
1Scientific RepoRts | 5:15930 | DOi: 10.1038/srep15930

www.nature.com/scientificreports

Chemogenomic profiling of 
Plasmodium falciparum as a tool to 
aid antimalarial drug discovery
Anupam Pradhan1,§, Geoffrey H. Siwo2,†, Naresh Singh1, Brian Martens1, Bharath Balu1,‡, 
Katrina A. Button-Simons2, Asako Tan2, Min Zhang1, Kenneth O. Udenze1, Rays H.Y. Jiang1, 
Michael T. Ferdig2, John H. Adams1 & Dennis E. Kyle1

The spread of Plasmodium falciparum multidrug resistance highlights the urgency to discover 
new targets and chemical scaffolds. Unfortunately, lack of experimentally validated functional 
information about most P. falciparum genes remains a strategic hurdle. Chemogenomic profiling 
is an established tool for classification of drugs with similar mechanisms of action by comparing 
drug fitness profiles in a collection of mutants. Inferences of drug mechanisms of action and targets 
can be obtained by associations between shifts in drug fitness and specific genetic changes in the 
mutants. In this screen, P. falciparum, piggyBac single insertion mutants were profiled for altered 
responses to antimalarial drugs and metabolic inhibitors to create chemogenomic profiles. Drugs 
targeting the same pathway shared similar response profiles and multiple pairwise correlations of 
the chemogenomic profiles revealed novel insights into drugs’ mechanisms of action. A mutant 
of the artemisinin resistance candidate gene - “K13-propeller” gene (PF3D7_1343700) exhibited 
increased susceptibility to artemisinin drugs and identified a cluster of 7 mutants based on similar 
enhanced responses to the drugs tested. Our approach of chemogenomic profiling reveals artemisinin 
functional activity, linked by the unexpected drug-gene relationships of these mutants, to signal 
transduction and cell cycle regulation pathways.

The widespread use of artemisinin derivatives (ART) in combination therapies to treat Plasmodium fal-
ciparum led to significant reductions in deaths and disease, but resistance to this most potent class of 
antimalarial treatments has emerged and is spreading1–4. To understand drug resistance or mechanisms 
of action, find alternative drugs and identify new targets requires new experimental approaches to iden-
tify new targets and validate the mechanisms of antimalarial inhibitors on a broader phenotypic level5,6. 
In Plasmodium, whole-cell chemical-genetic methods that are scalable to identify high value, druggable 
genes from critical pathways of the parasite life cycle are still nascent7,8. Traditionally, genes associated 
with active compounds are identified using drug resistant strains and field isolates; however, these meth-
ods are limited in their sensitivity and can yield population-specific conclusions9. Other studies used 
DNA microarray and sequencing to analyze the function of inhibitors (e.g., spiroindolones) at an orga-
nelle or whole genome level to identify potential targets10–12. Additionally, massive chemical screens have 
identified novel lead compounds for which targets and mechanisms of action are generally unknown13,14. 
The addition of a chemogenomic approach that functionally profiles P. falciparum piggyBac mutants can 
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potentially speed up the antimalarial drug discovery process similar to other programs (e.g., NCI60). 
Functional profiling creates a chemogenomic profile of drug fitness changes in which drugs with similar 
mechanisms of action lead to similar fitness profiles of various mutants. Comparison of chemogenomic 
profiles to each drug across a set of mutants can help classify lead compounds with unknown mecha-
nisms of action relative to well-characterized drugs with established mechanisms of action.

The National Cancer Institute operated the NCI60 program for years and screened new compounds 
for efficacy (IC50, IC90) against the same collection of 60 different cancer cell lines15. Pairwise associations 
between the response profiles of known and unknown inhibitors determined if the mechanism of action 
of the new compound was unique. Chemogenomics uses a similar approach to functionally link hypo-
thetical or unknown genes to specific biochemical and metabolic processes by pair-wise associations of 
drug responses between mutants with known genetic mutations.

