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Abstract

Studies on potential adverse effects of genetically engineered crops are part of an environ-

mental risk assessment that is required prior to the commercial release of these crops. Of

particular concern are non-target organisms (NTOs) that provide important ecosystem ser-

vices. Here, we report on studies conducted in the Philippines over three cropping seasons

with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer

(EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community

composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA)

communities. We document that many arthropod taxa are associated with Bt eggplants

and their non-Bt comparators and that the number of taxa and their densities varied within

season and across trials. However, we found few significant differences in seasonal mean

densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abun-

dance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-

target herbivores was detected in non-Bt eggplants as were a few non-target beneficials

that might control them. Principal Response Curve (PRC) analyses showed no statistically

significant impact of Bt eggplants on overall arthropod communities through time in any

season. Furthermore, we found no significant adverse impacts of Bt eggplants on species

abundance, diversity and community dynamics, particularly for beneficial NTAs. These

results support our previous studies documenting that Bt eggplants can effectively and

selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that

it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational

component for controlling EFSB in an Integrated Pest Management (IPM) program and dra-

matically reduce dependence on conventional insecticides.
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Introduction

Control of lepidopteran pests often relies on the use of broad spectrum insecticideswhich can
negatively affect beneficial insect populations, often leading to pest resurgence, outbreaks of
secondary pests, risk of off-farmmovement of pesticides and environmental contamination
[1–7]. An Integrated Pest Management (IPM) program for eggplant fruit and shoot borer
(EFSB), Leucinodes orbonalis, the most damaging insect pest of eggplant (Solanum melongena
L.) in South and Southeast Asia, has been proposed that would utilize resistant plant varieties,
sex pheromones for trapping adults and disruptingmating, cultural controls such as removing
infested plant parts and selective use of chemical insecticides [8]. Using resistant varieties,
either developed through conventional breeding or genetic engineeringmeans, should be the
foundation of IPM [9]. However, conventional breeding has been unable to identify significant
EFSB-resistance genes from cultivated eggplants and has not produced any commercial variety
of eggplant conferring high level of resistance to the EFSB [10]. Furthermore, the cost of phero-
mones and labor-intensive cultural practices inhibits adoption of these pest management prac-
tices and so growers in Asia have become largely dependent on the frequent use of insecticides
[11]. In the Philippines, farmers resort to frequent spraying (up to 72 times per 180 days crop-
ping season) of mixtures of insecticides to control EFSB [12–16]. Broad-spectrum insecticides
including profenofos, triazophos, chlorpyrifos, cypermethrin, and malathion are often used in
eggplant production [14,17,18]. Such an insecticide-dependentstrategy to control EFSB poses
both environmental and health concerns.
Use of genetic engineering to develop insect-resistant plants offers a solution to the often-

limited availability of highly insect-resistant germplasm [4,6,19,20]. Plants expressing insecti-
cidal crystal (Cry) proteins from the bacteriumBacillus thuringiensis (Bt) have become a foun-
dation for IPM [21] and were grown on 83.7 million ha globally in 2015 [22]. These crops have
enabled more effective control of lepidopteran pests and led to increases in productivity while
simultaneously reducing insecticide use and their associated negative environmental impacts
[4, 23–26]. However, concerns have been raised that long term and extensive use of Bt crops
could directly or indirectly affect biodiversity and beneficial non-target organisms, particularly
arthropods [27–28]. Therefore, assessment of the environmental consequences of transgenic
crops is an important prerequisite to their commercialization [29–32]. Risk of exposure to
non-target arthropods (NTAs) by a Bt protein can be through direct feeding on plant tissues or
consuming arthropods that have fed on plant tissues [23,31,33,34].
Agriculture depends on several arthropod groups performing ecological functions such as

decomposition, pollination and biological control that are essential to soil health and crop pro-
ductivity. This is especially true with eggplant, a crop producing lush growth over a long grow-
ing period, where high species diversity and interaction among and between herbivores and
predators have been documented [35]. The eggplant non-target arthropod community
includes predators, parasitoids, pollinators, sucking and chewing herbivores, and vagrant
insects that are only temporary residents of the crop. Our studies included all these groups
because it is important to understand how the dynamics of pests and beneficial species in egg-
plant fields may be affected so that the management practices can be adjusted as needed.
In the Philippines, field trials and an insect resistance management (IRM) plan are required

prior to commercial release of insect-protectedGM crops [36]. Data from field trials are
needed to assess bioefficacyagainst the target pest and potential adverse effects on NTOs, par-
ticularly beneficialNTAs, and to formulate an appropriate IRM plan. The data presented in
this report documents species abundance, diversity and community dynamics (composition
and structure) of canopy-dwelling arthropods and soil micro-fauna in Bt and non-Bt eggplants
in a study site located in Pangasinan, the largest eggplant growing province in the Philippines.
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These studies contain the first publicly available data on NTOs for Bt eggplants used to control
L. orbonalis. The information generated here will contribute significantly to the theoretical and
practical basis for environmental risk assessment of Bt eggplants in South and Southeast Asia.

