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1  | INTRODUC TION

The distance‐decay pattern refers to the spatial pattern in which 
community similarity decreases as geographical distance increases 
(Morlon et al., 2008; Soininen, McDonald, & Hillebrand, 2007). In 
other words, ecological communities that are geographically close 
to one another tend to have more similar species composition than 

geologically distant ones. Many studies have confirmed the ex‐
istence of distance‐decay pattern in soil microbial communities 
(Chemidlin et al., 2014; Chu et al., 2016; Durrer et al., 2017; Fan 
et al., 2017; Martiny, Eisen, Penn, Allison, & Horner‐Devine, 2011; 
Shi et al., 2018; Terrat et al., 2015; Tuomisto, Ruokolainen, & Yli‐
Halla, 2003; Wang, Lu, et al., 2017; Yang et al., 2017; Zhang et 
al., 2017). Such studies have also disentangled the contribution of 
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Abstract
It has been widely accepted that there is a distance‐decay pattern in the soil microbi‐
ome. However, few studies have attempted to interpret the microbial distance‐decay 
pattern from the perspective of quantifying underlying processes. In this study, we 
examined the processes governing bacterial community assembly at multiple spatial 
scales in maize fields of Northeast China using Illumina MiSeq sequencing. Results 
showed that the processes governing spatial turnover in bacterial community com‐
position shifted regularly with spatial scale, with homogenizing dispersal dominating 
at small spatial scales and variable selection dominating at larger scales, which in turn 
explained the distance‐decay pattern that closer located sites tended to have higher 
community similarity. Together, homogenizing dispersal and dispersal limitation re‐
sulting from geographic factors governed about 33% of spatial turnover in bacterial 
community composition. Deterministic selection processes had the strongest influ‐
ence, at 57%, with biotic factors and abiotic environmental filtering (mainly imposed 
by soil pH) respectively contributing about 37% and 63% of variation. Our results 
provided a novel and comprehensive way to explain the distance‐decay pattern of 
soil microbiome via quantifying the assembly processes at multiple spatial scales, as 
well as the method to quantify the influence of abiotic, biotic, and geographic factors 
in shaping microbial community structure, thus enabling understanding of widely ac‐
knowledged microbial biogeographic patterns and microbial ecology.
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habitat heterogeneity and biogeographic differences to distance‐
decay patterns (Fan et al., 2017; Langenheder & Ragnarsson, 
2007; Ramette & Tiedje, 2006; Ranjard et al., 2013; Shi et al., 
2018; Zhang et al., 2017). Recently, the development of methods 
for understanding community assembly processes has enabled us 
to explore the underlying processes that result in the observed 
microbial biogeographic patterns (Hanson, Fuhrman, Horner‐
Devine, & Martiny, 2012; Shi et al., 2018; Stegen et al., 2013; 
Stegen, Lin, Fredrickson, & Konopka, 2015; Stegen, Lin, Konopka, 
& Fredrickson, 2012; Wang, Li, et al., 2017). However, there have 
been few studies on how these assembly processes vary at differ‐
ent spatial scales.

According to the framework developed by Stegen et al. (2013) 
and modified in Stegen et al. (2015) and Dini‐Andreote et al. (2015), 
community assembly processes can be divided into five categories: 
variable selection (VS), homogeneous selection (HS), dispersal lim‐
itation (coupled with drift) (DL), homogenizing dispersal (HD), and 
undominated. VS (HS) refers to the scenario where high (or con‐
versely, low) community turnover results from selective pressure 
imposed by variable (consistent) abiotic and biotic environmental 
factors (Dini‐Andreote et al., 2015; Stegen et al., 2015; Vellend, 
2010). When environmental selection is weak, the effect of ex‐
treme high (low) dispersal can result in communities with low (high) 
turnover, and the communities are said to be dominated by HD 
(DL) (Stegen et al., 2013, 2015). Dispersal is generally considered 
to be the effect of geographical factors on the microbial commu‐
nity (Bahram et al., 2015; Tuomisto et al., 2003; Wang et al., 2013). 
”Undominated” refers to a scenario where no single process dom‐
inates (Stegen et al., 2015). These processes have various effects 
on microbial turnover across space: HD and HS can lead to low 
community turnover while DL and VS can result in high community 
turnover (Hanson et al., 2012; Stegen et al., 2015). The relative im‐
portance of community assembly processes can vary across space. 
Shi et al.’s (2018) study of wheat fields of the North China Plain 
found that stochastic processes governed bacterial communities 
at small scales (<900 km), while deterministic processes governed 
at larger scales (>900 km). Additionally, the prevailing role of sto‐
chastic processes was also observed on small soil eukaryotes at 
the local scale in temperate forests (Bahram et al., 2015). However, 
these studies did not provide any direct explanation for the de‐
creased community similarity at larger scales, as the deterministic 
process—including VS and HS, and stochastic processes including 
HD, DL and drift—can have divergent influences on spatial turn‐
over of the microbiome (Hanson et al., 2012; Stegen et al., 2015). 
Hence, quantitatively discerning the relative importance of these 
assembly processes at different spatial scales is necessary in order 
to provide direct and exact explanation for microbial distance‐
decay pattern.

Northeast China is the main commercial grain producing area 
of China and maize is its main grain crop, which amounting to about 
30% of the nation's gross maize production. This area is known 
as the Golden‐Maize‐Belt in China (Liu et al., 2014; Liu, Yang, 
Hubbard, & Lin, 2012; Zhang, Sui, Zhang, Meng, & Herbert, 2007). 

Here, we chose to study maize field monoculture in Northeast 
China—a relatively simple and homogenous ecosystem—to exam‐
ine the underlying mechanisms of the bacterial distance‐decay 
pattern, as well as to quantify the importance of abiotic, biotic, and 
geographical factors in structuring bacterial communities. We hy‐
pothesized that the greater community similarity between closer 
sites would mainly be due to greater relative importance of HD, as 
the greater importance of stochastic processes has been reported 
at smaller spatial scales (Shi et al., 2018). Among these, HD would 
be more likely to dominate due to high dispersal rate across closely 
located sites (Bahram et al., 2015; Stegen et al., 2015). By contrast, 
the lower community similarity between relatively more distant 
sites would be mainly caused by VS, as increased geographical 
distance is nearly always associated with greater environmental 
difference, which would deterministically select for microbiomes 
with different adaptive strategies (Caruso et al., 2011; Shi et al., 
2018). To test our hypothesis, we studied the relative importance 
of different processes across space according to Stegen et al.’s 
(2015) framework to see their variation tendency and the domi‐
nant process at each specific spatial scale. To test the wider appli‐
cability of our hypothesis, the result from our study on maize fields 
is further compared with that in wheat fields of the North China 
Plain, which have a significant distance‐decay pattern as well as 
the dominate role of stochasticity at small spatial scale (<900 km) 
and determinacy at larger spatial scale (>900 km) for bacterial com‐
munity (Shi et al., 2018).