Forward genetic approaches in model organisms and some microbial pathogens have provided robust 
empirical detection of genetic factors associated with phenotypic traits, including drug resistance and 
mechanisms of action9,16–20. Typically, forward genetics requires an initial mutagenesis step to create 
diversity in an otherwise uniform genetic background. Random piggyBac insertional mutagenesis of P. 
falciparum provides such an unbiased method to create a collection of unique isogenic mutant clones 
for phenotypic screens21,22. In this work we establish a chemogenomic profiling method using single 
insertion piggyBac mutant clones of P. falciparum to connect molecular mechanism of drug action to 
gene functions and their metabolic pathways, this includes linking unknown or hypothetical genes to 
metabolic pathways based on their shared response relationships23 (Fig. 1a).

The piggyBac mutants used in this chemogenomic screen carry a single genetic lesion in a uni-
form genetic background (NF54) validated by sequence analysis21. The 71 mutant clones of P. falci-
parum formed a piggyBac library of disruptions in genes of diverse Gene Ontology (GO) functional 
categories21 (Fig. 1b and Table S1). Each insertion creates a unique phenotypic footprint of the distinct 
gene-associated processes, which can be mapped to other defined parameters like molecular structure of 
the drugs, affected metabolic processes, and molecular targets. Changes in expression level, alteration of 
the temporal pattern of expression, and simple knockouts can all provide suitable changes in metabolic 
function to reveal a signature that links a phenotype to a specific process or pathway by the associated 
genetic mutation.

As a proof of concept, we investigated the growth inhibitory effect of the cyclophilin inhibitor cyclo-
sporine A (CsA) on parasites in which loci of two hypothetical RNA binding proteins (PF3D7_1360100 
and PF3D7_0812500) were disrupted by piggyBac insertions; these genes were previously proposed to 
interact with a group of six cyclophilins and two peptidyl-prolyl-cis-trans isomerases24. Disruption of 
these two genes resulted in > 20 fold resistance to CsA, but had no altered growth effect when exposed 
to FK-506, an inhibitor of calcineurin through inhibition of the FK-506 binding protein (Fig.  1c)25. 
Both CsA and FK-506 inhibit calcineurin: CsA through binding to cyclophilin and FK-506 through an 
interaction with FKBP26. The observed > 20 fold IC50 shifts after treatment of these cyclophilin-related 
piggyBac mutants with CsA but not FK-506 is consistent with the expectation that CsA interferes with 
cyclophilin activity while FK-506 does not, in spite of the ability of both drugs to inhibit calcineurin. 
Hence, these observations validate our approach in predicting MOA, even for two highly related com-
pounds that affect the same pathway but through distinct molecular processes. These results indicate that 
chemogenomic profiling of the piggyBac mutant library could also reveal unexpected drug relationships 
and connect them to gene functions, including hypothetical genes in the malaria parasite. Consequently, 
we profiled 71 piggyBac mutants for altered responses to standard antimalarial drugs and inhibitors of 
known metabolic pathways (Fig.  1d and Table S2). Phenotypes for the chemogenomic profiles were 
determined from quantitative dose response at the half maximal inhibitory concentration (IC50s) of the 
parental clone NF54 and each of the mutants to a library of antimalarial drugs and inhibitors of meta-
bolic pathways (Fig. 1e).

Pairwise genotype-phenotype associations based on IC50 growth responses of piggyBac mutants to a 
wide range of inhibitors (Table S3) normalized to that of wild type NF54 parasites (Table S4) allowed 
assessment of genotype-phenotype associations among inhibitors and piggyBac mutants. These chemog-
enomic profiles were visualized by two-dimensional hierarchical clustering to discern chemogenomic 
interactions (Fig. 2a). Genes with similar chemogenomic signatures were clustered horizontally and the 
compounds associated with the inhibitors displaying similar phenotypic patterns were clustered on the 
vertical axis. High-grade resistance to dihydrofolate reductase (DHFR) inhibitors served as a positive 
control since the human DHFR (hDHFR) was used as the selectable marker in the piggyBac insert for 
most mutants used in this analysis.

