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ABSTRACT

Objectives: One challenge that arises when analyzing mobile health (mHealth) data is that updates to the propri-

etary algorithms that process these data can change apparent patterns. Since the timings of these updates are

not publicized, an analytic approach is necessary to determine whether changes in mHealth data are due to life-

style behaviors or algorithmic updates. Existing methods for identifying changepoints do not consider multiple

types of changepoints, may require prespecifying the number of changepoints, and often involve nonintuitive

parameters. We propose a novel approach, Automated Selection of Changepoints using Empirical P-values and

Trimming (ASCEPT), to select an optimal set of changepoints in mHealth data.

Materials and Methods: ASCEPT involves 2 stages: (1) identification of a statistically significant set of change-

points from sequential iterations of a changepoint detection algorithm; and (2) trimming changepoints within

linear and seasonal trends. ASCEPT is available at https://github.com/matthewquinn1/changepointSelect.

Results: We demonstrate ASCEPT’s utility using real-world mHealth data collected through the Precision VIS-

STA study. We also demonstrate that ASCEPT outperforms a comparable method, circular binary segmenta-

tion, and illustrate the impact when adjusting for changepoints in downstream analysis.

Discussion: ASCEPT offers a practical approach for identifying changepoints in mHealth data that result from

algorithmic updates. ASCEPT’s only required parameters are a significance level and goodness-of-fit threshold,

offering a more intuitive option compared to other approaches.

Conclusion: ASCEPT provides an intuitive and useful way to identify which changepoints in mHealth data are

likely the result of updates to the underlying algorithms that process the data.
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LAY SUMMARY

Mobile health (mHealth) has taken on an increasingly important role in medicine and public health. However, how mHealth

data are reported to an end user can change based on updates to the underlying proprietary algorithms that process these

data. The times at which these changes occur represent potential “changepoints.” Effectively using mHealth data for health

applications requires correctly identifying when such algorithmic changes occur and distinguishing them from changes in

mHealth data that are due to lifestyle behaviors. We present Automated Selection of Changepoints using Empirical P-values

and Trimming (ASCEPT) as a method to identify changepoints in mHealth data. ASCEPT correctly identifies algorithmic

changepoints both in the context of simulated data and real Fitbit data collected as part of the Precision VISSTA study. We

also find that ASCEPT outperforms a comparable approach, circular binary segmentation, and that this difference in per-

formance has a clear impact when adjusting for the identified changepoints. ASCEPT offers an intuitive and useful approach

for identifying changepoints in mHealth data before performing any downstream analysis.

INTRODUCTION

Recently, mobile health (mHealth) has taken on growing importance

in medicine and public health, among other fields.1–3 mHealth devices,

such as Fitbit smartwatches, often produce time series data by record-

ing variables, like heart rate (HR) and number of steps, at regular

intervals (eg, hourly or daily). Studying these data can bring important

insights into how health changes over time. For instance, an individual

might walk less after an injury. This type of event corresponds with a

“changepoint,” a time at which the distribution of data changes, and

typically reflects a change in the mean of the data, or a “mean-shift.”

When attributable to lifestyle or behavior, these shifts often follow

trends. For instance, an individual’s steps may follow a linear trend,

increasing at a fixed rate as they train for a marathon. Alternatively,

their steps may follow a seasonal trend, increasing and decreasing peri-

odically as they walk more during the summer than the winter each

year. However, in addition to lifestyle or behavioral changes, wearable

devices also have both planned software or hardware updates as well

as unexpected technical issues that can impact data collection and

reporting. These can introduce relatively sudden “technological

changepoints” to the data, which can be difficult to distinguish from

behaviorally driven changes, obscuring patterns of interest. Therefore,

it is necessary to identify and correct for these technological change-

points before proceeding with downstream analysis.

Unfortunately, mHealth device manufacturers often do not pub-

licize the timing of planned updates and identified technological

issues. Although an investigator could potentially monitor a manu-

facturer’s release notes to determine when updates are pushed or

manually inspect the mHealth data to find potential technological

changepoints, these approaches are neither scalable nor practical

and are especially challenging when studies utilize multiple types of

devices. Even a single manufacturer may not push updates to all

devices simultaneously, or they may require users to first update an

associated smartphone app. Thus, manufacturer updates sometimes

do not even coincide with a single timepoint across users.