2  | MATERIAL S AND METHODS

2.1 | Soil location description and sampling method

Our sampling region ranges from 122°E to 131°E and 43°N to 48°N 
in Northeast China (Appendix Figure A1). The region has a mon‐
soon‐influenced humid continental climate (https​://en.wikip​edia.
org/wiki/Köppen_clima​te_class​ifica​tion), with the mean annual 
temperature ranging from 1°C to 7°C, and mean annual precipita‐
tion ranging from 392 to 657 mm (http://www.world​clim.org/) for 
the years 1970 to 2000. The soils were classified as dark brown soil 
(Heilongjiang) and Baijiang soil (Jilin) (Appendix Figure A1) (http://
www.soil.csdb.cn/).

To test our hypothesis, we collected 81 soil samples from nine 
sites during the elongation stage of maize (15th–25th June, 2017). 
The nine sites were relatively uniformly distributed in the major 
maize fields of Northeast China. In each site, nine replicates were 
sampled in a ~100 km2 apart from their adjacent replicates (Appendix 
Figure A1). Within each replicate, nine soil cores were taken from 0 
to 10 cm soil using an alcohol‐wiped auger, across the quadrat fol‐
lowing an s‐shaped course, then the nine soil cores were combined 
as a composite soil sample. After sampling, the soil samples were 
packed into polyethylene bags and transported on ice to laboratory 
as soon as possible. The soils were then sieved through a 2‐mm mesh 
and divided into two parts: one kept at 4°C for soil properties analy‐
sis and the other placed at −40°C for DNA extraction.

https://en.wikipedia.org/wiki/Köppen_climate_classification
https://en.wikipedia.org/wiki/Köppen_climate_classification
http://www.worldclim.org/
http://www.soil.csdb.cn/
http://www.soil.csdb.cn/
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2.2 | Soil properties analysis

To identify the factors that might govern the spatial distribution of 
soil bacteria, 22 soil properties were measured, including soil pH, 
soil moisture (SM), nitrate (NO3

‐), ammonium (NH4
+), total C (TC), 

total N (TN), total P (TP), total K (TK), dissolved organic carbon 
(DOC), dissolved organic nitrogen (DON), available P (AP), avail‐
able K (AK), total Al, Fe, Ca, Mg, Mn, Cd, Cr, Pb,Zn, Cu. Soil pH was 
measured using a pH monitor (Thermo 0rion‐868, MA, USA) with 
a fresh soil to water ratio of 1:5. Soil moisture was measured gravi‐
metrically by drying the soil to constant weight at 105°C. Soil NH4

+ 
and NO3

‐ content were measured by automated segmented flow 
analysis (AAIII; Bran and Luebbe, Germany). TC, TN, TP, TK con‐
tent were determined by combustion using air dried (2 mm mesh) 
soil samples (2,400 II CHNS/0 Elemental l Analyzer, Perkin‐Elmer, 
Boston, MA). DOC and DTN were determined using a total organic 
carbon‐total nitrogen (TOC‐TN) analyzer (Shimadzu, Kyoto, Japan). 
AK was extracted by 1 M ammonium acetate extracts and deter‐
mined by flame photometry (FP640, INASA, China). AP was de‐
termined in 0.5 M NaHCO3 extracts using the molybdenum blue 
method. Cu, Pb, Zn, Cd, Cr were determined using HPLC‐ICP‐MS. 
Ca, Mg, Al, Fe, Mn were determined using ICP‐AES Optima 8,000 
(Perkin‐Elmer, Waltham, MA). In addition, mean annual precipita‐
tion (MAP) and mean annual temperature (MAT) of each sample 
site was the average value of the years 1970 to 2000 in http://
www.world​clim.org/.

2.3 | DNA extraction, PCR amplification and 
bioinformatics analysis

0.5g soil of each sample was used for DNA extraction using Power Soil 
DNA kit (MO BIO Laboratories, Carlsbad, CA, USA) by following the 
manufacturer's instructions. The V4‐V5 region of bacterial 16S rRNA 
was amplified using primers 515F (5′‐GTGCCAGCMGCCGCGGTAA‐3′) 

and 907R (5′‐CCGTCAATTCCTTTGAGTTT‐3′) (Biddle, Fitzgibbon, 
Schuster, Brenchley, & House, 2008). The 20‐µl PCR reaction in‐
cluded 4‐uL 5 × FastPfu buffer, 2‐µl 2.5‐mM dNTPs, 0.8‐µl forward 
primer(5  μM), 0.8‐µl reverse primer(5  μM), 0.4‐µl FastPfu polymer‐
ase, 0.2‐µl BSA, 10‐ng template DNA with the rest volume filled with 
ddH2O. PCR reaction were performed under the procedures of 95°C 
for 3 min, 35 cycles of 95°C for 30 s, 55 °C for 30 s, and 72°C for 45 s. 
The final extension was performed at 72°C for 10 min. The reaction 
was then held at 10°C until sequencing on the Illumina MiSeq PE250 
platform. The sequence data were available in the National Center for 
Biotechnology Information with the accession number PRJNA508421.

After sequencing, the 2,961,808 raw sequences (30,020−44,899 
for each sample) were processed and analyzed using QIIME software 
(http://qiime.sourc​eforge.net/) (Caporaso, Kuczynski, et al., 2010). The 
sequences were re‐assigned to each sample using the multiple_split_li‐
braries_fastq.py command. The sequences with quality score <30 or 
length out the range of 380–440, or contained chimera sequences 
were discarded, resulting in 1,454,129 high quality sequences (14,617–
18,014 for each sample). These high quality sequences were then clus‐
tered into OTUs at a 97% similarity using parallel_pick_otus_uclust_ref.
py command (Edgar, 2010). The chimera sequences were identified 
using Userach61 against Greengenes database (http://green​genes.lbl.
gov/) and filtered out using filter_fasta.py command. Greengenes da‐
tabase was used for taxonomy assignment using parallel_assign_taxon‐
omy_uclust.py command. The final OTU table was constructed based 
on a randomly selected subset of 14,617 sequences which represented 
the lowest sequence number yielded by all samples. The aligned se‐
quences of the represent OTUs  using PyNAST algorithm(Caporaso, 
Bittinger, et al., 2010) were then used to construct phylogenetic tree 
using FastTree for phylogenetic analysis (Price, Dehal, & Arkin, 2010).