We then evaluated complex relationships between drug pairs by constructing drug-drug networks 
in which nodes are drugs and edges (lines connecting nodes) represent the strength of the Spearman 
correlation between drug pairs across all mutants to define distinct ‘drug sensitivity’ clusters (Fig.  2b). 
As a confirmation of the chemogenomic profiles to predict drug mechanism of action, we found that 
drugs targeting the same pathway were more similar to each other than to drugs targeting other pathways 
(correlation between chemogenomic profiles, r =  0.33 for drugs in the same pathway versus r =  0.24 for 
drugs not in the same pathway; Wilcoxon rank sum test, P =  0.01) (Table S5). In all but one of the path-
ways considered, at least one drug pair with the same mechanism of action is predicted to interact in the 
drug-drug network (Fig. 2b). Binary associations of classified inhibitors and the known genetic defects 
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of the P. falciparum mutants generated chemical-genomic signature profiles reflecting antimalarial drug 
mechanism of action. The chemogenomic profiles consistently identified antimalarial drug pairs known 
to have similar activity to each other, an observation that is consistent with other studies using whole 
cell parasite isolates and chemotypes9,13,14 (Table S5).

An important caveat is that inaccurate annotations of expected drug effects could lead to misin-
terpretation due to an apparent absence of a reported effect on the pathway. Such lack of information 

Figure 1. Chemogenomic profiling of piggyBac mutant clones of P. falciparum. (a) Hypothetical 
chemical-genomic interactions (redrawn from6). Similar mechanisms of action of unknown compounds 
can be defined in chemogenomic analysis by pair-wise comparison of responses with known drugs across 
mutants. (b) Overview of piggyBac insertions in the P. falciparum genome. The piggyBac mutants used in 
this study included insertions in genes of diverse GO categories and many essential biochemical pathways. 
The dark brown bars represent the proportion of genes of piggyBac insertions in each GO category (Generic 
GoSlim) with respect to the entire proteome of P. falciparum. (c) Growth inhibitory effect of CsA, an 
inhibitor of cyclophilin and FK-506, an inhibitor of FKBP on piggyBac mutants in which genes encoding 
two hypothetical RNA binding proteins that were predicted to interact with 6 different cyclophilins have 
been disrupted24. The resistance manifested in presence of CsA and FK-506 was statistically calculated 
significant (* =  P <  0.0002 and ** <  0.0001). (d) Diversity of inhibitors and antimalarial drugs used in screen. 
Representative drugs are shown for some categories. The mechanism of actions have been derived from 
science literature search and compilation, as listed in Supplemental Table S2 (the drug mechanism table).  
(e) hypothetical dose response data for piggyBac mutants with varying degrees of susceptibility. A 
dashed line crosses the hypothetical drug response curve at the IC50 indicates the 50% growth inhibitory 
concentration of drug in an assay. The clear area along the drug response curve indicates variations that 
do not reflect a significant change from the dose response of NF54. A shift to the right would reflect an 
increased drug concentration necessary to achieve the same effective inhibitory concentration as NF54, or 
increased resistance for a piggyBac mutant. A shift to the left would reflect a decreased drug concentration 
necessary to achieve the same effective inhibitory concentration as NF54, or increased sensitivity for a 
piggyBac mutant. The blue-yellow color scheme is used in Figure 2a to reflect relative to NF54 piggyBac 
mutant changes in resistance and sensitivity, respectively.
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would compromise our ability to differentiate between novel interactions among drugs predicted by the 
chemogenomic profiles versus false positive correlations (interactions). Conversely, similarity in chemog-
enomic responses between drugs with unknown mechanisms of action and those with well-characterized 
targets might lead to identification of unexpected interactions of drugs with targets. For example, we 
observed that responses to the iron-sulphur cluster inhibitor rotenone and the bc1 complex inhibitor 
atovaquone are positively associated with lumefantrine (Fig. S1), a drug that is used with artemether 
and is not known to target the mitochondrion27. This surprising association between atovaquone and 
lumefantrine requires further study to ensure it is not an anomaly, yet the result indicates the potential 
for deciphering novel drug mechanisms of action.