There are many existing approaches that detect changepoints in

time series by solving an optimization problem,4 including Pruned Exact

Linear Time (PELT).5 Using PELT generally entails specifying an opti-

mization penalty when detecting multiple changepoints, which is diffi-

cult to do in practice. Changepoints for a Range of PenaltieS (CROPS)6

allows one to efficiently run PELT under various penalties but does not

select a final or optimal set of changepoints. Thus, instead of proposing

another method for changepoint “detection,” we developed Automated

Selection of Changepoints using Empirical P-values and Trimming

(ASCEPT) to identify changepoints in mHealth data through change-

point “selection,” using relatively familiar statistical concepts instead of

optimization parameters. ASCEPT analyzes multiple runs of PELT, con-

sidering iteratively larger sets of changepoints until the selected set no

longer offers a statistically significant improvement over the prior set.

Next, ASCEPT removes changepoints that are likely to be associated

with lifestyle or behavioral changes rather than technological issues,

ultimately yielding a single optimal set of changepoints. It is worth not-

ing that ASCEPT shares similarities with circular binary segmentation

(CBS),7 which, unlike many other changepoint detection algorithms,

uses a statistical test to identify significant changepoints and then per-

forms “pruning” to identify a subset of those changepoints. However,

CBS was designed for genomics data and does not consider features

common to mHealth data, such as seasonal patterns.

In addition to PELT and CBS, many other changepoint detection

algorithms are available. For instance, there are changepoint algorithms

that detect changes in linear, polynomial, and seasonal trends, rather

than general mean-shifts,8–10 while other algorithms handle abrupt

changes in the presence of trends, changes in variance, or changes in the

presence of autocorrelated noise.11–14 While these algorithms address

challenges similar to those found in mHealth data, ASCEPT addresses 2

problems that these algorithms do not. First, mHealth researchers typi-

cally have greater familiarity with statistical concepts than optimization

concepts. ASCEPT replaces the choice of an optimization penalty,

which is necessary for most changepoint detection algorithms, with a

statistical metric. Second, mHealth time series can simultaneously con-

tain sudden mean-shifts, linear trends, and seasonal trends, but existing

algorithms tend to address only 1 or 2 of these characteristics at a time.

Therefore, we designed ASCEPT to address all 3. ASCEPT also consid-

ers other details, such as how mHealth data may have as few as one

observation between changepoints, which can prove difficult for many

other algorithms. For a more detailed review of changepoint detection,

please refer to the Supplementary Material.

In this study, we evaluate ASCEPT on both simulated data and Fitbit

data collected by the Precision VISSTA study15 to determine whether the

method appropriately identifies changepoints. Since ASCEPT and CBS7

share underlying principles for identifying changepoints but differ in their

mechanics, we compare the performance of ASCEPT to that of CBS and

examine whether ASCEPT provides better changepoint selection under

comparable settings. Lastly, we perform a correction procedure to deter-

mine whether differences between the procedures have an impact when

adjusting the mHealth data for the identified changepoints.

MATERIALS AND METHODS

Data
Precision VISSTA data

We evaluated the performance of ASCEPT on mHealth data from

the Precision VISSTA study.15 This data set included adults in the
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United States who had inflammatory bowel diseases and were part

of the parent Internet cohort study. Users participated in a survey

and could donate their personal wearable device data towards

research, meaning that the study followed a bring-your-own-device

model. Thus, the data set contained multiple manufacturers and

device types. Due to their prevalence in the cohort, we chose to focus

on individuals who used a HR Fitbit device introduced in 2016–

2019 (ie, the Alta HR, Blaze, Charge 2, Charge 3, Inspire HR, Ionic,

Versa, or Versa 2), multiple Fitbit devices over time, or an unknown

Fitbit device (eg, a Fitbit app). This subset of the data included

203 351 observations on 298 individuals recorded between May 15,

2015 and October 27, 2019.