2.4 | Distance‐decay analysis

To test whether bacterial community in our study has a significant 
distance‐decay pattern, the turnover rates (Z value) of bacterial 
community composition across spatial distance was tested following 
the formula: log10 (χd) =  (–2z)*log10 (d)+b, where χd is the pairwise 
Sørensen similarity(presence/absence data) calculated using ds‐
vdis function in labdsv package (R 3.4.4); d is between‐site distance 
(meter), and b is the intercept of the linear relationship (Ranjard et 
al., 2013). Between‐site distance was transformed from geographic 
coordinates in PASSaGE 2.

2.5 | Phylogenetic analysis

2.5.1 | Quantify the community assembly processes 
at different spatial scales

To quantify the community assembly processes at different spatial 
scales, we first utilized the combination of our sampling characteristics 
and “mantel.correlog” function (“vegan” package, R 3.1.4) which tests 
the relationship between community dissimilarity based on Bray–
Curtis distance and geographic distance using default parameters to 

F I G U R E  1   The distance‐decay pattern of bacterial community 
based on Sørensen similarity in the maize field of Northeast China

http://www.worldclim.org/
http://www.worldclim.org/
http://qiime.sourceforge.net/
http://greengenes.lbl.gov/
http://greengenes.lbl.gov/
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separate the whole distance into 15 spatial scales, then the processes 
were quantified in each of the 15 spatial scales separately.

The importance of the five processes was identified by using the 
combination of  β‐nearest taxon index (βNTI) and Bray‐Curtis‐based 
Raup‐Crick metrics (RCbray) (Stegen et al., 2013, 2015). βNTI measur‐
ing the deviation of observed β‐ mean nearest taxon distance (βMNTD) 
from βMNTD in null model, in which taxa labels were shuffled across 
the tips of the phylogeny, were calculated in Phylocom 4.2 (Hardy, 
2008). Using phylogenetic metrics such as βNTI to infer community 
assembly processes requires significant phylogenetic signal (the traits 
that regulate assembly processes should be phylogenetically con‐
served) (Stegen et al., 2012). To test for the phylogenetic signal, the 
relationship between phylogenetic distance of pairwise OTUs and 
their environmental optimal differences was tested using “mantel.cor‐
relog” (Stegen et al., 2012; Tripathi et al., 2018; Wang, Li, et al., 2017). 
Phylogenetic distance of pairwise OTUs was calculated using ”cophe‐
netic” function in ”picante” package (R 3.1.4). The environmental differ‐
ences of pairwise OTUs were calculated as euclidean distance of their 
environmental optima, for which abundance‐weighted mean value was 
calculated for each environmental variable. The significant relationship 
across short phylogenetic distance indicated that phylogenetic signal 
were observed in this study (Appendix Figure A2). On this occasion, 
significant deviation of observed βMNTD from null model (|βNTI| >2) 
indicates the dominant role of deterministic selection imposed by abi‐
otic factors such as environmental filtering and biotic factors such as 
interactions among species (Stegen et al., 2012; Wiens, 2011). Among 
them, the fraction of |βNTI| <2 includes DL, HD and undominated cat‐
egories, which were differentiated using the RCbray (see also https​://
github.com/stege​n/Stegen_etal_ISME_2013) (Stegen et al., 2013).

A combination of |βNTI| <2 (thus the community is not dominated 
by selection) and RCbray > 0.95 indicates the dominant role of DL. |βNTI| 
<2 and RCbray <−0.95 indicates the dominant role HD. |βNTI| <2 and 
|RCbray| <0.95 indicates that no single process dominates (undomi‐
nated). Detailed logical explanation of the framework can be referred 
to Stegen et al. (2013, 2015). Bacterial OTUs with a relative abundance 
higher than 0.001% were included in calculation of βNTI and RCbray 
matrices in maize field of Northeast China (about 8,200 OTUs, and 
the chosen OTUs were of the highest relative abundance). To find the 
law that each process changed across space, the relative importance 
of each process (percentage) at multiple spatial scales were fitted to 
linear, quadratic, cubic, logarithmic,   and  reciprocal models in SPSS 
Statistics 22. For the bacterial community in the wheat field in the 
North China Plain, βNTI and RCbray matrices based on 5,000 and 1,000 
OTUs were both calculated by Shi et al. (2018). As the variation ten‐
dency of each process across space can be better demonstrated when 
5,000 OTUs data‐sets were used (the relative importance of HD and 
HS were nearly 0 at all spatial scales in 1,000 OTUs data‐sets), we only 
reported the results based on 5,000 OTUs data‐sets in our study. Of 
note, Shi et al.’s (2018) results were based on 1,000 OTUs.

2.5.2 | Quantify the abiotic, biotic, and geographic 
factors that shape bacterial community

Previous study of the geographical factors influencing community 
structure was often focused on the effect of DL (Blois et al., 2014; 
Li & Waller, 2016; Zhang et al., 2017). In this article, we defined the 
effect of geographical factors as those operating through mecha‐
nisms other than deterministic selection which cause the variation in 

Spatial scale Spatial distance(km) VS HS DL HD UD

whole whole 52.87 4.17 16.14 16.82 10.00

1 0–3 22.64 16.98 7.55 45.28 7.55

2 3–10 15.16 9.02 13.52 51.23 11.06

3 10–80.27 15.38 11.54 15.38 38.46 19.23

4 80.27–133.79 33.33 1.23 1.23 51.85 12.34

5 133.79–187.31 36.42 2.24 13.74 40.89 6.71

6 187.31–240.82 53.40 4.36 7.63 24.25 10.35

7 240.82–294.34 29.15 5.83 34.98 17.49 12.56

8 294.34–347.85 60.80 3.52 13.32 8.54 13.82

9 347.85–401.37 61.85 2.59 18.89 7.04 9.63

10 401.37–454.89 53.62 4.02 20.11 5.63 16.62

11 454.89–508.40 60.64 3.72 22.87 0.00 12.76

12 508.40–561.92 70.72 5.32 13.31 4.18 6.46

13 561.92–615.43 87.5 0.00 10.65 0.46 1.39

14 615.43–668.95 71.63 3.26 22.32 0.93 1.86

15 668.95–670.57 66.67 0.00 33.33 0.00 0.00

Notes: The scales 1–15 indicated the spatial distance between two samples, the percentage of the 
five processes indicated the relative importance of these processes in dominating the community 
dissimilarity between two samples within each specific spatial scale.
Abbreviations: Whole: the whole region; VS: variable selection; HS: homogeneous selection; DL: 
dispersal limitation; HD: homogenizing dispersal; UD: undominated.

