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Abstract: The deactivation of triplet excited state riboflavin by polyphenols, e.g. rutin 
and catechin, was studied on the basis of density functional theory calculations. The 
results show that the H-atom transfer pathway is more feasible on thermodynamic 
grounds in comparison with the direct energy transfer or direct electron transfer pathways 
involved in the triplet excited state riboflavin deactivation by rutin/catechin. The findings 
are helpful to understand the protective effect of polyphenols against the riboflavin 
induced photosensitizing damage. 
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1. Introduction 
 

Numerous endogenous photosensitizers, among which riboflavin has attracted much attention, can 
photogenerate various reactive oxygen species (ROS, e.g. 1O2 and O2

.–) [1, 2]. It has been reported that 
riboflavin is an efficient ROS-generator [1, 3, 4] and can cause photosensitizing DNA damage [5, 6]. 
Polyphenolic compounds, e.g. rutin and catechin (Figure 1), are ideal antioxidants with strong free 
radical-scavenging ability. Recently, it was reported that rutin and catechin play dual roles in 
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protecting from the photosensitizing damage caused by riboflavin, that is, as ROS scavengers and 
triplet excited (T1) state riboflavin quenchers [7]. The free radical-scavenging mechanisms of rutin and 
catechin have been investigated before [8], however, more effort is needed to elucidate the 
deactivating mechanisms of T1 state riboflavin by rutin/catechin. In recent years, density functional 
theory (DFT) calculations have been widely used to study both the photosensitization and deactivation 
mechanisms of excited state photosensitizers [4, 9-12]. Therefore, in the present study, we attempt to 
explore how T1 state riboflavin was deactivated by rutin/catechin by means of theoretical calculations. 

 
Figure 1. Molecular structures of riboflavin, rutin and catechin. 
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2. Theoretical Methods 
 

The calculation procedures are as follows. First, the geometries of riboflavin, rutin and catechin 
were fully optimized by DFT [14, 15] and B3LYP functional [16-18] with 6-31G(d,p) Gaussian basis 
set in vacuo. Then, the lowest T1 excitation energies (ET1) of the three molecules were estimated by 
time-dependent DFT (TD-DFT) [19-21] with the same basis set. Moreover, in view of the fact that the 
diffusion functions are crucial for treatment of anion and cation radicals, the vertical electron affinities 
(VEA) and vertical ionization potentials (VIP) of riboflavin, rutin and catechin were calculated by 
using a combined DFT method labeled as B3LYP/6-31+G(d,p)/B3LYP/6-31G(d,p), which means that 
B3LYP/6-31+G(d,p) was used to perform a single-point calculation using B3LYP/6-31G(d,p)-
optimized geometries [10]. The O-H bond dissociation enthalpy (BDE) of rutin/catechin and H-atom 
affinity (HAA) of riboflavin were obtained by a hybrid method combining DFT and semiempirical 
method AM1, labeled as (RO)B3LYP/6-311+G(2d,2p)/AM1, which takes advantages of accuracy and 
economy [8]. The solvent (benzene and water) effects were taken into account by employing the self-
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consistent reaction field (SCRF) method with polarizable continuum model (PCM) [22-24] for the 
single point calculations. All the calculations were accomplished using the Gaussian 03 package of 
programs [25]. 

 
3. Results and Discussion 
 

As we know, the ground state photosensitizer is initially excited to the singlet excited state upon 
irradiation and then may intersystem cross to the relatively long-lived T1 state. T1 state riboflavin can 
react with molecular oxygen to photogenerate various ROS [1, 3, 4] and at the same time, it can be 
deactivated by antioxidants through the following possible pathways:  

The first deactivating pathway may proceed through the direct energy transfer between T1 state 
riboflavin (RF) and polyphenols (PhOH) (Equation 1). 

RF(T1) + PhOH → RF + PhOH(T1)      (1) 

The second deactivating pathway involves the electron transfer between T1 state riboflavin and 
polyphenols (Equation 2). 

RF(T1) + PhOH → RF.– + PhOH.+     (2) 

Moreover, as the polyphenolic antioxidants are ideal H-atom donors [8], T1 state riboflavin may be 
deactivated by polyphenols through a H-atom transfer process (Equation 3). 