These data included 6 activity variables (steps, distance, floors,

elevation, calories, and time active) and 6 sleep variables (total sleep,

deep sleep, light sleep, rapid eye movement (REM) sleep, time

awake at night, and times woken). The median number of users con-

tributing data on a given day ranged from 50 for REM, to 93–95 for

the other sleep variables, to 131 for the activity variables. We

excluded floors and elevation as their values largely stayed within

narrow ranges near zero over the study period. We also excluded

REM sleep due to a lack of any data between May 20, 2016 and

March 26, 2017. For more information on the Precision VISSTA

data, including preprocessing steps, see the Supplementary Materi-

als.

To help identify population-level changepoints, we focused on

the daily median value of each variable across users. As an example,

Figure 1A shows the daily median amount of deep sleep across time,

as well as the number of individuals contributing to these values.

We observe that the median amount of deep sleep experienced an

abrupt shift around July 2017. While it is possible that a single indi-

vidual could have suddenly experienced large changes in deep sleep

due to various life events, like an injury or the birth of a child, it is

unlikely that the median deep sleep across many users truly

decreased by 5–6 hours after July 19, 2017, only for it to later

rebound multiple times. Instead, these shifts were more likely attrib-

utable to changes in how Fitbit’s algorithms calculated deep sleep.

Thus, it is critical to identify and control for these technological

changepoints in order to correctly describe human behavioral

changes relevant to health and disease.

Simulated data

Shifts and patterns that appeared in the real data were often not

defined well enough to serve as gold standards. For example, there

appeared to be seasonality in the deep sleep data prior to July 19,

2017, but it was inconsistent (Figure 1A). Likewise, it was challeng-

ing to determine whether some points between May 15, 2015 and

May 15, 2016 constituted behaviorally driven or technological

changepoints because only 7–54 unique users contributed data dur-

ing this time. On the order of tens of samples are generally necessary

for a good approximation of a median value. Therefore, large

behaviorally driven fluctuations were more likely during this earlier

period compared to later, when up to 160 unique users contributed

sleep observations (Supplementary Figure S1).

Due to these limitations, we first evaluated ASCEPT using a

simulated time series containing 800 observations (Figure 1B). This

data set had sudden mean-shift changepoints at indices 49, 60, 600,

699, and 700, an increasing linear trend between indices 201 and

400 inclusive, and a seasonal pattern between indices 401 and 600

inclusive.

ASCEPT stage 1: Changepoint selection using empirical

P-values
The first stage of ASCEPT incrementally accumulates mean-shift

changepoints detected by PELT5 until the newly proposed change-

points do not offer a statistically significant improvement in good-

ness of fit.

We use CROPS6 to efficiently run PELT for a range of different

optimization penalties. From this, we obtain various sets of change-

points, from those found under high penalties to those found under

low penalties. We let a changepoint at position j indicate that the

time series’ distribution changes between j and jþ 1. Let T k denote

the kth set of changepoints, k ¼ 0; 1; . . . ; K, and let T 0 ¼1,

such that the procedure starts with no identified changepoints. This

corresponds with a large optimization penalty in PELT. Assume that

we have already found T k to be statistically significant. We then

want to check the statistical significance of the next proposed set of

changepoints, T kþ1, which corresponds with a lower optimization

penalty in PELT, given those changepoints in T k. T k will usually,

but not necessarily, be a subset of T kþ1. Figure 2A, B depicts a sce-

nario in which we have detected changepoints T k ¼ f305; 600g
and are evaluating T kþ1 ¼ f49; 60; 305; 600g as providing a sig-

nificant improvement.