Materials and Methods

Description of Trial Site

The studies were conducted at the same site in Bgy. Paitan, Sta. Maria, Pangasinan for three
successive growing seasons fromMarch 2010 to October 2012. The field trial site (15° 58'
35.07'' N, 120° 40' 33.62'' E), located in the province of Pangasinan, the Philippines, best repre-
sents the agro-climatic conditions and production practices of the largest eggplant growing
region (Region I or the Ilocos Region) in the country. Based on the climate map of the Philip-
pines [37], Pangasinan has Type 1 climate characterized by two pronounced seasons: dry, from
November to April; wet, during the rest of the year. Farmers plant rice during the wet season.
Eggplant cultivation in Pangasinan is primarily done during the dry season (DS). The province
of Pangasinan has the largest production area (18.43%) and produces the largest volume of
eggplants (31.95%) in the country (2005–2014 PSA data) [38]. Most importantly, the Pangasi-
nan site represents the conditions that small-holder farmers are likely to experience relative to
very high natural incidence of EFSB pressure that requires frequent insecticide applications.

Plant materials

The NTO studies were conducted in the same ConfinedField Trials (CFT) for Bt eggplant as
described in Hautea et al. [39]. The experimentalmaterials used in the series of three Confined
Field Trial (CFT) experiments are listed in Table 1. Maharashtra Hybrid Seeds Co. Pvt. Ltd.
(Mahyco) inserted the cry1Ac gene under the control of the constitutive 35S CaMV promoter
into an eggplant elite line to control feeding damage caused by EFSB. The transformation event
was designated as 'EE-1' [40,41]. The Bt eggplant lines (D2, D3, M1, M4, M8 used as test
entries) in the field trials are advanced breeding lines (BC3F4 to BC3F6) derived from initial
crosses of Mara selection x Mahyco EE-1 and DLP selection x Mahyco EE-1. The Cry1Ac pro-
tein levels expressed in the terminal leaves (shoots) of Bt eggplant lines ranged from 10.58–

Table 1. Plant materials used in confined field trials.

Trial No. Crop Generation1 Duration2 Bt lines3 Non-Bt Counterparts 4 Non-Bt Commercial Variety 5

1 BC3F4 CY 2010 D2,D3 DLP Mamburao

(Mar- Jul 2010) M1,M4,M8 Mara

2 BC3F5 CY 2010–11 D2,D3 DLP Mamburao

(Sept 2010-Mar 2011) M1,M4,M8 Mara

3 BC3F6 CY 2012 D2 DLP Mamburao

(Mar-Oct 2012) M1,M8 Mara S1,Mara S2

1 BCn = number of backcrossing; Fn = filial generation.
2 From sowing to end of fallow period.
3 Promising advanced Bt eggplant lines developed thru conventional backcross breeding; D2, D3 = Bt eggplant lines developed from Dumaguete Long

Purple (DLP) x Mahyco event EE-1; M1, M4,M8 = Bt eggplant lines developed from Mara x Mahyco event EE-1.
4 DLP = improved line selection from public variety, DLP; Mara, Mara S1, Mara S2 = improved line selections from the cultivar Mara developed by

UPLB-IPB Vegetable Breeding Division.
5National Seed Industry Council (NSIC)-registered commercial eggplant variety, ‘Mamburao’.

doi:10.1371/journal.pone.0165190.t001
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24.87 ppm dry weight, and with< 1% EFSB shoot damage compared with up to 46.6% shoot
damage in non-Bt comparators [39].

