*x*+1, *y*-1/2, -*z*+1/2.