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Abstract: An essential role of the gut microbiota in health and disease is strongly suggested by recent
research. The composition of the gut microbiota is modified by multiple internal and external factors,
such as diet. A vegan diet is known to show beneficial health effects, yet the role of the gut microbiota
is unclear. Within a 4-week, monocentric, randomized, controlled trial with a parallel group design
(vegan (VD) vs. meat-rich (MD)) with 53 healthy, omnivore, normal-weight participants (62% female,
mean 31 years of age), fecal samples were collected at the beginning and at the end of the trial and
were analyzed using 16S rRNA gene amplicon sequencing (Clinical Trial register: DRKS00011963).
Alpha diversity as well as beta diversity did not differ significantly between MD and VD. Plotting
of baseline and end samples emphasized a highly intra-individual microbial composition. Overall,
the gut microbiota was not remarkably altered between VD and MD after the trial. Coprococcus
was found to be increased in VD while being decreased in MD. Roseburia and Faecalibacterium were
increased in MD while being decreased in VD. Importantly, changes in genera Coprococcus, Roseburia
and Faecalibacterium should be subjected to intense investigation as markers for physical and mental
health.
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1. Introduction

The gut microbiota is the entirety of all gastrointestinal microorganisms (bacteria,
viruses, protozoa and fungi) resident in the human gastrointestinal tract [1,2]. An es-
sential role of the gut microbiota in health and disease is strongly suggested by recent
research [3–5]. Gastrointestinal microorganisms are directly promoted or inhibited by
nutrients selecting a diet-related microbiota composition, which is further indirectly af-
fected by known factors such as metabolic processes and immunological modulation [2,6].
Several studies have shown associations between a disease-related composition of the
microbiota (also described as dysbiosis) and a wide spectrum of chronic diseases, including
cardiovascular and metabolic diseases such as type 2 diabetes as well as psychiatric disor-
ders [7–11]. Recent research suggests that diet might be one of the potential key drivers of
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microbiota-associated diseases [12,13]. Some diets, such as a vegan diet, are known to show
beneficial health effects—for example, improvements in cardiovascular risk factors and
decreases in inflammatory markers—but it remains unclear whether these effects are gut
microbiota-driven or not [14–18]. The microbial composition of long-term vegetarians and
vegans was reported to be significantly different to omnivores, but the specificity of this
difference appears to be unclear as the composition of the gut microbiota differs between
the trials [9,19,20]. Furthermore, the comparability of trials evaluating the long-term effect
of VD is very limited as the composition of the gut microbiota is not only affected by diet
but also by origin, sex, age, and pre-existing illnesses, among other factors [1,2].

Recent publications dealing with short-term changes in the gut microbiota after becom-
ing vegan are widely lacking. In a small cross-over trial comparing nine healthy subjects on
a pre-cooked meal vegan diet (VD) or a pre-cooked meal meat-rich diet (MD), diet was able
to modify the gut microbiota rapidly and distinctly [12]. The plasticity of the gut micro-
biota is highly emphasized by recent research, and the applied diet is crucial for respective
effects as a strong association between food choice and gut microbiota composition was
found [21–24]. The above-mentioned cross-over trial evaluating the effect a pre-cooked
meal diet is, therefore, most likely not comparable to a free food choice diet. The effect of a
short-term free of choice VD on the gut microbiota of healthy participants remains unclear.
An understanding of the gut microbiota’s changes after becoming vegan is essential as
it is the first step to elucidate whether the health benefits of VD might be attributed to
a diet-driven gut microbiota composition. Aiming to close this research gap, a trial was
planned to investigate the effect on gut microbiota when healthy omnivorous participants
were randomized to a free of choice VD or to a free of choice MD for four weeks.

2. Materials and Methods

The monocentric, controlled, randomized trial with a parallel group design with
healthy participants was conducted between April and June 2017 at the Center for Com-
plementary Medicine, University Medical of Freiburg, Germany. The study protocol was
approved by the ethical committee of the University Medical Center of Freiburg, Germany
(EK Freiburg 38/17), and was performed according to the principles of the Declaration
of Helsinki. The trial was prospectively registered with the German Clinical Trial register
(DRKS00011963). All participants gave written informed consent before inclusion in the
study.

Study population. Healthy, normal-weight, omnivorous subjects between 18 and
60 years of age, living in Freiburg for more than 6 months, without regular intake of
medication, and with no clinically relevant allergies or food intolerance, were enrolled.
Exclusion criteria were a history of eating disorders or being on a plant-based diet, partici-
pation in another clinical trial, and blood donation in the 4 weeks before the start of the
trial, as well as the use of recreational drugs, nicotine, or alcohol. Participants had to be able
to speak and understand German and to complete a nutritional protocol. Subjects were
recruited via bulletins and newspaper announcements, and potentially eligible subjects
were invited for a personal visit to check eligibility criteria in detail.