Experimental design and field lay-out

Each field experiment was laid out in a randomized complete block design (RCBD) with four
replications in each season. Each plot/entry consisted of 4 rows in Trial 1 and in Trial 2, and 6
rows in Trial 3. Each row had 10 plants. Planting distances were 1 m between rows and 0.75 m
between plants. The perimeter of the field experiment was surrounded by five rows (1 m
between rows) of conventional non-Bt eggplant varieties as pollen trap plants. A 200-meter
radial distance isolated the field trial site from the nearest eggplants in the area. The field had
been fallow for at least a year before it was used in the experiment. No plants were grown in the
trial field until transplanting. Between trials, the field was fallow for at least 60 days before the
next trial.

Cultural and pest management

Seedswere sown in pots with sterilized soil and the seedlingswere maintained inside the bio-
safety level 2 (BL2) greenhouse at UP Los Baños. At 28–30 days after sowing (DAS), representa-
tive seedlings of each entry were tested for presence or absence of Cry1Ac using immunoassay
or a gene strip test kit, DesiGenXpresstrip (DesiGen,Maharashtra, India), as described in
Ripalda et al. [42]. Seedlingswere transplanted in the field 30–34 DAS. The ConfinedField Tri-
als were managed based on the guidelines provided for the Vegetable National Cooperative
Trial [43] and typical cultural practices for eggplant production in the area.
No insecticide sprays specific against eggplant fruit and shoot borer (EFSB) were applied

during the growing period of the trials. Management of other arthropod pests and diseases was
done by application of recommended IPM practices, primarily sanitation and witholding of
pesticide use as long as possible to enable the proliferation of natural enemies. Only when it
was necessary to reduce pest damage and preserve crop health, highly selective insecticides
(i.e., thiamethoxam for leafhopper and whitefly and sulphur for mites) were applied. Spraying
was always done after data collection and spray records were kept. All weeds were controlled
regularly by manual weeding.
Permissions. All field trials were conducted according to the Biosafety Permit for Field Test-

ing in Pangasinan (BPI Biosafety Permit No. 10-011b) issued by the Bureau of Plant Industry
(BPI), Philippines on March 16, 2010. Prior to issuance of the field trial permit, the proposed
trial site was inspected and approved by the BPI Post-Entry Quarantine Service (BPI-PEQS)
office. The field inspection report on indicative conditions of the proposed field test site
(BPI-FTI 001) contains information on the physical, biological and social environments of the
site [44]. Required permission from the owner of the field trial site was also complied with.
Various public participation activities (posting,municipal council meetings, public hearing,
field visits, communications and outreach) were held before and through the duration of the
field trials. All field trial activities were conducted under the supervision of the Institutional
Biosafety Committee (IBC) and the BPI-PEQS office. During the conduct of the field trials, all
biosafety conditions indicated in the Biosafety Permit were complied with. An IBC completion
report was submitted at the end of the field trial period.

Field sampling and species identification

Canopy-dwelling arthropods. Visual counts of non-target arthropods were taken from 16
plants (eight/row) from the two inner rows of each test plot/entry to minimize border effects.
On each sample plant, easily visible and highly mobile non-target arthropods like spiders,
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coccinellids, and bees were counted without touching any plant part. Visual counting of minute
arthropods was done by examining both surfaces of one young fully expanded leaf, one leaf
near the middle of the canopy and one old leaf near the bottom of the canopy. For aerial preda-
tory species like syrphid flies (Parragus seratus), the larvae, which are also plant canopy resi-
dents, were sampled assuming they would more likely be exposed to Bt protein than the adults.
Sampling was conducted early in the morning (5:00–7:00 A.M.) when the field had not yet
been disturbed by any field operations. Sampling weeks varied from 5 to 17 in each season.
Whenever possible, common and frequently occurring arthropods were identified to species
level. For less common species, identifications were made to family or order.

Soil microfauna. For minute ground-dwelling arthropods, one garden-trowel full of top
soil, including litter and decaying debris, were collected from four randomly selected areas
within the two inner rows (15 m2) of each plot/entry and pooled. Transparent plastic bags were
used to hold the samples. From the pooled soil samples, 500 grams were taken and placed in a
Berlese funnel 24 hours after bagging and brought to the Crop Protection Laboratory for
extraction. The soil samples were subjected to 48 hour heat exposure using 80-watt incandes-
cent bulb placed directly on top of the funnels. A small plastic bottle containing 50 ml of 70%
ethanol was positioned at the bottom opening of each funnel to capture soil arthropods. Sam-
ples were collected two to three times throughout the eggplant growing season.