RF(T1) + PhOH → RFH. + PhO.      (3) 

 Therefore, the corresponding electronic parameters of riboflavin, rutin and catechin, including ET1, 
VEA, VIP, O-H BDE and HAA, were estimated and listed in Table 1, according to which, the 
deactivating reactions of T1 state riboflavin by rutin/catechin were analyzed. 

 
Table 1. Theoretically estimated lowest triplet excitation energy (ET1, in eV), vertical 
electron affinity (VEA, in eV) and vertical ionization potential (VIP, in eV) of polyphenols 
(rutin and catechin) and riboflavin in benzene and water.  

Compounds Solvents ET1 VIPS0 VEAS0 VEAT1
a 

Rutin benzene 3.12 6.76   
 water 3.13 5.95   

Catechin benzene 3.62 6.49   
 water 3.63 5.82   

Riboflavinb benzene 2.10  –2.52 –4.62 
 water 2.09  –3.32 –5.41 

a VEAT1 = VEAS0 – ET1; 
b data from ref [4]. 

 
Primarily, the ET1 of riboflavin, rutin and catechin have been calculated using TD-DFT methods, 

whose accuracy in estimating the T1 state properties of various photosensitizers has been verified [4, 9-
13]. It can be seen that the theoretical ET1 of rutin/catechin is much higher than that of riboflavin 
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(Table 1), implying that the direct energy transfer-based deactivating pathway (Equation 1) is not 
feasible on thermodynamic grounds in both solvents. 

As to the direct electron transfer-based deactivating pathway (Equation 2), its feasibility depends on 
the VEA of T1 state riboflavin (VEAT1) and VIP of rutin/catechin. According to the theoretical results, 
the summation of VEAT1 of riboflavin and VIP of rutin/catechin is positive both in benzene and water, 
implying that the electron transfer-based deactivating pathway is also not favorable from the 
thermodynamic point of view. 

 
Table 2. Theoretically estimated O-H bond dissociation enthalpy (BDE, in kcal/mol) of the 
phenolic compounds (rutin and catechin) and T1 sate H-atom affinity (HAAT1, in kcal/mol) 
of riboflavin in benzene and water. 

Compounds Solvents O-H BDE HAAT1
a 

Rutin benzene 78.18  
 water 79.97  

Catechin benzene 78.97  
 water 80.73  

Riboflavin benzene  −97.24 
 water  −106.19 

a HAAT1 = HAAS0 + ET1 . 
 

Figure 2. Theoretically postulated H-atom transfer-based triplet excited state riboflavin 
deactivating pathway by rutin/catechin. 
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Thirdly, rutin and catechin are excellent H-atom donating substrates [8]. To explore whether the H-
atom transfer reaction from rutin/catechin to T1 state riboflavin (Equation 3) can occur or not, the O-H 
BDE of rutin and catechin, which has been successfully used to measure the molecular H-atom-
donating ability [8], and the HAA of riboflavin, an appropriate theoretical parameter to characterize 
the molecular H-atom-abstracting ability [8], have been calculated. Despite the fact that rutin and 
catechin possess several phenolic hydroxyls that may donate H-atoms, previous studies demonstrated 
that the hydroxyl at position 4’ (Figure 1) is the most active one [26] and the corresponding O-H BDE 
in benzene and water is listed in Table 2. The theoretically estimated HAA of T1 state riboflavin at N1 
(Figure 1), which has been reported to be the thermodynamically favorable position to accept a H-
atom [27], is –97.24 kcal/mol in benzene and –106.19 kcal/mol in water (Table 2). As the summation 
of HAAT1 of riboflavin and the O-H BDE of rutin/catechin is negative in both solvents, the H-atom 
transfer-based quenching pathway is thermodynamically feasible. Therefore, the H-atom transfer-
based T1 state riboflavin deactivating mechanism by rutin/catechin is proposed as illustrated in  
Figure 2. 

 
4. Conclusions 
 

In summary, through comparing the electronic parameters of riboflavin, rutin and catechin, 
including ET1, VEA, VIP, BDE and HAA, it can be inferred that the H-atom transfer pathway is more 
feasible on thermodynamic grounds relative to the direct energy transfer or direct electron transfer 
pathways responsible for the T1 state riboflavin deactivation by rutin/catechin. The results have 
important implications to design/screen better polyphenolic antioxidants as protectors against the 
photo-oxidative damage induced by riboflavin. 
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