TA B L E  1   Relative importance (%) 
of different assembly processes across 
whole region and at different spatial 
scales in the maize field of Northeast 
China

https://github.com/stegen/Stegen_etal_ISME_2013
https://github.com/stegen/Stegen_etal_ISME_2013
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community structure—either HD or DL. To further quantify the abi‐
otic and biotic factors that impose deterministic selection, a forward 
selection model using βNTI as response variable was used.

Briefly, the method followed two steps. First, the geographical 
distances of 81 samples were transformed into spatial eigenvectors 
(PCNM axes) using function “pcnm” in “vegan” package (R 3.1.4). 
Second, the significant environmental variables and PCNM axes 
retained by forward selection (“ordiR2step” in package “vegan”, R 
3.1.4) were fitted to βNTI using distance‐based redundancy analysis 
(Blanchet, Legendre, & Borcard, 2008; Legendre & Anderson, 1999) 
(“capscale” function in package “vegan”, R 3.1.4) to discern the factors 
that impose selection. Of note, βNTI was rescaled between 0 and 1 
by first plus the absolute magnitude of the minimum (negative) and 
then divided by the maximum before distance‐based redundancy 
analysis was performed. Any variables that were retained by forward 
selection using βNTI as response variable reflected environmental 
variables that imposed selection. These retained PCNM axes reflected 

the selection imposed by unmeasured spatially auto‐correlated envi‐
ronmental variables. Here, we defined the part that βNTI cannot be 
explained by environmental variables and PCNM axes as the effect of 
biotic factors that impose selection, which is analogous to Blois et al.’s 
(2014) approach that the nonrandom part of community structure that 
cannot be explained by geographical or environmental differences is 
defined as the effect of biotic factors, as deterministic selection could 
only be imposed by biotic and abiotic variables.

3  | RESULTS

3.1 | The overall bacterial community composition 
in maize fields of Northeast China

The soil and climate properties varied significantly across the 
maize field of Northeast China (Appendix Table A1). After annota‐
tion, we found that there were totally 13 phyla/classes yielding the 

F I G U R E  2   The importance of the 
four assembly processes at different 
spatial scales in shaping bacterial 
community composition in the maize 
field of Northeast China. (a) The dots 
that represent the importance of the 
four assembly processes are connected 
with smoothed curve. The significant 
mathematical models that could be 
fitted to the importance of variable 
selection (b), homogeneous selection (c), 
homogenizing dispersal (d) and dispersal 
limitation (e).We did not include the 
scenario “undominated” because of its low 
importance and ambiguous role in shaping 
bacterial community structure. When 
there were more than three models that 
were significantly fitted to the data, we 
plotted only three models with relatively 
higher correlation values. The numbers 
on the X axis indicates the spatial scales. 
VS: variable selection; HS: homogeneous 
selection; HD: homogenizing dispersal; 
DL: dispersal limitation



6 of 19  |     FENG et al.

average relative abundance higher than 1% across the 81 samples: 
Acidobacteria (23.3%), Thermoleophilia (12.2%), Alphaproteobacteria 
(10.6%), Betaproteobacteria (9.59%), Gammaproteobacteria 
(8.79%), Bacteroidetes (7.69%), Chloroflexi (7.17%), Planctomycetes 
(4.87%), Gemmatimonadetes (4.58%), Deltaproteobacteria (3.01%), 
Nitrospirae (2.05%), Firmicutes (1.24%), and Fimbriimonadia (1.02%), 
which accounted for more than 96% of all the sentences (Appendix 
Figure A3). Mantel test showed that among the measured 24 soil 
and climate properties, 14 of them had a significant relationship with 
bacterial community, in which soil pH had the highest correlation 
(r = 0.64) (Appendix Table A2).

3.2 | The distance‐decay pattern of 
bacterial community

The linear regression between log‐transformed bacterial community 
similarity and geographic distance indicated that there was a sig‐
nificant distance‐decay pattern for bacterial community (p < 0.01) 
(Figure 1), and the turnover rate (Z value) of bacterial community 
composition was 0.05. So spatially closely located samples had more 
similar community structure, while samples that were further apart 
had more different community structure.

3.3 | The processes varied at different spatial scales

As a whole, the spatial turnover of bacterial community composi‐
tion was dominated by VS (~52.87%) (Table 1). When looking into 

the processes at different spatial scales, we found that, at relatively 
smaller spatial scales (scales 1‐5), the bacterial community was 
dominated by HD (Table 1). At medium spatial scales (scales 6‐8), 
deterministic processes (VS and HS) tended to overtake stochastic 
processes (DL, HD, and undominated). Additionally, DL tended to 
exceed HD above scale 7(>294 km). At larger spatial scales (scales 
8‐15), the bacterial community was dominated by VS (above 50%) 
(Figure 2A). By fitting the relative importance of each process to 
existing mathematical models, we found that the importance of VS 
could be significantly fitted to linear (R2 = 0.76, p < 0.001), logarith‐
mic (R2 = 0.81, p < 0.001), and quadratic (R2 = 0.81, p < 0.001) mod‐
els, all of which indicated the increasing importance of VS with the 
increasing spatial distance (Figure 2B). The importance of HS can 
be only fitted to a reciprocal model (R2 =  0.40, p  =  0.02), indicat‐
ing that there was a sharp decrease of its importance followed by a 
slower decline after scale 2 (>133 km) (Figure 2C). As for HD, linear 
(R2 = 0.77, p < 0.001), logarithmic (R2 = 0.89, p < 0.001), and cubic 
models (R2 = 0.94, p < 0.001) could all be significantly fitted. Though 
the correlation of the cubic model was the highest, we believed that 
it was impossible for the importance to increase after scale 12, thus 
overall the effect of HD would decrease when the scale became 
larger (Figure 2D). None of the mathematical models could be fitted 
to the variation in importance of DL in the maize field of Northeast 
China (Figure 2E).

The spatial trends in the various factors structuring communi‐
ties were further tested in the bacterial community in wheat field 
of North China Plain. We found that, although VS dominated at all 
spatial scales (Appendix Table A3, Appendix Figure A4A), the gen‐
eral trends in the importance of VS, HS, and HD across spatial scales 
were consistent with that in the maize field of Northeast China 

TA B L E  2   Summary of PCA axes that had significant effect on 
βNTI of bacterial community in maize field of Northeast China

PCA Highest loading R2.adj Cum.R2.adj p

4 AP 0.30 0.30 0.002**

11 MAP 0.057 0.36 0.002**

7 Ca 0.055 0.41 0.002**

6 DOC 0.036 0.45 0.002**

15 MAT 0.028 0.48 0.002**

1 AK 0.027 0.50 0.004**

17 pH 0.022 0.52 0.002**

2 NH4
+ 0.023 0.55 0.008**

3 NO3
‐ 0.021 0.57 0.008**

12 Pb 0.0098 0.58 0.024*

5 DOC 0.0096 0.59 0.03*

21 spatial 0.0077 0.60 0.028*

34 spatial 0.0065 0.60 0.04*

Notes: The PCA axes are ordered according to their adjusted coeffi‐
cients of determination (R2.adj). Items in the “Highest loading” column 
are the variables that have the biggest loading on each PCA axes, “spa‐
tial” means that the highest loading is imposed by PCNM eigenvector; 
R2.adj: the adjusted R2 for βNTI in the forward selection model; Cum.R2.
adj:the cumulative adjusted R2 for βNTI in the forward selection model.
*Indicates p < 0.05, 
**Indicates p < 0.01. 