Statistical Analysis

The mean abundance of individual NTAs in every test plot/entry per replication was com-
puted. Then the mean abundance for Bt and non-Bt eggplants per replicate were computed by
dividing the total number of individuals per taxa by the number of entries per crop type (Bt vs.
non-Bt). For both trials 1 and 2, five Bt lines (D1, D3, M1, M4, M8) and two non-Bt near-iso-
lines (DLP, Mara selections) plus the check (Mamburao) entries were considered. For trial 3,
three Bt lines (D2, M1, M8) and three non-Bt near-isolines (DLP, Mara S1, Mara S2) were
used.
All arthropod species found in Bt and non-Bt eggplants were classified, grouped and

recorded into the following functional guilds: predators, herbivores or non-target pests, para-
sitoids, pollinators and vagrants. Non-target herbivores or pests were further classified into
sucking and chewing arthropods. Vagrants refer specifically to those insects, including acciden-
tal visitors, with no clear association with eggplant (e.g. herbivores or pests from other plants
in surrounding areas, or adults whose immatures are saprophytes or living in aquatic environ-
ment). The composition and relative proportion between each guild were calculated. Differ-
ences in the composition of taxa among functional guilds and taxa within guilds in Bt and non-
Bt eggplants were analyzed usingMann-Whitney U-test in PROCNPAR1WAY in SAS [45].
Based on theWilcoxon statistic, normal approximation with two-sided p-value was used at 5%
level of significance.

Univariate Analysis. Analyses on seasonal mean NTAs abundance were carried out using
a mixedmodel, repeated measures ANOVA in PROCMIXED in SAS [45], with block as a ran-
dom effect, week as repeated measure and eggplant type (Bt and non-Bt) as a fixed effect. An
autoregressive heterogenous (ARH1) covariance structure was modelled. Separate analyses
were conducted for each season. Differences in LSMEANS were used to test for differences in
abundance between Bt and non-Bt eggplants for each sampling date for each taxon. NTAs
abundance data were log transformed (log [x + 1]) prior to analysis to meet the assumptions
for normality and homogeneity of residuals, but untransformedmeans are presented.

Principal Response Curve (PRC) analysis. The effect of Bt eggplants on the community
of non-target arthropods was evaluated by principal response curve (PRC) analysis using
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CANOCO for Windows v4.56 [46]. PRC is a multivariate ordination method designed to test
and display treatment effects, relative to a standard (here non-Bt eggplant), that change across
time [23, 47]. To test whether crop type was significant a Monte Carlo permutation test (499
permutations, restricted for split plot design) on the first canonical axis of the RDA was con-
ducted [48]. This process permutes within treatment plots but does not permute across time
[23] NTA abundance data were log-transformed to reduce the effect of weights inflated because
of highly abundant species [33]. Crop type was considered as environmental variable, blocks
and sampling weeks were defined as co-variables and the interaction of crop type and sampling
weeks as explanatory variable.

Diversity index. The Shannon-Wiener index [49] was used to measure diversity and
evenness of non-target arthropods. A diversity index provides more information about com-
munity composition than simply species richness. The Shannon-Wiener index takes the rela-
tive abundances of different species into account thus providing information about rarity and
commonness of species in a community. The Shannon-Wiener diversity (H’) and Shannon’s
equitability (E) indices were calculated. Shannon indices for non-target arthropods for each
week were compared for each season using repeated measure ANOVA in SAS [45].

Rank abundance. Rank abundance diagrams were constructed by plotting the relative
abundances of species against their rank in the samples [50]. The outlines of this diagram
characterize the structures of non-target arthropod communities in Bt and non-Bt eggplants.
Spearman rank correlation coefficient (r) was computed to measure the strength of linear rela-
tionship of rank abundances of non-target arthropods between crop types, with two signifi-
cance levels: P = 0.05 and P = 0.01. Spearman rank correlation was calculated using the PROC
CORR procedure in SAS [45].
Data are available from the DryadDigital repository: http://dx.doi.org/10.5061/dryad.6c8s6

[51]