Intervention and control. For standardization, all subjects had to follow a one-week-
long run-in phase with a balanced mixed (omnivorous) diet according to the recommen-
dations of the German Nutrition Association (DGE) [25]. Afterwards, participants were
randomly assigned to either a meat-rich (MD) (>150 g of meat per day) or a strict vegan
diet (VD) for four weeks. The randomization list was created electronically block-wise
(block size 13; Python Software) by a third independent person, and sealed envelopes
were used for implementation. Every participant received extensive training on his/her
assigned diet and detailed written information including a recipe book. No meals were
provided, and participants were free to choose their food within their assigned diet. All of
the participants had to fill out a weekly nutritional protocol, which was used to evaluate
dietary adherence. Moreover, all of the participants had to keep their weight stable as
weight changes are known to influence gut microbiota [26,27]. In case of weight loss,
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participants were recommended to incorporate high-caloric foods, whereas weight-gaining
participants were advised to avoid high-caloric foods. Weekly follow-ups were scheduled
between the study staff and the participants by phone or e-mail.

Fecal samples were collected in a special stool collector after the run-in phase but
before being assigned to VD or MD (“baseline”) as well as after finishing the trial (“end”).
Participants received the collectors after inclusion and were told to fill them immediately
before meeting the study staff. Stool samples were frozen and stored at −80◦C after receipt.
Analysis of stool samples was performed at the Medical University Graz, Austria, according
to an established protocol [28]. In brief, DNA of samples was extracted by mechanical
lysis with a MagnaLyser Instrument (Roche Diagnostics, Mannheim, Germany), followed
by subsequent total bacterial genomic DNA isolation with the MagNA Pure LC DNA
Isolation Kit III (bacteria, fungi) in a MagNA Pure LC 2.0 Instrument (Roche Diagnostics)
according to the manufacturer’s instructions. Template-specific sequences, targeting the
hypervariable region V4 of the 16S rRNA gene, were used for amplification of bacterial
16S rRNA gene. Sequencing was performed with the MiSeq Reagent Kits v3 (600 cycles,
Illumina, Eindhoven, Netherlands) according to the manufacturer’s instructions, with 20%
OhiX (Illumina).

Fasting blood samples were taken after the run-in phase but before being assigned to
VD or MD as well as after finishing the trial. Serum from each participant was aliquoted in
1.5-mL, non-diet-labeled cryovials. All methods were previously established and validated.
Measurement of concentration of thrombocytes, neutrophilic granulocytes, and monocytes
was performed by the Central Laboratory of the University Medical Center of Freiburg.
Measurement of branched-chain amino acids was performed by the Laboratory of Clinical
Biochemistry and Metabolism, Department of General Pediatrics, University Medical
Center of Freiburg.

2.1. Bioinformatics

Sequences were processed within the QIIME2 framework [29]. The demultiplexed
data were converted to the QIIME2 specific qza format and summarized with the demux
summarize function. For quality control, the DADA2 plugin was used [30]. Within the
denoise-paired function, sequences were truncated at position 290 due to a rapid drop-off
of the quality score. Additionally, chimeric sequences were filtered out. Based on the
DADA2 representative sequences, a phylogenetic tree was generated with the align-to-tree-
mafft-fasttree function. Taxonomic assignments were obtained with the pre-trained Naïve
Bayes classifier, trained on the Greengenes gg13_8 operational taxonomic units (OUT)
reference database with 99% sequence similarity and the q2-feature-classifier plugin.

All downstream analyses were conducted in R-Studio (R v.3.6.3) [31]. Data were
imported into a phyloseq object from the phyloseq R-package [32]. Results are presented at
amplicon sequence variant (ASV) level. ASVs that were abundant in less than 5% of all
samples were filtered out. Additionally, a genus level data set was created by agglomerating
the data at genus level. For all statistical tests, a significance level of 5% was applied.