Network analysis can robustly capture these and other important drug-gene interactions related to 
each drug sensitivity cluster, by using the same data used to define drug:drug relationships. For exam-
ple, inhibitors acting on related parasite biosynthetic pathways grouped together based on their drug 
response profiles, which is similar to grouping of compounds targeting the same organelles (e.g. inhibitors 

Figure 2. Chemogenomic signatures of P. falciparum piggyBac mutants. (a) Chemogenomic signatures 
of P. falciparum piggyBac mutants organized according to similarity in phenotypic profiles by 2-dimensional 
hierarchical clustering. Chemogenomic signatures for each piggyBac mutant consist of the RPR [GI50pB 
over GI50WT (GI50pB/GI50WT), where the GI50 is based on growth curves, R2 of > 0.9] for a diverse collection 
of target-specific inhibitors (Table S8). The intensity of the blue color is proportional to the resistance of 
a mutant to an inhibitor and intensity of yellow indicates sensitivity. All data were log2 transformed and 
relative phenotypic ratios (RPR) were used to construct correlations. (b) A drug-drug network based on 
chemogenomic profiling of the piggyBac mutants contained 47 nodes and 415 edges representing about 19% 
of the maximum possible pairwise interactions attainable. A drug pair was considered as interacting (blue 
lines) if its observed correlation coefficient was greater or equal to that observed in 1000 permutations of 
the same drug pair (Permutation test, P <  0.001). Edges between drug pairs acting in the same pathway 
demonstrate drug:drug relationships within the chemogenomic profiles. Color coding identifies common GO 
categories of biological pathways. (c) A piggyBac gene:gene  interaction network created from chemogenomic 
response profiles of 71 piggyBac mutants (see also Table S7). The edges represent piggyBac mutants with highly 
correlated chemogenomic response profiles, where the correlation coefficients were greater than or equal to 
that observed in 1000 permutations (Permutation test, P <  0.001) of the chemogenomic profiles for each node 
pair). Solid edges indicate a cluster of highly interconnected nodes (as identified by MCODE in cytoscape36) 
and dashed edges indicate non-cluster edges. The largest cluster has increased ART susceptibility, referred 
to as the K13 Kelch cluster with the addition of PF3D7_1001600 and PF3D7_1327100. Node size and color 
corresponds to DHA and QHS susceptibility, respectively, for each piggyBac mutant. Tightly interconnected 
regions of the network identified sets of genes with similar function within this gene-gene network38,39.
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of hemoglobin digestion; Fig.  2b, red nodes). Therefore, drug-drug (Fig.  2b) and gene-gene networks 
(Fig. 2c) deduced from the chemogenomic profiles provide new evidence to aid in understanding drugs’ 
mechanisms of action as well as identify potential drug targets and resistance genes. This approach is 
complimentary to hierarchical clustering; however, it identifies more complex relationships and is argua-
bly better at defining non-arbitrary clusters. Clear evidence of the predictive ability of our chemogenomic 
profiling approach is provided in the identification of an ART sensitivity cluster of mutants that includes 
a mutant of the gene encoding K13-propeller (PF3D7_1343700) linked to artemisinin resistance1,2,28 
(Fig. 3a). In this mutant of K13, the transposon is located within the putative promoter region and alters 
the normal expression pattern. Instead of a maximal time of expression in early ring stage, as in the 
parent line of NF54, qRT-PCR analysis of the mutant parasite revealed K13 transcription is highly upreg-
ulated thereafter in the intraerythrocytic development cycle in an expression pattern likely driven by the 
promoter of the drug selection cassette (Fig. S2). Bioinformatics analysis of the ART sensitivity cluster 
was then used to extend our new understanding of the biological basis for ART mechanism of action. 
The network analysis of gene-gene interactions was integrated with an independent gene co-expression 
network constructed from a diverse set of transcriptional data29. GO enrichment analysis of direct neigh-
bors of K13-propeller in the co-expression network and other genes in the ART sensitivity cluster linked 
DNA metabolic processes, cellular stress responses, and lipid biosynthesis with gene targets associated 
with ART mechanism of action (Fig. 3b). The genes that are highlighted in the ART sensitivity cluster 
and the 159 genes directly connected to K13-propeller in the co-expression network are not implicated 
directly in any of the recent papers relating to ART resistance. However, further analysis of all SNPs 
in the recent GWAS30 identified eight genes (Table S9) in the independent co-expression network that 
contain SNPs that are associated with parasite clearance half-life (FDR 0.05). The genes in the ART sen-
sitivity cluster did not contain any SNPs associated with delayed parasite clearance half-life.