F I G U R E  3   The conceptual model showing how the relative 
importance of each assembly process changes across space. 
For DL, there are three possibilities. Scenario ①: the relative 
importance of DL is always smaller than that of VS; scenario ②: the 
maximum relative importance of DL exceeds VS after VS exceeds 
HD; scenario ③: the maximum relative importance of DL exceeds 
VS before VS exceeds HD. “d1”: the spatial scale before which HD 
dominates; “d2”: the spatial scale after which VS dominates. For 
abbreviation, see legend of Figure 2.
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(Appendix Figure A4B–D). The difference lies in the importance of 
DL in shaping bacterial community in the North China Plain: it could 
be significantly fitted to the quadratic model (R2 = 0.42, p = 0.03), 
which suggested that its importance would first increase to its peak 
at about scale 9 and then declined steadily (Appendix Figure A4E).

3.4 | Abiotic, biotic, and geographic factors 
combined in shaping bacterial community

Homogenizing dispersal and DL respectively explained 16.14% and 
16.82% of spatial turnover in bacterial community composition 
(Table 1). We thus concluded that geographical factors contributed 
about 33% to spatial variation of bacterial community composi‐
tion in the maize fields of Northeast China.

Deterministic processes (VS and HS) could explain about 57% of 
bacterial community spatial variation in the maize fields of Northeast 
China (Table 1). There were five significant explanatory environmen‐
tal variables and three PCNM axes that were significantly retained 
in the forward selection model using βNTI as the response variable. 
All variables totally explained about 63% of βNTI (Table 2). Among 
the five environmental variables, soil pH had the biggest adjusted 
R2, followed by MAT, MAP, SM, and TP (Table 2). The three signifi‐
cant PCNM axes (PCNM 3, 6, 32) represented unmeasured, spatially 
auto‐correlated environmental variables, which can impose deter‐
ministic selection on soil bacterial community (Table 2). Thus, we 
inferred that abiotic factors accounted for about 63% of determinis‐
tic selection on bacterial community, and biotic factors contributed 
about 37%.

4  | DISCUSSION

4.1 | Significant distance‐decay relationship

In our study, we found significant distance‐decay pattern of the bac‐
terial community in maize field of Northeast China (Figure 1). The 
turnover rate (Z value) in our study was 0.05, which was in the range 
of the estimated microbial community turnover rate from 0.002 to 
0.26 in other studies (Green & Bohannan, 2006; Horner‐Devine, 
Lage, Hughes, & Bohannan, 2004; Woodcock, Curtis, Head, Lunn, 
& Sloan, 2006). Our results suggested that relatively nearby bacte‐
rial communities would have more similar composition, which was 
in accordance with previous research (Hanson et al., 2012; Martiny 
et al., 2011).

4.2 | Scale‐dependent shifts in dominant processes 
governing spatial turnover in bacteria community 
composition

The dominant processes that governed spatial turnover in bacte‐
rial community composition changed with increasing spatial scale, 
from HD at the smallest scales to VS at the largest scales (Table 1; 
Figure 2A). Such results were consistent with our hypothesis that 
greater community similarity at closer sites would be mainly caused 

by HD, with the lower community similarity at more distant sites 
being brought about by VS. In addition, the result resembled that 
of Stegen et al.’s (2015) simulation experiment, in which HD domi‐
nated in communities which were closely located and where the 
environmental selection was weak, whereas distantly located com‐
munities where the environmental selection was strong were mainly 
dominated by VS. It was also consistent with Caruso et al.’s (2011) 
finding that differences between desert microbial communities 
within continents with more similarity were dominated by stochas‐
tic processes, and those across continents with more dissimilarities 
were dominated by deterministic processes. The reason may be 
that, the stronger role of homogeneous dispersal at smaller scales 
was caused by the high microbial exchange rate (high dispersal rate) 
and a low level of selection due to greater environmental similarity 
at closer sites (Bahram et al., 2015; Figure 1; Appendix Figure A5). 
High dispersal rates can homogenize communities across environ‐
ments through the mass effect (Evans, Martiny, & Allison, 2017). 
As geographical distance increased, the failure of movement and 
establishment of some microbial species as well as the increased 
environmental heterogeneity should increase the effect of DL and 
selection for species with variable survival strategies. Finally, when 
the distance exceeded a certain threshold, the community variation 
caused by deterministic processes surpassed stochastic processes 
and a dominant role of VS overtook HD and DL.

As the effect of soil pH was most significantly correlated with 
bacterial community structure in our dataset (Appendix Table A2), 
we also examined the relationship between soil pH difference and 
geographical distance, as well as the variation tendency of differ‐
ent processes at different soil pH scales. The results supported 
our explanation that soil pH difference generally increased signifi‐
cantly with increasing geographical distance (Appendix Figure A5). 
Besides, as the soil pH difference increased, the importance of the 
four processes shifted similarly in their relationship to increasing 
geographical distance (Appendix Table A4; Appendix Figure A6). Our 
results were in agreement with previous findings showing that the 
assembly processes of soil bacteria could be significantly influenced 
by soil pH, with stochastic processes dominated in neutral condi‐
tions and deterministic processes dominated in acid and alkaline 
conditions (Tripathi et al., 2018). To our knowledge, this is the first 
study that explains the distance‐decay pattern of the microbial com‐
munity from the perspective of discerning the assembly processes at 
multiple spatial scales, though previous research has evaluated the 
influence of spatial scale on phylogenetic community structure, phy‐
logenetic relatedness and the assembly processes (Cavender‐Bares, 
Keen, & Miles, 2006; Kembel & Hubbell, 2006; Kraft, Cornwell, 
Webb, & Ackerly, 2007; Shi et al., 2018).