2.2. Data Analysis
2.2.1. Alpha Diversity

To assess the alpha diversity of the bacterial communities, commonly used similarity
indices were evaluated, considering both richness and evenness, to describe the diversity
within samples. For species richness, the Chao1 index, a metric based on the number of
observed taxa, was calculated. Taking microbial diversity and richness into account, the
Shannon index was calculated, a metric based on the weighted abundance of microbes in
each sample. The Inverse Simpson index, considering relative abundance, and Fisher’s
index, quantifying the relationship between number and abundance of species, were
also calculated. All indices were computed on the unfiltered ASV-level data. To test for
differences in alpha diversity between baseline and end samples in each diet, a paired
Wilcoxon signed rank test was applied.
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2.2.2. Beta Diversity

Principal coordinate analysis (PCoA) was used to visualize differences in community
composition among the two diets and their respective baselines. To assess microbial
similarity between samples based on the abundance profiles of shared taxa between
each pair of samples, Bray–Curtis dissimilarity was applied. Moreover, weighted and
unweighted UniFrac distances were calculated to quantify similarity based on (weighted)
phylogenetic relationships between each pair of samples [33].

2.2.3. Logistic Regression

To test for differences in the proportion of samples in which a taxon was detected,
logistic regression was applied. The effects of diet, time, and the interaction of diet and
time were estimated. The main effects in each diet assessed the change over time within a
diet, e.g., “enriched in MD” or “depleted in MD”, while the interaction effects assessed the
difference in one intervention compared to the other, e.g., “enriched in MD and depleted
(or constant) in VD”. p-Values were corrected for multiple hypothesis testing with the
Benjamini–Hochberg method and are referred to as padj.

2.2.4. ZINB

To identify differentially abundant bacterial taxa in both diets with respect to their
baseline, a zero inflated negative binomial regression model (ZINB) was utilized. This
model from the pscl R-package [32] takes the excessive zero inflation as well as the overdis-
persion in the data into account. In this two-part mixture, the model inflation of zero counts
is modeled via logistic regression while the overdispersion in the count distribution is
modeled as a negative binomial. In the log link function, the total sum of each sample is
included as an offset, correcting for variation in library size. To test for diet-specific changes
in microbial abundance, the effects of diet, time, and their interaction were estimated,
enabling the detection of the main effects in each diet as well as the difference in one
intervention compared to the other (interaction). p-Values were corrected for multiple
hypothesis testing with the Benjamini–Hochberg method and referred to as padj.

2.2.5. PICRUSt

Metagenomic functions were predicted with the PICRUSt2 algorithm [34]. Based
on the ASV abundances from 16S rRNA sequencing, KEGG orthologs, EC numbers, and
MetaCyc pathways were inferred. Within the MaAsLin2 framework, a linear regression
with default settings was applied to test whether specific metabolic pathways were enriched
by VD or MD [35].

3. Results

Out of 150 interested persons, 53 were randomized and started the trial. The study
flow is shown in Figure 1. Twenty-six participants were allocated to VD and 27 participants
were allocated to MD for four weeks. All participants completed the study as per protocol.

Descriptive data of all participants are shown in Table 1. Baseline values did not differ
significantly between the groups. Intake of energy and of fat measured by self-reported
nutritional protocol during the trial did not differ significantly between VD and MD.
Intake of carbohydrates (VD: 276.0 ± 85.1 g, MD: 241.5 ± 91.8 g, p = 0.001), protein (VD:
79.5 ± 28.5 g, MD: 112.4 ± 44.4 g, p < 0.001), and fiber (VD: 45.7 ± 19.5 g, MD: 24.9 ± 11.1 g,
p < 0.001) differed significantly between VD and MD. Extensive results of nutritional intake
were published previously and showed additional significant differences in vitamin and
micronutrient intake (copper, zinc, phosphor, folate, calcium, sodium, vitamin B2, niacin,
vitamin B6, vitamin B12, vitamin C, and vitamin E) [36]. Forty-five participants (85%)
originated from Europe, whereas eight participants were born in other countries (Japan,
China, Tunisia, Namibia, U.S.A., Mexico, India) but had lived in Germany for several years.
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Figure 1. Flowchart visualizing recruitment of participants. Of 150 interested subjects, 61 were eligible
for study inclusion and started a one-week run-in phase with a balanced mixed (omnivorous) diet
according to the recommendations of the German Nutrition Association. Eight of these participants
suffered from acute illness or withdrew from participation during the run-in phase and were not
randomized. Fifty-three participants were randomized to VD or MD and started the trial. All
randomized participants finished the trial as per protocol.

Table 1. Demographic data of all participants in VD group and in MD group.

VD (n = 26) MD (n = 27) p

Age ± SD (years) 33.2 ± 11.2 29.9 ± 9.5 0.407
Baseline: Body mass index ± SD (kg/m2) 22.9 ± 2.2 23.3 ± 2.6 0.444

End: Body mass index ± SD (kg/m2) 22.7 ± 2.0 23.4 ± 2.6 0.240
Sex (n male/n female) 8/18 12/15 0.229 *

Origin (n Europe/n other) 21/5 24/3 0.330 *
SD = Standard deviation, p-value depending on type of value and distribution from Mann–Whitney U-
Test/Fisher’s exact test *.