Results

NTA abundance in Bt and non-Bt eggplants

A total of 91 taxa were observed in Bt and non-Bt eggplants during the three-season duration
of the study. The full lists of arthropods observedper trial, classified according to functional
guilds, and results of univariate analyses of their seasonal mean abundance are presented (S1
Table). There were more taxa observedduring the dry season (Trial 2), which is the main
planting season for eggplant in Pangasinan, than during the wet/off-season trials (Trials 1 and
3). No significant differences in the seasonal mean abundance were detected in 81.3% (84/91)
of the total NTAs observedbetween Bt and non-Bt eggplants. Significant differences were
observed in some hemipterans (jumping plant bug (Halticus minutus), leafhoppers (Amrasca
biguttula), mirid bugs (Campylomma sp., Cyrtopeltis sp.), whitefly (Bemisia tabaci)), non-tar-
get lepidopterans (leaf folder (Homona coffearia), lepidopteran leafminer (Phycita sp.), semi-
looper (Chrysodeixis eriosoma), tomato fruitworm (Helicoverpa armigera) and coccinelids
(Coccinelidae).Of these taxa that showed significant differences in seasonal mean abundance,
the differences were observedonly in one or two weeks out of the 5 to 17-week sampling peri-
ods each season (S1 Fig). Furthermore, some of these species were not consistently detected in
every trial, and some were associated alternately with either Bt or non-Bt eggplants.

Composition of NTA communities in Bt and non-Bt eggplants

The eggplant arthropod community recorded in Bt and non-Bt eggplants consisted of herbi-
vores or non-target pests, predators, parasitoids and pollinators, and vagrant insects (Fig 1).
Herbivores were by far the most abundant guild, followed by predators while parasitoids and
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pollinators were rare. Among the different functional guilds, significant differences were only
detected in the herbivore guild between Bt and non-Bt eggplants in every trial (Table 2). Analy-
ses of the distribution of the species within guilds confirmed that the most abundant taxa
observedwere mostly the ones also detected to have significant differences in seasonal mean

Fig 1. Composition of non-target arthropod (NTA) communities in Bt and non-Bt eggplants. (a) All (or

Total) NTAs communities; (b) Herbivores; (c) Predators; (d) Parasitoids and Pollinators

doi:10.1371/journal.pone.0165190.g001

Table 2. Mean comparison of NTA abundance among functional guilds and taxa in Bt and non-Bt eggplants.

Guild/Taxa Trial 1 Trial 2 Trial 3

Bt Non-Bt P Bt Non-Bt P Bt Non-Bt P

Herbivores 131.671 240.069 < .0001 105.044 194.304 < .0001 98.717 138.683 0.001

Bemisia tabaci 78.538 148.174 < .0001 56.062 96.539 < .0001 48.267 78.583 0.001

Amrasca biguttula 51.458 89.979 < .0001 45.068 89.289 0.0335 46.967 53.600 0.747

Solenopsis geminata 0.429 0.361 0.8214 0.524 2.039 < .0001 1.217 1.383 0.915

Tettigonidae 0.029 0.021 0.6213 0.991 1.848 0.0004 0.083 0.017 0.172

Phycita sp. - - - 0.026 2.201 < .0001 0.000 2.317 < .0001

Predators 18.121 21.708 0.1403 25.297 26.049 0.4896 14.917 17.017 0.175

Araneae 3.842 3.694 0.7890 10.847 10.971 0.9424 8.783 11.050 0.003

Coccinellidae 13.438 16.972 0.1606 1.021 1.162 0.1980 3.267 3.533 0.950

Campylomma sp. 0.550 0.722 0.0132 0.318 0.397 0.2672 1.917 1.833 0.690

Metioche vittaticollis 0.033 0.035 0.7731 0.185 0.167 0.8536 0.033 0.000 0.159

Formicidae 0.058 0.042 0.6095 0.018 0.049 0.0709 0.750 0.400 0.547

Parasitoids and Pollinators 0.050 0.063 0.6661 0.053 0.034 0.2524 0.050 0.050 1.000

Undetermined parasitoid (Hymenoptera) 0.013 0.028 0.5215 - - - - - -

Snellenius manilae - - - 0.006 0.000 0.2741 0.017 0.050 0.560

Ichneumonid wasp 0.029 0.028 0.5273 0.003 0.005 0.7168 - - -

Xylocopa sp. - - - 0.024 0.015 0.3441 0.033 0.000 0.325

Apis sp. 0.004 0.000 0.4418 0.006 0.010 0.6059 - - -

Vagrants 0.538 1.118 0.0027 1.112 1.221 0.3207 1.600 2.167 0.287

doi:10.1371/journal.pone.0165190.t002
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densities (S1 Table). Among the herbivores (Fig 1b) whiteflies (B. tabaci) and leafhoppers (A.
biguttula) were the most abundant in all three trials and spiders (Araneae) and coccinelids
(Coccinellidae)were the most abundant among the predators (Fig 1c). Among the parasitoids
and pollinators (Fig 1d), an ichneumonid wasp (Ichneumonidae) and honeybee (Apis sp.) were
common in trials 1 and 2, while a cutworm parasitoid (Snellenius manilae) and honeybee (Apis
sp.) were common in trials 2 and 3. The composition of vagrant species was not presented
because these are mostly occasional arthropod visitors from surrounding plants, which have no
clear association with eggplant.