Though the trends in the four processes governing bacte‐
rial community across space in the North China Plain resembled 
those in Northeast China (Table 1; Figure 2; Appendix Table A3; 
Appendix Figure A4), the dominant role of HD was not observed 
at the smallest spatial scales in the North China Plain. However, 
we suspected that HD would dominate microbial community as‐
sembly at even smaller spatial scales if we had sampled at those 
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scales, just as Bahram et al. (2015) concluded that both DL and 
deterministic selection had a weak effect on eukaryotes at local 
scales (<2 m). The spatial scale beyond which HD is overtaken by 
DL and VS may depend on the particular environment gradient and 
the species’ dispersal ability (Graham & Fine, 2008; Hanson et al., 
2012). The threshold scale should be larger if environmental selec‐
tion is weak and species have high dispersal ability. Conversely, if 
environmental selection is strong and species have poor dispersal 
ability, the threshold scale should be smaller. Hence, the smallest 
spatial scales we sampled in the North China Plain (35.58 km) may 
be too large for HD to dominate.

To explain the discrepancy in importance of community struc‐
turing factors between Northeast China and the North China Plain, 
the correlations among community similarity, soil pH difference 
and geographical distance were examined. We found that, although 
the spatial turnover of soil bacterial community in Northeast China 
(z = 0.05) were larger than on the North China Plain (z = 0.018), the 
soil pH difference and bacterial community similarity in Northeast 
China were not significantly correlated with geographical distance 
at small spatial scales (<80.27 km), and such nonsignificant relation‐
ships were not observed in the North China Plain when correspond‐
ing geographical distances were used (Appendix Table A5). The 
results suggested that, compared with the North China Plain, the 
bacterial community and soil pH in Northeast China were more ho‐
mogenous on small spatial scales. This can in turn explain the dom‐
inance of HD at small spatial scales in Northeast China rather than 
the North China Plain.

The results in Northeast China and the North China Plain lead us 
to propose a conceptual model (Figure 3). We hypothesize that the 
trends in HD and HS are similar, both falling gradually to nearly 0. 
However, the importance of HD may be constantly higher than HS, 
as the homogeneous environmental conditions which are crucial for 
HS to dominate may be rare in the natural ecosystem. The case for 
DL may be a little more complicated: though no model fitted signifi‐
cantly to it in the Northeast China, we still think it should first reach 
to its peak at a certain distance and then decrease to a relatively 
stable value. Not only because it is the pattern that DL shows in the 
North China Plain, but also we believe that its importance would 
peak at some spatial distance before the growth rate of the effect 
of VS caused by increasing geographical distance outweighted that 
of DL. With increasing spatial scale, the peak importance of DL may 
not exceed the importance of VS or exceed VS after/before VS ex‐
ceeds HD (scenario 1, 2 and 3 respectively for DL in Figure 3), it 
may depend on the relative growing rate of VS and DL across space. 
The influence of VS would steadily increase with the increasing geo‐
graphical distance, which would exceed HD and end up being the 
most dominant assembly process at larger spatial scales. As for the 
dominant processes at different spatial scales, the microbial com‐
munity will first be dominated by HD (d<d1), and finally VS (d>d2). 
Among the distance that d1<d<d2, the effect of deterministic pro‐
cesses will exceed stochastic processes, and dispersal will become 
limited (Figure 3).

4.3 | The abiotic and biotic variables that impose 
deterministic selection

Among the eight environmental variables and PCNM axes retained in 
the forward selection model using βNTI as responsive variables, soil 
pH had the largest adjusted coefficients of determination (Table 2). 
This agreed with the result of the Mantel test, that soil pH had the 
biggest correlation of bacterial community composition (r  =  0.64, 
p < 0.001 in Appendix Table A2). Many studies have identified soil 
pH as the most important variable influencing bacterial community 
in both natural and agricultural ecosystems (Fan et al., 2017; Fierer 
& Jackson, 2006; Liu et al., 2014; Shen et al., 2013; Sun, Zhang, Guo, 
Wang, & Chu, 2015; Tripathi et al., 2018). The reason for this could 
be that bacterial species or strains are capable of optimal growth 
only within a narrow pH range (Lauber, Hamady, Knight, & Fierer, 
2009; Ramirez, Craine, & Fierer, 2010), such that changes in environ‐
mental pH would directly deterministically select for species with 
different pH optima. Besides, soil pH usually covaries with other 
environmental variables such as climate, soil nutrients, plant prop‐
erties, and the content or valence state of heavy metal elements 
(Van Nostrand, Sowder, Bertsch, & Morris, 2005; Williams, Jangid, 
Shanmugam, & Whitman, 2013; Wang, Zheng, et al., 2017; Lammel 
et al., 2018; Appendix Table A6). Hence, increased soil pH difference 
could result in the shift of the assembly processes, especially for VS, 
which increased steadily with spatial scale (Appendix Figure A6). In 
addition, we also identified three PCNM axes (Table 2) that was re‐
tained in the forward‐selection model, hence they represented the 
unmeasured, spatially auto‐correlated environmental variables that 
imposed deterministic selection.

All the measured and unmeasured, spatially auto‐correlated 
environmental variables explained 63% of deterministic selection, 
and we thus inferred that the remaining 37% was caused by biotic 
factors. The high proportion of biotic factors that imposed selec‐
tion indicated the necessity of taking biotic factors into account 
when seeking for the factors that structured microbial communities. 
However, although we have measured a wide range of environmen‐
tal variables (24 in total and contributed 58.6% in the totally iden‐
tified 62.1% abiotic influences among the deterministic selection) 
and taken the unmeasured, spatially auto‐correlated environmental 
factors into consideration, there should still be a caveat that we may 
have overlooked the deterministic selection imposed by unmea‐
sured environmental variables that are not spatially auto‐correlated. 
These would by default be added to the biotic factors in our study, 
possibly erroneously: thus, the actual biotic fraction may be smaller 
than 37%.
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F I G U R E  A 2   The Mantel's correlogram 
about the relationship between 
phylogenetic distances of two OTUs and 
their niche difference in the maize field of 
Northeast China. Solid and open symbols 
represent significant and nonsignificant 
correlations, respectively

F I G U R E  A 3   The relative abundance of the dominant bacterial phyla/classes (>1%) in the nine sites in the maize field of Northeast China
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F I G U R E  A 4   The importance of the 
four processes at different spatial scales 
in shaping the spatial turnover of bacterial 
community composition in the wheat 
field of the North China Plain. (a) The 
dots that represent the importance 
of the four processes are connected 
with smoothed curve. The significant 
mathematical models that could be 
fitted to the importance of variable 
selection (b), homogeneous selection (c), 
homogenizing dispersal, (d) and dispersal 
limitation (e). We did not include the 
scenario “undominated” because of its low 
importance and ambiguous role in shaping 
bacterial community structure. When 
there were more than three models that 
were significantly fitted to the data, we 
plotted only three models with relatively 
higher correlation values. The numbers 
on the X axis indicates the spatial scales. 
VS: variable selection; HS: homogeneous 
selection; HD: homogenizing dispersal; 
DL: dispersal limitation