3.1. Microbial Sample Composition—Alpha Diversity

Alpha diversity analysis did not differ significantly between VD and MD (Figure 2).
For the bacterial richness of the samples, quantified by Chao1, we found no differences
between baseline and end samples, neither for VD nor MD (Figure 2a, pVD = 0.770,
pMD = 0.629). The Shannon index, considering richness and evenness within the sam-
ples, did not reveal any significant difference in baseline and end, neither for VD nor MD
(Figure 2b, pVD = 0.921, pMD = 1.000). Moreover, the Inverse Simpson index, based on
the relative abundance of species as well as Fisher’s index, quantifying the relationship
between number and abundance of species, did not change between baseline and end
samples in either diet (InvSimpson: Figure 2c, pVD = 0.921, pMD = 0.861; Fisher’s index:
Figure 2d, pVD = 0.822, pMD = 0.600). Hence, MD and VD had only a minor impact on
the heterogeneity of microbial composition, emphasizing the intra-individual stability of
participants.

3.2. Microbial Sample Composition—Beta Diversity

Bray–Curtis dissimilarity revealed no clustering of the samples according to dietary
intake and timepoint. For most participants, baseline and end samples appeared to be close
together on the PCoA plot, pointing towards a highly individualized and heterogeneous
microbial composition (Figure 3a). The similarity of two samples from one individual was
maintained during the study.
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Figure 2. Comparing alpha diversity for VD and MD at baseline and end of intervention. (a) Chao1:
Bacterial composition of samples based on the number of observed taxa. For both diets, the Chao1
index did not change after the trial (pVD = 0.770, pMD = 0.629). (b) Shannon index: By abundance
weighted bacterial composition of samples, reflecting both richness and bacterial evenness within a
sample. For both diets, the Shannon index did not change after the trial (pVD = 0.921, pMD = 1.000).
(c) Inverse Simpson index: Species richness based on relative abundance. For both diets, the Inverse
Simpson index did not change after the trial (pVD = 0.921, pMD = 0.861). (d) Fisher’s index: quantifying
the relationship between number and abundance of species. For both diets, the Fisher’s index did
not change after the trial (pVD = 0.822, pMD = 0.600).
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Figure 3. (a) PCoA plot with Bray–Curtis distances. Similarity of samples based on the weighted abundance of shared taxa.
The connections between baseline and end samples indicate that both samples from one individual are very similar. (b)
For VD and MD, the proportions of samples in which Coprococcus was detected are plotted. It was the only genus with a
significant change in proportions between baseline and end samples in VD. Here, the proportion increased from 42% to 81%
(padj = 0.047), while in MD, it decreased from 69% to 50% (padj = 0.672).
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Results of UniFrac distances are shown in Section 3.6.

3.3. Logistic Regression and Differential Abundance (DA) between MD and VD

Logistic regression and analysis of differential abundance revealed a significant dif-
ference in Coprococcus between MD and VD. The proportion of samples in which Copro-
coccus was detected increased in VD from 42% at baseline to 81% at the end of the trial
(padj = 0.047), while in MD, it decreased from 69% at baseline to 50% at the end of the trial
(padj = 0.672, Figure 3b).

Zero inflated negative binomial model was applied to analyze the abundance of each
ASV, with diet, timepoint, and their interaction as predictors (Table S1). Main effects
as well as interaction effects were estimated. While the main effects assess the change
over time within a diet, e.g., “enriched in MD” or “depleted in MD”, in contrast, the
interaction effects assess the difference in one intervention compared to the other, e.g.,
“enriched in MD and depleted (or constant) in VD”. In VD, ASVs of genera Alistipes,
Bacteroides, Blautia, Coprococcus, Dialister, Dorea, Faecalibacterium, Phascolarctobacterium, and
Ruminococcus are enriched at the end of the trial compared to baseline, while ASVs of genera
Akkermansia, Bacteroides, Bifidobacterium, Clostridium, Coprococcus, Faecalibacterium, Roseburia,
and Ruminococcus are depleted (Figure 4a). In MD, ASVs of genera Alistipes, Bacteroides,
Blautia, Clostridium, Faecalibacterium, Megamonas, Roseburia, and Ruminococcus are enriched
at the end of the trial compared to baseline, while ASVs of genera Bacteroides, Bifidobacterium,
Blautia, Dialister, Faecalibacterium, Gemminger, Phascolarctobacterium, Prevotella, Ruminococcus,
and Sutterella are depleted (Figure 4b).
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Figure 4. (a) Log-transformed and standardized abundances for all ASVs with significant main effects in VD; “_NA”
describes unspecified species. Upregulated ASVs are shown in the top panel while downregulated ASVs are displayed in
the bottom panel. The asterisk marks all ASVs which also have a significant interaction term, i.e., ASVs with a significantly
different change in VD compared to their respective change in MD. (b) Corresponding plot for MD.