Further analysis of the 7 mutants contained in the ART sensitivity cluster (Fig. 3a) identified several 
drugs that were highly correlated with ART (Fig. 3c). Known targets of these drugs are consistent with 
pathways that have been tied to proposed ART mechanism of action or resistance (DNA repair, fatty acid 
synthesis, calcium ion metabolism and hemoglobin metabolism)31 and potential new pathways identified 
in our analysis (e.g., calcineurin signaling, cell cycle, autophagy). Drugs with the highest correlations to 
ART compounds also target pathways of genes directly connected to K13-propeller in the co-expression 
network analysis (Fig. 3b) and represent pathways relevant to ART resistance mechanisms. Importantly, 
excluding the K13 mutant and repeating the hierarchical clustering and bootstrap analysis still produces 
a highly significant cluster (p <  0.05) containing the other mutants in the ART sensitivity cluster from 
the original analysis (data not shown). Identification of these genes provides new candidates for moni-
toring the spreading resistance to ART, which is especially important as evidence emerges of alternative 
resistance mechanisms not linked to known mutations in the K13-propeller2,28.

This study presents the first chemogenomic screen of P. falciparum using a random piggyBac inser-
tional mutant library. Chemogenomic profiles from P. falciparum mutants provided unique signatures 
that mapped molecular structures of drugs to their targets demonstrating this technique can be an 
important tool to annotate mechanism of action of drugs and for validating novelty of compounds to 
vulnerable pathways of malaria parasites. The necessary addition of many more mutants and drugs will 
more precisely define the chemical-genomic spaces of the cell-drug interface, which will significantly 
augment the sensitivity and predictive capacity to define mechanisms of action, functionally annotate 
hypothetical genes, and identify interactions among metabolic pathways. Thus this approach provides a 
robust addition to the set of experimental tools for antimalarial drug research to improve target identi-
fication and understanding of mechanism of action.

Materials and Methods
Selection of pathway specific chemical inhibitors. Growth inhibitors belonging to diverse chem-
ical scaffolds were identified to cover all critical biochemical pathways in Plasmodium. These inhibitors 
are known to kill Plasmodium by its association with a specific gene product, were tested for their growth 
inhibition in the wild type P. falciparum NF-54 strain in a 384 well plate format at 12 fold 1:3 serial 
dilutions (Table S1). After initial calibration assays only 53 inhibitors (which also include common anti-
malarials with unknown targets) were filtered out and added to the library for chemical-genetics analysis. 
All inhibitors were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise mentioned except 
for Erythro and Threo-PPMP from Matreya, LLC (Pleasant Gap, PA), cycloguanil and atovaquone was 
a gift from WRAIR, USA.