F I G U R E  A 5   The relationship between soil pH difference and 
geographical distance in the maize field of Northeast China
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F I G U R E  A 6   The importance of 
the four processes in different soil pH 
scales in governing spatial turnover of 
bacterial community composition in 
the maize field of Northeast China. (a) 
The dots that represent the importance 
of the four processes are connected 
with smoothed curve. The significant 
mathematical models that could be 
fitted to the importance of variable 
selection (b), homogeneous selection (c), 
homogeneous dispersal (d) and dispersal 
limitation (e). We did not include the 
scenario “undominated” because of its low 
importance and ambiguous role in shaping 
bacterial community structure. When 
there were more than three models that 
were significantly fitted to the data, we 
plotted only three models with relatively 
higher correlation values. The numbers on 
the X axis indicates soil pH difference. For 
abbreviation, see Figure A4.
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TA B L E  A 2   The soil and climate properties that had significant (p < 0.05) influence on bacterial community structure in the maize field of 
Northeast China based on Bray–Curtis distance

  pH MAP Pb Mn Ca MAT Fe AP Cu Zn SM Cr TP Al

r 0.64** 0.60** 0.38** 0.36** 0.33** 0.31** 0.27** 0.24** 0.23** 0.20** 0.15** 0.14** 0.14** 0.13**

Note: The results were determined by Mantel test (package “vegan” in R 3.1.4).
**p < 0.01. For abbreviations, see Table A1. 

Spatial scale Spatial distance(km) VS HS DL HD UD

whole whole 63.53 0.03 21.74 7.38 7.32

1 <35.58 49.44 0.31 6.67 38.97 4.61

2 35.58–106.16 54.8 0.00 17.20 18.17 9.83

3 106.16–176.75 60.16 0.00 22.11 8.77 8.95

4 176.75–247.33 61.26 0.00 23.62 8.06 7.05

5 247.33–317.91 67.19 0.02 16.53 8.82 7.43

6 317.91–388.5 69.65 0.03 17.20 5.64 7.47

7 388.5–459.08 63.40 0.03 23.62 5.69 7.26

8 459.08–529.66 65.39 0.06 23.94 3.14 7.46

9 529.66–600.25 56.58 0.00 34.24 2.69 6.49

10 600.25–670.83 60.36 0.00 27.28 2.81 9.55

11 670.83–741.42 71.46 0.00 23.62 0.34 4.57

12 741.42–812.00 71.98 0.00 22.52 0.35 5.14

13 812.00–882.58 56.05 0.25 38.27 0.00 5.43

14 882.58–953.17 86.58 0.00 11.58 0.00 1.83

15 953.17‐1,023.8 68.12 0.00 25.00 0.00 6.88

16 1,023.80‐1,094.30 95.06 0.00 4.32 0.00 0.62

Notes: The scales 1–16 indicated the spatial distance between two samples, the percentage of the 
five processes indicated the relative importance of these processes in dominating the community 
dissimilarity between two samples within each specific spatial scale.
Abbreviations: Whole: the whole region; VS: variable selection; HS: homogenous selection; DL: 
dispersal limitation; HD: homogenizing dispersal; UD: undominated.

TA B L E  A 3   Relative importance (%) of 
different processes in shaping the spatial 
turnover of soil bacterial community 
composition of the whole region and at 
different spatial scales in the wheat field 
of the North China Plain

TA B L E  A 4   Relative importance (%) of different processes at 
different soil pH scales in the maize field of Northeast China

pH difference VS HS DL HD UD

[0,0.1) 29.41 4.41 11.03 37.50 17.65

[0.1,0.2) 31.43 6.43 12.86 30.00 19.28

[0.2,0.3) 29.58 9.86 9.86 36.62 14.08

[0.3,0.4) 29.30 6.37 12.10 34.39 17.83

[0.4,0.5) 31.65 8.63 17.27 30.22 12.23

[0.5,1) 36.55 5.91 17.57 26.44 13.53

[1,1.5) 47.41 5.01 22.36 14.13 11.09

[1.5,2) 57.80 2.44 24.88 6.58 8.29

[2,2.5) 76.94 0.56 15.56 3.06 3.89

[2.5,3) 83.21 1.14 10.69 1.91 3.05

[3,3.5) 89.60 0.58 4.62 4.62 0.58

[3.5,4) 89.02 2.44 1.22 4.88 2.44

[4,5.02) 100 0 0 0 0

Note: For abbreviations, please see Table A3
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TA B L E  A 5   The slope, intercept, and adjusted coefficients of determination (R2.adj) of linear regression model and correlation value (Cor) 
of the relationships between community similarity and soil pH difference (otu‐pH), soil pH difference and geographical distance (pH‐geo) 
and community similarity and geographical distance (otu‐geo) in both Northeast China and North China Plain

 

Northeast China

Cor slope

North China Plain

slope intercept R2.adj intercept R2.adj Cor

whole                

otu‐pH −0.097 0.49 0.41*** −0.64*** −0.065 0.54 0.64*** −0.80***

pH‐geo 0.0013 0.97 0.056*** 0.24*** 0.0009 0.91 0.02*** 0.14***

otu‐geo −0.00042 0.5 0.24*** −0.50*** −0.00015 0.51 0.08*** −0.29***

small                

otu‐pH −0.068 0.56 0.0001*** −0.38*** −0.075 0.6 0.28*** −0.53***

pH‐geo −0.0016 0.88 0.0001 −0.01 0.035 0.16 0.034*** 0.19***

otu‐geo −0.0007 0.51 −0.002 −0.03 −0.003 0.59 0.01*** −0.12***

Note: The nonsignificant relationships are marked in bold.
***Indicates p < 0.001. 
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TA B L E  A 6   The correlation between the total 24 environmental variables

  Fe Ca Mg Mn Cr Zn Pb Cu Cd SM pH NO3
− NH4

+ DON DOC TP TK AP AK MAT MAP TN TC

Al 0.61** −0.54** 0.47** 0.36** 0.54** 0.58** 0.68** 0.54** 0.11 0.5** −0.42** 0.03 −0.12 −0.06 −0.08 0.43** 0.02 0.33** 0.2 −0.41** 0.35** 0.2 −0.03

Fe   −0.65** 0.68** 0.76** 0.94** 0.86** 0.78** 0.91** 0.18 0.68** −0.59** −0.05 −0.17 −0.06 0.12 0.75 −0.52** 0.55** 0.46** −0.59** 0.52** 0.31** 0.18

Ca     −0.11 −0.61** −0.59** −0.64** −0.71** −0.63** −0.18 −0.34** 0.67** −0.03 0.35** 0.16 −0.02 −0.58** 0.08 −0.52** −0.26* 0.47** −0.75** −0.14 −0.02