As for most ASVs, the signal resulted from less than 10% of all samples; we filtered
for the most abundant ASVs observed in at least 40% of samples. These are Faecalibacterium
(unspecified species) and Roseburia faecis, which are depleted in VD, and Blautia (unspecified
species) as well as Faecalibacterium (another unspecified species), which are enriched in MD
(marked in red in meta data column for sample proportion).
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Bacteria with significant interaction terms of diet and time changed significantly in
MD over time compared to their respective changes in VD (Figure 4, red asterisk and Figure
S1). The signatures of Bacteroides, Clostridium, Faecalibacterium, and Roseburia were enriched
in MD and depleted in VD after the trial (Figure S1, top panel). Multiple ASVs of genera
Bacteroides, Blautia, Dialister, Faecalibacterium, and Ruminococcus, however, were depleted in
MD but enriched in VD after the trial (Figure S1, bottom panel).

Analysis of differential abundance at genus level revealed Megamonas to be more
abundant in MD at the end of the trial and Dorea to be more abundant in VD at the end of
the trial compared to their respective baseline. Both of them are, however, rare genera, as
they were only detected in 7% of all samples (Table S2).

3.4. Association of Bacterial Changes with Inflammatory Markers

Previous analyses of our research group showed a strong correlation of neutrophilic
granulocytes, monocytes, and thrombocytes with serum concentration of branched-chain
amino acids (valin, leucine, and isoleucine) in VD [17]. Therefore, we analyzed the associa-
tions of these parameters with the changes in the gut microbiota in VD and MD by applying
ZINB with each clinical parameter separately as a predictor. Within the significant results
(padj < 0.05) (Tables S3–S4), we found in VD for all clinical markers strong associations with
the rare genus Odoribacter, abundant in less than 10% of all samples (Figure 5a), and in
MD with the rare genus Clostridium (Figure 5b). Interestingly, in VD, all branched-chain
amino acids (VAL, ILE, LEU) were negatively associated with Coprococcus and Dorea and
correlated positively with Megamonas. A negative association of branched-chain amino
acids with Dorea was also found in MD (Figure 5b).
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observed. Highly abundant genera such as Coporoccus, Dorea, and Megamonas showed correlations with all branched-chain
amino acids. (b) Corresponding plot for MD. All markers were associated with changes in Dorea, while the strongest
associations occurred with the rare genus Clostridiaceae–Clostridium.

3.5. From Abundance to Function

We did not find any MetaCyc pathways, EC numbers, or KEGG orthologs to be
significantly enriched in VD or MD at the end of the trial.
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3.6. Unweighted UniFrac Distance

As discussed in Section 3.2, between-sample correlations based on Bray–Curtis dis-
tance did not reveal differences based on diet. Interestingly, when clustering the samples
based on phylogeny by applying unweighted UniFrac distances, we observed a split of the
samples into two groups, hereinafter called Phylo1 and Phylo2 (Figure 6a). Considering
additionally the phylogenetic relationship with the abundance of species, by applying
weighted UniFrac distances, the split was not as pronounced as before but still visible
(Figure S2).
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Analyzing the sample composition within Phylo1 and Phylo2, we found that while
baseline samples from VD and MD were almost evenly distributed within each of the two
groups, there was a slight, but non-significant, shift in sample composition after the trial
(Figure 6b, p = 0.130). While, in Phylo1, end samples from VD were overrepresented, in
Phylo2, the shift was towards the MD end samples.

3.6.1. Logistic Regression and Differential Abundance between Phylo1 and Phylo2

To further understand the nature of Phylo1 and Phylo2, we looked at differences in
microbial composition by applying logistic regression. We found that the taxa Coprococ-
cus and Parabacteroides were significantly less abundant in Phylo2 compared to Phylo1
(Figure 6c). While the genus Coprococcus was present in 86% of all samples in Phylo1, it was
only detected in 48% of all samples in Phylo2 (padj < 0.001). Parabacteroides was present in
63% of all samples in Phylo1 and only in 23% of all samples in Phylo2 (padj < 0.001).