NTA community dynamics in Bt and non-Bt eggplants

The Principal Response Curve (PRC) analyses of NTA abundance data in the three trials
revealed no significant difference between Bt and non-Bt eggplants (Fig 2). A large proportion
of the total variance was explained by sampling weeks and only a small portion was attributed
to crop type (Bt vs. non-Bt) in the first axis of the redundancy analysis (Table 3). Analyses of
the distribution of the species weight (bk) confirmed that the taxa with high species weight
were the same ones with significant differences in seasonal mean densities detected by univari-
ate analysis (S1 Table). The most abundant species in the NTAs communities detected in Bt
and non-Bt eggplants were lepidopteran leafminer (Phycita sp), leafhopper (A. biguttula),
whitefly (B. tabaci), red fire ant (S. geminata), Phaneroptera sp., tomato fruit worm (H.

Fig 2. Principal response curve patterns and species weight of non-target arthropod (NTA)

communities in Bt and non-Bt eggplants. Vertical axis represents the difference in community structure

between Bt and non-Bt eggplants expressed as regression coefficient (Cdt) of the PRC model. The P value

indicates significance of the PRC over time based on restricted Monte Carlo permutation test. The species

weight (bk) can be regarded as affinity of the taxon to the principal response. Only species with weights less

than -0.05 or greater than 0.5 are shown.

doi:10.1371/journal.pone.0165190.g002
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armigera), mayfly (Ephemenoptera), semilooper (C. eriosoma), field cockroach (Blatellidae),
coccinelids (Coccinelidae),Campylomma sp., latridiid (Latridiidae), cutworm (Spodoptera
litura), spotted lady beetle (Epilachna spp.), winged ant (Formicidae) and spider (Araneae),
dolichopodid fly (Dolichopodidae),Monolepta sp. Species with weights between -0.5 and 0.5
are not shown because they are likely to show a weak response or a response that is unrelated
to the principal response curve [48].

Other descriptors of NTA communities

Diversity, indicated by species richness and evenness was also monitored using two descriptors
of NTA community structure: Shannon diversity index and evenness [49] and rank abundance
curves [50]. There were no significant differences in the Shannon diversity index (Fig 3A) and
evenness (Fig 3B) of NTA communities between Bt and non-Bt eggplants for either measure
(P>0.05). Temporal changes in mean values of the diversity and evenness indices also showed

Table 3. Characteristics of Principal Response Curves (PRC) for non-target arthropod communities

in Bt and non-Bt eggplants.

Parameters Statistics1

Trial 1 Trial 2 Trial 3

F value 2.094 3.724 3.479

P value (calculated using Monte Carlo simulation, 499 permutations) 0.122 0.122 0.122

Variance explained by crop type 7.6 13.5 15.9

Proportion of this variance captured by PRC1 61.7 57.7 64.9

Variance explained by sampling date 28.6 34.5 40.7

1Values in the table were generated by Principal Response Curve analyses of log (x + 1) transformed non-

target arthropod abundance data

doi:10.1371/journal.pone.0165190.t003

Fig 3. Other descriptors of non-target arthropod (NTA) communities in Bt and non-Bt eggplants. (A)

Shannon’s diversity index and (B) Shannon’s evenness index; P value indicates significance between

indices (not significant, P> 0.05). (B) Rank abundance plots; Spearman rank correlation coefficient (r)

indicates a very strong positive correlation between Bt and non-Bt eggplants. Y axis is log10 scale.

doi:10.1371/journal.pone.0165190.g003
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no significant differences between the NTAs communities in Bt and non-Bt eggplants except
in only one out of the 12-week sampling periods (week 6) in trial 1 of the Shannon diversity
index (Fig 3A). Spearman rank correlation coefficient (r = 0.99) indicates very strong positive
correlation between rank abundances of NTA communities in Bt and non-Bt eggplants (Fig
3B). The first and second ranked species, represented by whiteflies and leafhoppers, were con-
sistently the most dominant species in both Bt and non-Bt eggplants. This was evident in the
sudden decline to the third ranked species (Fig 3B).