Mg       0.26* 0.73** 0.5** 0.32** 0.56** 0.13 0.49** −0.18 0.15 −0.07 −0.08 0.01 0.41** −0.48** 0.21 0.31** −0.22* 0.08 0.16 −0.08

Mn         0.62** 0.71** 0.76** 0.73** 0.13 0.41** −0.62** −0.12 −0.14 −0.05 0.09 0.61** −0.37** 0.51** 0.34** −0.5** 0.64** 0.3** 0.32**

Cr           0.84** 0.66*8 0.89** 0.25* 0.61** −0.52** 0.04 −0.17 −0.12 0.09 0.73** −0.56** 0.48** 0.46** −0.46** 0.44** 0.3** 0.14

Zn             0.81** 0.9** 0.4** 0.58** −0.57** −0.03 −0.16 −0.05 0.06 0.74** −0.33** 0.66** 0.47** −0.38** 0.57** 0.4** 0.29**

Pb               0.79** 0.23* 0.54** −0.7** −0.12 −0.18 −0.06 −0.07 0.56** −0.27* 0.51** 0.21 −0.47** 0.66** 0.22* 0.09

Cu                 0.36** 0.6** −0.57** −0.04 −0.13 −0.07 0.09 0.78** −0.5** 0.63** 0.5** −0.45** 0.57** 0.41** 0.28*

Cd                   0 −0.16 0.13 −0.09 −0.06 −0.11 0.28* 0.02 0.28* 0.17 0.11 0.19 0.22* 0.22*

SM                     −0.31** −0.05 −0.06 −0.06 0.3** 0.56** −0.35** 0.37** 0.34** −0.69** 0.17 0.24* 0.09

Ph                       0.05 0.19 0 0.1 −0.43** 0.31** −0.42** −0.08 0.42** −0.77** −0.18 0.01

NO3
−                         0.07 0.08 −0.26* 0.01 0.14 −0.02 0.02 0.3** 0 0.1 −0.16

NH4
+                           0.82 −0.1 −0.18 0.04 −0.1 −0.05 0.09 −0.18 0.02 0.08

DON                             −0.07 −0.06 0.14 0.06 0.06 −0.03 −0.02 0.01 0.03

DOC                               0.38** −0.09 0.48** 0.62** −0.46** −0.19 0.02 0.23*

TP                                 −0.39** 0.84** 0.77** −0.61** 0.5** 0.32** 0.33**

TK                                   −0.16 −0.18 0.27* −0.3** −0.2 −0.17

AP                                     0.79** −0.44** 0.51** 0.26* 0.31**

AK                                       −0.39** 0.13 0.28* 0.39**

MAT                                         −0.3** −0.02 −0.12

MAP                                           0.14 0.07

TN                                             0.63**

**p < 0.01, 
*p < 0.05. 
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TA B L E  A 6   The correlation between the total 24 environmental variables

  Fe Ca Mg Mn Cr Zn Pb Cu Cd SM pH NO3
− NH4

+ DON DOC TP TK AP AK MAT MAP TN TC

Al 0.61** −0.54** 0.47** 0.36** 0.54** 0.58** 0.68** 0.54** 0.11 0.5** −0.42** 0.03 −0.12 −0.06 −0.08 0.43** 0.02 0.33** 0.2 −0.41** 0.35** 0.2 −0.03

Fe   −0.65** 0.68** 0.76** 0.94** 0.86** 0.78** 0.91** 0.18 0.68** −0.59** −0.05 −0.17 −0.06 0.12 0.75 −0.52** 0.55** 0.46** −0.59** 0.52** 0.31** 0.18

Ca     −0.11 −0.61** −0.59** −0.64** −0.71** −0.63** −0.18 −0.34** 0.67** −0.03 0.35** 0.16 −0.02 −0.58** 0.08 −0.52** −0.26* 0.47** −0.75** −0.14 −0.02

Mg       0.26* 0.73** 0.5** 0.32** 0.56** 0.13 0.49** −0.18 0.15 −0.07 −0.08 0.01 0.41** −0.48** 0.21 0.31** −0.22* 0.08 0.16 −0.08

Mn         0.62** 0.71** 0.76** 0.73** 0.13 0.41** −0.62** −0.12 −0.14 −0.05 0.09 0.61** −0.37** 0.51** 0.34** −0.5** 0.64** 0.3** 0.32**

Cr           0.84** 0.66*8 0.89** 0.25* 0.61** −0.52** 0.04 −0.17 −0.12 0.09 0.73** −0.56** 0.48** 0.46** −0.46** 0.44** 0.3** 0.14

Zn             0.81** 0.9** 0.4** 0.58** −0.57** −0.03 −0.16 −0.05 0.06 0.74** −0.33** 0.66** 0.47** −0.38** 0.57** 0.4** 0.29**

Pb               0.79** 0.23* 0.54** −0.7** −0.12 −0.18 −0.06 −0.07 0.56** −0.27* 0.51** 0.21 −0.47** 0.66** 0.22* 0.09

Cu                 0.36** 0.6** −0.57** −0.04 −0.13 −0.07 0.09 0.78** −0.5** 0.63** 0.5** −0.45** 0.57** 0.41** 0.28*

Cd                   0 −0.16 0.13 −0.09 −0.06 −0.11 0.28* 0.02 0.28* 0.17 0.11 0.19 0.22* 0.22*

SM                     −0.31** −0.05 −0.06 −0.06 0.3** 0.56** −0.35** 0.37** 0.34** −0.69** 0.17 0.24* 0.09

Ph                       0.05 0.19 0 0.1 −0.43** 0.31** −0.42** −0.08 0.42** −0.77** −0.18 0.01

NO3
−                         0.07 0.08 −0.26* 0.01 0.14 −0.02 0.02 0.3** 0 0.1 −0.16

NH4
+                           0.82 −0.1 −0.18 0.04 −0.1 −0.05 0.09 −0.18 0.02 0.08

DON                             −0.07 −0.06 0.14 0.06 0.06 −0.03 −0.02 0.01 0.03

DOC                               0.38** −0.09 0.48** 0.62** −0.46** −0.19 0.02 0.23*

TP                                 −0.39** 0.84** 0.77** −0.61** 0.5** 0.32** 0.33**

TK                                   −0.16 −0.18 0.27* −0.3** −0.2 −0.17

AP                                     0.79** −0.44** 0.51** 0.26* 0.31**

AK                                       −0.39** 0.13 0.28* 0.39**

MAT                                         −0.3** −0.02 −0.12

MAP                                           0.14 0.07

TN                                             0.63**

**p < 0.01, 
*p < 0.05. 