Next, we identified differentially abundant ASVs between Phylo1 and Phylo2 by
applying a zero inflated negative binomial model. Multiple ASVs are more abundant in
Phylo2 compared to Phylo1 (Table S5). The majority belonged to the genera Bacteroides,
Faecalibacterium prausnitzii, and Blautia. Under the assumption that ASVs presented in a
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large proportion of the samples are the most relevant, we filtered for those significantly
differentially abundant ASVs that were also detected in at least 40% of all samples. Here,
we found two ASVs of genus Bacteroides and four ASVs of genus Blautia that were more
abundant in Phylo2 compared to Phylo1 (Figure 6d).

To see whether the above-mentioned observations were mainly driven by single ASVs
or if they were a general effect of the particular genus, we agglomerated the data at genus
level (Table S6). We found Alistipes, Bifidobacterium, and Dialister to be significantly more
abundant in Phylo2 compared to Phylo1 (Figure 6e).

3.6.2. Association of Clinical Markers/Inflammatory Markers with Phylo1 and Phylo2

The splitting of samples in Phylo 1 and Phylo 2 was not significantly associated with
the age (p = 0.263) or BMI (p = 0.454) of participants, but with gender (p = 0.042). In
Phylo 2, female samples were overrepresented (71%), while in Phylo 1, gender was equally
distributed.

Changes in the concentration of monocytes (p = 0.842), neutrophilic granulocytes
(p = 0.775), and thrombocytes (p = 0.142) were not significantly associated with the splitting
into Phylo 1 and Phylo 2.

4. Discussion

The difference in the gut microbiota after short-term nutritional change to VD or MD
was not fundamental as sample composition did not differ significantly in terms of alpha
and beta diversity, but we found a few, mostly highly individual-dependent differences
between VD and MD in single ASVs. Most of our participants showed a similar microbiota
composition at the start and at the end of the trial, emphasizing the intra-individual
stability of the gut microbiota towards diet change. The observed changes in ASVs were
attributed to a few participants, predominantly in ASVs occurring in less than 40% of
samples. The remaining genera (Coprococcus, Roseburia, Blautia) were mainly from the
family of Lachnospiraceae, which is an interesting observation. Lachnospiraceae are a family
of anaerobic, fermentative, and carbohydrate-metabolizing bacteria probably playing a
role in metabolic and inflammatory diseases [37].

Similar to our results, recent research evaluating the effects of commonplace plant-
based diets failed to show differences in alpha and beta diversity and distinct microbiota
alteration by diet [19,22]. At first glance, the results of our trial appear to be unusual as
some recent publications suggest a distinct alteration of gut microbiota by diet [6,12]. Going
more deeply into the alteration of gut microbiota by diet to explain the observed intra-
individual microbiota stability of our participants, it is known that microbiota alteration
depends not only on the type of diet but much more on the individual [2,38]. Johnson
et al. examined the daily fecal samples of 34 healthy participants for 17 consecutive days
and found that the daily microbial response was highly personalized [21]. Walker et al.
showed in a clinical trial with 14 overweight young men that the gut microbiota of obese
participants clustered more by individual than by diet. Furthermore, some types of bacteria
have a greater response to diet changes than others, making some individuals, being home
to these bacteria, more responsive to diet changes than others [13,39,40]. The extent of
gut microbiota alteration by diet depends on the initial microbial composition [13]. The
composition of bacteria is, in turn, an individual fingerprint [41]. In our trial, the individual
response to nutritional change is emphasized by the significant change in a variety of ASVs,
which resulted from less than 10% of all samples. Whether this individual gut microbiota
response leads to an individual diet-related health improvement remains unclear and must
be clarified by future research.

Nevertheless, our results and the results of other research groups suggest that VD
led to distinct changes in single ASVs, being supposed to be crucial for health and dis-
ease [12,42]. Coprococcus, which was enriched in VD and depleted in MD in our trial, is
reported to play a supportive role in mental health and is found to be depleted in the case of
depression and in children with autism spectrum disorder [43,44]. A recent meta-analysis
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concluded that meat consumption might be associated with a moderately higher risk of
depression [45]. Other recent publications found no relation between plant-based diets
and mental health [46,47]. Coprococcus is also reported to be depleted in neurodegenera-
tive disorders such as Parkinson’s disease [48]. Interestingly, twenty years ago, VD was
discussed to be beneficial in Parkinson’s disease, but research data are still lacking [49].
VD is rich in polysaccharides, probably being causative for the enrichment of Coprococcus
as it is reported that a higher intake of polysaccharides leads to a higher abundance of
Coprococcus [50].