Parasite strains, piggyBac mutant library and culture maintenance. The wild type P. falci-
parum clone NF54 and all piggyBac single loci mutants were generated from previously reported trans-
fections using pXL-BACII-HDFR/BSD and pHTH22. All strains and piggyBac parasites were cultured 
in 4% hematocrit (A+  erythrocytes from Interstate blood bank, Memphis, TN) and 1% Albumex II in 
RPMI 1640 medium (Invitrogen) supplemented with 50 μ g/ml hypoxanthine (Sigma, St. Louis, MO) and 
25 mM HEPES (Invitrogen) which is in accordance to the standard method described by Trager and 
Jensen, 197632. The flasks containing cultures were grown in a dedicated incubator with continuous flow 
of mixed gas (90% Nitrogen, 5% CO2 and 5% O2 respectively).
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High-Throughput piggyBac phenotype growth assays. We developed an automated platform for 
mutant P. falciparum functional genetics study using a high-throughput forward genetic screen. A library 
of 53 inhibitors, at least 2 per pathway targeting at different levels Plasmodium metabolism were assayed. 
In all chemical-genetic screens, compound dilutions and mutant culture dispensing to assay plates was 
handled robotically with a Beckman-Coulter liquid handling system (BIOMEK 3000 series, Beckman 

Figure 3. ART sensitivity cluster. (a) Annotations of genes affected by piggyBac insertions in each of the 
piggyBac mutants in the Kelch sensitivity cluster. (b) Initial chemogenomic profiling of 71 piggyBac mutants 
identified a cluster of 7 ART sensitive mutants, including the K13 Kelch mutant (piggyBac mutant 58). 
A. GO enrichment analysis of direct neighbors of K13 propeller from a gene-gene coexpression network 
identified pathways linked to K13 ascertain gene function. (c) Drugs and inhibitors showing a significant 
correlation with DHA. Metabolic pathways targeted by these compounds may reflect shared mechanisms of 
action with DHA and other artemisinin compounds.
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Coulter). All assays were conducted in a 384 well culture plate with a total assay volume of 50 μ l where 
compound stock was added in 10×  to the final assay volume.

In each assay, highly synchronous (5% sorbitol treated) ring-stage culture with > 80% confluence 
were considered for growth assays. Briefly, the parasitemia and hematocrit was 0.5 and 1.5% respec-
tively and the cultures were grown in a humidified mixed gas saucer for 72 hours. The growth response 
for each inhibitor dilution was obtained by reading the fluorescence generated by DNA intercalating 
dye SYBRGreen I33. Each batch of piggyBac mutant assays were accompanied with wild type NF54. 
The growth inhibition concentration affecting 50% and 90% (GI50 and GI90) parasite growth was cal-
culated by plotting the relative fluorescence unit values (RFU) of the SYBRGreen I added to culture 
plates. Statistically, each data point was converted to fit a non-linear logistic dose response function 
(DataAspects Plate Manager, DataAspects Corporation, California, USA). The assay values Mean± SD of 
least three assays, R2 (coefficient of determination) > 0.9 was considered significant and considered for 
chemogenomic correlations.

Inhibitor validation and phenotype signatures. To generate profiles of the piggyBac mutants and 
to derive chemotype-phenotype associations, three parameters were considered out of chemogenomic 
assays for each inhibitor: 1) GI50, 50% growth inhibitory concentration; 2) Relative Phenotype Response 
(RPR): [GI50pB over GI50WT (GI50pB/GI50WT)]. RPRs are described either as a shift towards resistance (i.e., 
+ ve increment from the wild type GI50) or sensitivity (decreased GI50 value from the wild type). The 
RPR for each mutant is scored from the wild type assayed along with the mutants except for piggyBac 
PF3D7_0812500 and PF3D7_1360100.