Abundance of soil-dwelling arthropods

No statistically significant differences were observed in the mean density of collembolans and
mites between Bt and non-Bt eggplants (Fig 4).

Discussion

Numerous studies, reviews and meta-analyses have assessed the impacts of Bt cotton and
maize on non-target organisms, in particular non-target arthropods (NTAs) [1–7, 25, 29–32,
52–58]. Limited work has examined the impact of Bt eggplants producing coleopteran-active
Cry3Bb [59,60], but to our knowledge this is the first report of a field study that assessed the
impact of Bt eggplants expressing Cry1Ac on NTAs and other organisms. This study helps to
address concerns on the potential environmental risks to NTAs of Bt eggplant cultivation in
the Philippines and similar areas. Herein, we monitored the abundance of canopy- and soil-
dwelling NTAs in Bt and non-Bt eggplants for three seasons over 2.5 years at a field trial site
located in Pangasinan, the largest eggplant growing area in the country.
We found no significant impact of Bt eggplants on the abundance of most canopy-dwelling

NTAs. Seasonalmean abundance of more than 80% of the taxa observed in Bt and non-Bt egg-
plants were similar. Of taxa that showed significant differences in seasonal mean abundance
between Bt and non-Bt eggplants, the differences were detected over time indicating that
changes in NTAs were drivenmore by temporal dynamics rather than crop type. Some species
were alternately associated with either Bt or non-Bt eggplants suggesting normal species varia-
tion seen in agricultural fields and not associated with the experimental treatments. The prefer-
ence of some of the NTAs could have been affected by the difference observed in a few
morphological traits (e.g. leaf shape, size, lateral branches) between Bt and non-Bt eggplants.
Although the two crop types have related genetic backgrounds, the observeddifference in leaf
type (broad and narrow) in the non-Bt cultivarMara, which was a selection from a farmer’s
variety, could be attributed to the inherent heterogeneity in open-pollinated autogamous spe-
cies [61]. The backcross breeding that developed the Bt eggplant lines derived fromMara only

Fig 4. Species density of arthropods in the soil planted to Bt and non-Bt eggplants. Trials 1 and 2, CY

2010–2011. Common letters above the bars indicate no significant differences among the densities. Note

different scales on y-axis.

doi:10.1371/journal.pone.0165190.g004
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selected for the narrow-leaf type characteristic of the Mara recurrent parent. It is likely that the
damage caused by EFSB in the non-Bt eggplants resulted in production of more lateral
branches due to the suppression of apical dominance [62]. Overall, these findings suggest that
Bt eggplant did not adversely affect species abundance in the NTA community.
The analysis of functional guilds revealed that the composition of common and rare guilds

are similar in Bt and non-Bt eggplants except in the herbivore guild, but that differences were
attributed only to a few species,mostly lepidopteran non-target pests and hemipterans. PRC
analysis revealed no significant impact of Bt eggplants on NTA communities through the
growing season when compared to non-Bt eggplants in all three trials. The large proportion of
the total variance was accounted for by sampling weeks and much less by crop type, indicating
that changes in abundance of NTAs was driven by time rather than due to exposure to Bt egg-
plant expressing the Cry1Ac insecticidal protein. Finally, we found little difference in the diver-
sity, evenness and rank abundance of NTA communities in Bt and non-Bt eggplants. If Bt
eggplants had a negative impact, we would have expected lower species richness and evenness
in comparison to non-Bt eggplants. Previous studies on Bt cotton expressing Cry1Ac or Bt
maize expressing Cry1Ab found similar results [25,30,34,58,63, 64].
Mites (Acari) and collembolans have been used as representative soil invertebrates for mon-

itoring the environmental impacts of transgenic plants [57,65, 66]. Here, we found no differ-
ences in abundance of these taxa between Bt and non-Bt eggplants. This is consistent with
previous work on long-term cultivation of Bt cotton (Cry1Ac), which showed no significant
effect on the abundance of soil invertebrates including collembolans,mites and spiders [57,
58]. Similar results were also observed in Bt maize (Cry1Ab) where activity and abundances of
ground-dwelling invertebrates, spiders, carabid and rove beetles, did not differ in Bt crops com-
pared with near-isogenic control plots [33, 65–67].
Herbivores and predators were the most abundant functional guilds found in Bt and non-Bt