The role of Blautia in health and disease is controversially discussed as some species
appear to be healthy while others are harmful. A higher abundance of Blautia is reported
to be associated with Type 2 Diabetes and Hashimoto’s Thyroiditis, but one species, Blautia
obeum, previously known as Ruminococcus obeum, appeared to be a sign of gut microbiota
recovery after Vibrio cholerae infection in children [10,51,52]. Other species of Blautia are
reported to be associated with obesity and metabolic inflammation [53]. In early childhood,
the abundance of Blautia increases after cessation of breastfeeding and transition to solid
foods, becoming a stable lifetime gut habitant. Blautia is reported to be enriched in children
with phenylketonuria being on a nearly vegan, plant-based, low-protein diet, emphasizing
its plasticity to adjust to dietary intake [54]. Nevertheless, the pathogenic impact of
microbiota change by diet is difficult to elucidate as most of the observed changes, such as
Blautia alteration, are part of a generally beneficial habitant network. Roseburia, for example,
which was one of the remaining distinctive ASVs in VD and MD in our trial, is discussed
to be a “marker of health”, being depleted in a variety of diseases [55–58]. Interestingly, the
abundance of Roseburia decreased in VD in our trial, which was not expected. Contrary to
our results, David et al. reported a significantly higher abundance of Roseburia in VD after
short-term VD compared to MD [12]. Plant-based diets are rich in fiber, which is assumed
to increase the abundance of butyrate-producing Roseburia [15,59]. The fiber intake of our
VD participants was significantly higher than the intake of MD participants, but Roseburia
abundance was higher in MD. The reason for this could be the choice of food. Roseburia
is reported to be enriched by the intake of wholegrain foods [60]. It is possible that MD
participants chose more wholegrain foods than VD participants as nutritional protocols
did not clearly differentiate between wholegrain and non-wholegrain foods. A strong
association of microbial composition with the choice of food is reported [21–23]. Many
nutritional clinical trials limit the choice of food. For example, David et al. gave precooked
meals made of vegetables, rice, and lentils to their plant-based participants, whereas their
animal-based diet consisted of cooked pork and beef, cured meats, and cheese [12]. These
massive changes in nutritional behavior, avoiding food diversity, might be also responsible
for the reported effects. We aimed to imitate a commonplace diet, which is why participants
were free to choose by themselves what to eat within their assigned diet. To avoid further
confounders such as smoking, alcohol, drugs, and long-term medication, the inclusion
criteria of our trial were strictly chosen. Recruitment bias cannot be ruled out as it is
conceivable that persons interested in diet are more likely to participate in nutritional
trials. However, exclusion criteria defined that interested subjects were only eligible for
study inclusion if they did not have a history of eating disorders and were not already on a
planted-based diet. The diet adherence of our participants is assumed to be good due to the
results of the nutritional protocols and the analysis of vitamin B12 showing significantly
lower levels of holotranscobalamin (holo-TC) in VD compared to MD [36]. Holo-TC is a
widely-used marker of vitamin B12 status and reflects the intake of vitamin B12, which is
deficient in VD [36,61]. Another strength of our study is that body weight was the same in
both interventional groups at baseline and remained unchanged at the end of the study.
Body weight change is known to be a confounder in gut microbiota studies [26,27]. To
be able to broadly map transient changes in the gut microbiota, it would be desirable for
further research to collect more stool samples at different time points.

Interestingly, when clustering the samples based on phylogeny, we found a split of
samples into two groups, which we named Phylo1 and Phylo2. The split was not clearly
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associated with any of the measured sociodemographic or clinical parameters and could
not be explained by the differentiation of enterotypes, as postulated by Peer Bork [62].
Most of the participants in Phylo1 were assigned to VD, and participants who were Phylo1
at the beginning of the trial changed to Phylo2, if they were assigned to MD. This is
an interesting observation, possibly related to dietary composition; however, the results
were only tendencies as they did not reach the level of statistical significance. Further
research on larger cohort of individuals may elucidate whether Phylo1 versus Phylo2
splitting is a consequence of the nutritional composition of VD and MD or due to other yet
unrecognized factors. Contamination of the samples by different researchers can be ruled
out as all samples were processed by the same person, observing technical standards.

Finally, we highlight the limitations of our study. We evaluated the microbiome at
only two time points, after a one-week run-in phase with a uniform balanced mixed diet
and after the four-week-long intervention. Thus, our study does not provide insights into
the dynamics of the microbiome composition induced by the run-in phase, nor does it
provide a temporal resolution after the intervention. Therefore, rapid transient changes
are not resolved by our study design. Moreover, due to the limited sample size (53
patients divided into two groups), small effects may not be significant due to limited
statistical power. Moreover, clinical trials with fecal samples are always error-prone as the
collection of samples depends on the compliance of participants, and the time between
bowel movement and further processing is crucial for the results [1]. All of our participants
were told to fill the stool collector immediately before meeting with the study staff, but it is
realistic that not all participants were able to do so, even if they did not communicate this.