Chemotype-genotype association through phenotypic clustering. A genotype-phenotype 
association was made by cluster analysis of RPRs. Clustering was executed using a standard agglomer-
ative algorithm described by Eisen et al., 199834. Genes were clustered by average linkage to calculate 
minimum distance using a scaled, uncentered Spearman correlation matrix. All data were transformed 
to logarithmic base 2 and hierarchical clustering results were visualized in R using the heatmap.2 func-
tion in the gplots package. To assess statistical significance of clusters, the R package pvclust was used 
to calculate p for each branch point in the piggyBac and drug dendrograms, the package was modified 
to allow a Spearman correlation based distance metric. The output is displayed graphically, conveying 
the clustering and the essential similarity in RPR of the gene functions in presence of an inhibitor. Thus 
patterns like increased resistance is positive shift in GI50 and vice-versa for sensitivity. A distinct subset 
of Gene Ontology (GO) functional annotations relevant to the pathways indicated in the study was used 
to annotate each gene in the chemogenomic interaction dataset for color coding in cluster analysis. Any 
gene not falling into the defined category has been designated as ‘other’. The genes falling under multiple 
annotations, we choose to define it as a most probable on the basis of reviews and similarities published 
concerning the gene. Information on all genes can be found in the Plasmodium genome resource like 
(http://plasmodb.org/plasmo/), GeneDB (http://www.genedb.org/Homepage/Pfalciparum) and KEGG 
GENES Database (http://www.genome.jp/kegg/genes.html).

Construction of drug-drug, gene-gene and drug-gene networks. Correlation between chemog-
enomic profiles of various drugs was determined using the spearman correlation coefficient. For each 
drug pair, a permutation test was conducted, in which a random distribution of 1000 correlation coeffi-
cients was obtained by permuting the chemogenomic profile of a given drug pair 1000 times, followed 
by computation of a correlation coefficient in each instance of permutation. Correlation between any 
drug pair was regarded as significant if the observed correlation coefficient was greater than any of the 
1000 correlation coefficients observed in the permutations of the drug pair’s profiles. Drug pairs whose 
correlation met this criterion were regarded as interacting. Visualization of the drug-drug network inter-
actions was performed in cytoscape35. Similarly, a piggyBac gene-gene network was constructed using the 
spearman correlation co-efficient of each pair of piggyBac mutants across all drugs. For each drug pair, 
a permutation test was conducted and a correlation between any drug pair was regarded as significant if 
was greater than any of the 1000 correlation coefficients observed in the permutations of the drug pair’s 
profiles. Visualization of the gene-gene network interactions and network clustering was performed in 
cytoscape35 using the MCODE algorithm, which identifies clusters of highly interconnected nodes36. 
Drug-gene interactions were considered as significant when a specific mutant exhibited at least 3 fold 
resistance/ sensitivity to a given drug.

qRT-PCR method. A comparative CT method was used and for every plate a standard curve was 
set with 5 dilutions for target gene and reference gene. A comparison of all the time point samples with 
NF54 Time point 1 (2 hour) was made against a pooled reference comprised of NF54 RNA samples 
from 5 time points. Genes used in previous studies were used as endogenous control genes as reference, 
seryl-tRNA synthetase (PF07–0073) and actin (PFL2215w)37, and the qRT-PCR was completed using 
Agilent Mx3000P qPCR System in reactions of 20 μ l volumes using RT2 SYBR Green qPCR Mastermixes 
(Qiagen). The cycling conditions were 95 C for 15 min followed by 40 cycles of 94 C for 30 s, 54 C for 40 s 
and 68 C for 50 s with a final extension at 68 C for 10 min.

http://plasmodb.org/plasmo/
http://www.genedb.org/Homepage/Pfalciparum
http://www.genome.jp/kegg/genes.html
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Data Availability. The data reported in this paper are tabulated in the supplemental materials and 
mutant parasites are deposited with MR4 - BEI Resources (http://www.beiresources.org/About/MR4.
aspx). 
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