eggplants. Among the herbivores, hemipterans and secondary lepidopteran pests were the
most abundant species. As expected, significantly lower abundance of secondary lepidopteran
pests was detected on Bt eggplants compared with non-Bt eggplants because Cry1Ac expressed
in Bt eggplants is known to be efficacious against many Lepidoptera and the trials were not
sprayed with lepidopteran-specific insecticides.The two most abundant sucking insect pests,
leafhopper (A. biguttula) and whitefly (B. tabaci), had lower abundance in Bt compared with
non-Bt eggplants. This result is consistent with previous reports that showed decreases in
abundance of some hemipterans, including cicadellids or leafhoppers, on Bt cotton compared
to those on non-Bt cotton [23,33]. Mechanisms causing such difference could be varied, and
one such study demonstrated that herbivore-induced plant compounds can affect a secondary
pest (6). A meta-analysis of effects of Bt crops on NTOs [55] also showed that when fields of
insecticide-freeBt crops were compared with insecticide-freecontrol fields, certain non-target
taxa were less abundant in Bt fields, including coleopterans and hemipterans in Bt cotton, and
hymenopterans in Bt maize. This latter effect was due entirely to the expected reductions in a
specialist parasitoid of the main lepidopteran target of Bt maize [56]. In contrast, many studies
have shown that Bt cotton producing Cry1Ac did not affect the densities of many non-lepidop-
terans including leafhopper and whitefly [68–72]. A possible explanation for the higher abun-
dance of leafhopper and whitefly observed in non-Bt eggplants in the present study was the
production of more lateral branches in non-Bt eggplants (M. Navasero, personal observation)
resulting from damage in the terminal shoots caused by the primary target pest, EFSB. Suppres-
sion of the apical dominance of the plant likely inducedmore lateral bud outgrowth, giving rise
to lateral branches [62]. The resulting dense canopy may have provided a more favorable
microclimate conducive to growth and multiplication of these pests.
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In the case of predators, the most abundant were coccinelids and spiders. Coccinelids
showed significantly higher abundance in non-Bt than in Bt eggplants and this was likely the
result of higher prey abundance in the non-Bt eggplants. The prey consisted not only of lepi-
dopterans, but the higher abundance of leafhoppers and whiteflies. Our findings are consistent
with previous reports on Bt cotton where reduced number of prey, particularly of lepidopterans
[73] and sucking insect pests [23,33] were observed.Our results also agree with previous
research syntheses [25,56] in which the abundance of members of the predatory arthropod
guild were slightly reduced in unsprayed Bt cotton expressing Cry1Ac compared to the
unsprayed non-Bt control. This pattern was driven by the abundance of very few taxa, but the
consequences of such reductions likely do not significantly affect the biological control services
provided by the predator community overall [70,74].
In conclusion, our non-target studies of Bt eggplants over three growing seasons in the larg-

est eggplant production province of the Philippiines with the highest EFSB pest pressure
showed that arthropod communities, except for the target pest species, would be largely unaf-
fected by the cultivation of this new crop. We reported previously that Bt eggplant demon-
strated nearly 100% control of its major pest, EFSB, without the use of supplemental sprays
[39]. Ex-ante studies for Bt eggplant in the Philippines [12, 13] indicated that producers and
consumers would be benefited by Bt eggplant technology adoption. At the farm level, Bt egg-
plant adoption has high potential to increasemarketable yield, reduce costs, and increase prof-
its. Farmers would gain profits because the technologywould reduce EFSB damage, increase
the marketable yield and lower production costs. Consumers would have an adequate supply
of safer eggplant at a lower price. The adoption of Bt eggplant is projected to greatly reduce pes-
ticide use on eggplant, thereby reducing both pesticide loading in the environment and hazards
to farm laborers and consumers. Bt eggplant presents a more efficacious, environmentally
benign and profitable alternative to the current practice of intense use of chemical insecticides
in eggplant production.

Supporting Information

S1 Fig. Temporal occurrence and seasonalmean density of non-target arthropod (NTA)
with significant differences in Bt vs. non-Bt eggplants. (a) Trial 1. (b) Trial 2. (c) Trial 3.
Arrows indicate the week wherein the difference in density is statistically significant between
crop types (P< 0.05). Note different scales on y axes.
(TIF)

S1 Table. Seasonalmean ± SEM abundance of NTAs in Bt and non-Bt eggplants. (a) herbiv-
orous sucking and chewing insects; (b) predatory arthropods; (c) parasitoids and pollinators;
(d) vagrant insects.
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