5. Conclusions

The gut microbiota of healthy participants was overall not remarkably changed after
transition to VD or MD for four weeks. Analyses of alpha and beta diversity showed high
inter-individual gut microbiota variation among participants. Several diet-related ASV
changes were observed after the trial, but most of them were only detectable in a few of the
samples, emphasizing the highly individual response to nutritional change. Three genera,
namely Coprococcus, Roseburia, and Blautia, mainly from the family of Lachnospiraceae,
were found to be different between VD and MD after the 4-week trial. These results are
interesting as these genera are often discussed to be markers for physical and mental health.
The results indicate that VD and MD might have a potentially beneficial effect, including on
potentially harmful bacteria, but to a highly individualized extent. The results emphasize
the necessity for further research considering a participant’s individual gut microbiota
response.
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Słomczyńska, A.H.; Wołkow, P.P.; Fyderek, K. Differences in the intestinal microbiome of healthy children and patients with
newly diagnosed Crohn’s disease. Sci. Rep. 2019, 9, 18880. [CrossRef] [PubMed]

59. Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan
Diets on Gut Microbiota. Front. Nutr. 2019, 6. [CrossRef]

60. Martínez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.; Weber, C.G.; Walter, J. Gut microbiome composition is linked to
whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [CrossRef]

61. Hannibal, L.; Lysne, V.; Bjørke-Monsen, A.-L.; Behringer, S.; Grünert, S.C.; Spiekerkoetter, U.; Jacobsen, D.W.; Blom, H.J.
Biomarkers and Algorithms for the Diagnosis of Vitamin B12 Deficiency. Front. Mol. Biosci. 2016, 3, 27. [CrossRef] [PubMed]

62. Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al.
Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0090702
http://www.ncbi.nlm.nih.gov/pubmed/24603757
http://doi.org/10.1016/j.cmet.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26552345
http://doi.org/10.1073/pnas.1423854112
http://doi.org/10.1038/s41467-020-18871-1
http://doi.org/10.1038/s41564-018-0337-x
http://doi.org/10.3390/nu12030792
http://doi.org/10.1186/s12888-017-1540-7
http://www.ncbi.nlm.nih.gov/pubmed/29282023
http://doi.org/10.1016/j.jad.2019.01.035
http://doi.org/10.3390/nu11010029
http://doi.org/10.3390/nu10060708
http://www.ncbi.nlm.nih.gov/pubmed/29857583
http://doi.org/10.1054/mehy.2000.1321
http://doi.org/10.3389/fmicb.2018.00890
http://doi.org/10.1089/thy.2017.0395
http://www.ncbi.nlm.nih.gov/pubmed/29320965
http://doi.org/10.1038/nature13738
http://doi.org/10.1128/mSystems.00857-19
http://www.ncbi.nlm.nih.gov/pubmed/32209719
http://doi.org/10.3389/fcimb.2019.00101
http://www.ncbi.nlm.nih.gov/pubmed/31058098
http://doi.org/10.2217/fmb-2016-0130
http://www.ncbi.nlm.nih.gov/pubmed/28139139
http://doi.org/10.1002/mds.26307
http://www.ncbi.nlm.nih.gov/pubmed/26179554
http://doi.org/10.1038/s41564-018-0272-x
http://www.ncbi.nlm.nih.gov/pubmed/30397344
http://doi.org/10.1038/s41598-019-55290-9
http://www.ncbi.nlm.nih.gov/pubmed/31827191
http://doi.org/10.3389/fnut.2019.00047
http://doi.org/10.1038/ismej.2012.104
http://doi.org/10.3389/fmolb.2016.00027
http://www.ncbi.nlm.nih.gov/pubmed/27446930
http://doi.org/10.1038/nature09944
http://www.ncbi.nlm.nih.gov/pubmed/21508958

	Introduction 
	Materials and Methods 
	Bioinformatics 
	Data Analysis 
	Alpha Diversity 
	Beta Diversity 
	Logistic Regression 
	ZINB 
	PICRUSt 


	Results 
	Microbial Sample Composition—Alpha Diversity 
	Microbial Sample Composition—Beta Diversity 
	Logistic Regression and Differential Abundance (DA) between MD and VD 
	Association of Bacterial Changes with Inflammatory Markers 
	From Abundance to Function 
	Unweighted UniFrac Distance 
	Logistic Regression and Differential Abundance between Phylo1 and Phylo2 
	Association of Clinical Markers/Inflammatory Markers with Phylo1 and Phylo2 


	Discussion 
	Conclusions 
	References