To assess whether T kþ1 offers a significant improvement in

goodness of fit, we must both choose a goodness-of-fit measure and

assess its null distribution. For goodness of fit, we use the log-

likelihood of normally distributed data. More specifically, between

any 2 changepoints, or between a changepoint and the start or end

of the series, the observations form a “segment.” We assume that all

observations are independent and normally distributed, but that

those within the same segment are also identically distributed. This

assumption largely follows the implementation of PELT in R’s

“changepoint” package.16

We next assess the null hypothesis that T k represents all of the

true mean-shift changepoints in the time series using a process that

may be viewed as either a Monte Carlo procedure or a parametric

bootstrap. We purposefully do this in a manner that does not rely on

asymptotic results, since mHealth time series can contain very small

segments (see Figure 1A). We first generate a time series under the

null by randomly drawing from normal distributions with the same

means and standard deviations as the corresponding segments cre-

ated by T k in the observed data. For example, Figure 2A shows the

simulated data split into 3 segments by 2 changepoints at indices

305 and 600. Figure 2C illustrates a corresponding random sam-

pling from the normal distributions whose means and standard devi-

ations match those estimated for each of these 3 segments. We

record the log-likelihood for this null time series using the T k

changepoints. We then impose the changepoints in T kþ1 onto this

null time series and calculate the corresponding log-likelihood, as

depicted in Figure 2D. Finally, we record the change in the log-

likelihood under the null, comparing T kþ1 with T k.

We repeat this process N times in order to calculate an empirical

P-value for the observed change in the log-likelihood. If the observed

change is statistically significant at the chosen level, a, then we reject

the null that T k represents all the true mean-shift changepoints for

the time series, and instead select T kþ1 as the current set of signifi-

cant changepoints. Figure 1B shows how the procedure continues,

comparing T kþ1 to T kþ2 and so forth, until we obtain a statistically

insignificant result. This hypothesis testing process is a “fixed-

sequence” procedure and controls the family-wise error rate (ie, the
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probability of making at least one Type 1 Error across tests) at the

chosen significance level, a.17

ASCEPT stage 2: Trimming changepoints within linear

or seasonal trends
Stage 1 identifies changepoints that include both technological

changepoints, such as those associated with manufacturer updates,

and changepoints from behaviorally driven patterns. In order to dis-

tinguish the former from the latter we note that, while software

updates likely induce sudden mean-shifts in population-level

mHealth data, behaviorally driven changes are more likely to induce

linear or seasonal trends (see, eg, Figure 1A). For instance, individu-

als may walk more at the end of an exercise program compared to

at the start (linear trend) or walk more during summer than winter

(seasonal trend). These trends technically contain a mean-shift at

each point, but it is unnecessary to retain these changepoints since,

in practice, investigators are generally interested in identifying the

start and end of these trends, and then analyzing or adjusting them

in their entirety. Therefore, ASCEPT aims to exclude changepoints

within trends; for convenience, we refer to these as “nuisance

changepoints.” In contrast, ASCEPT retains “relevant change-

points” that correspond with a sudden mean-shift, or that are at the

start or end of a linear or seasonal trend (Figure 1C). We refer to

ASCEPT’s process of removing nuisance changepoints as

“trimming.” Although it is the same principle as “pruning” used by

methods such as CBS,7 we avoid the term “prune” because PELT

also uses “prune” to describe part of its optimization process.5

Figure 1. The ASCEPT workflow. (A) The daily median deep sleep from the Precision VISSTA study as well as the number of individuals contributing to these val-

ues. (B) ASCEPT broken down by stage and applied to simulated data. The first row shows the original simulated time series. The second row shows significant

changepoints being iteratively identified. The third row shows changepoints within linear and seasonal trends being iteratively trimmed. The fourth row shows

the simulated time series with the final set of identified changepoints. (C) The same results as (B) but for the deep sleep data.
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We illustrate ASCEPT’s trimming process in Figure 3. Figure 3A

shows a set of changepoints identified by stage 1. For every change-

point, we perform 2 types of model fits. We first fit piecewise linear

and harmonic regressions on each of the 2 segments located to either

side of the changepoint. We then fit linear and harmonic regressions

across the 2 segments, ignoring the changepoint. To fit the linear

models, which should capture linear trends, we regress the values in

a segment against their indices. For harmonic regressions, which

should capture seasonal trends, we first estimate a segment’s period

using the frequency associated with the peak of the periodogram

and then fit the harmonic regression using a linear model based on

this estimate. For each of the piecewise and cross-segment fits, we

calculate the root mean square error (RMSE). For relevant change-

points, the piecewise fits should greatly outperform the cross-

Figure 2. The process for assessing the significance of new changepoints in ASCEPT. (A) The simulated data with initial changepoints T k ¼ f305; 600g. The log-

likelihood, assuming independent and identically distributed observations within-segment, is �3727.3. (B) The simulated data set with the next set of change-

points T kþ1 ¼ f49; 60; 305; 600g. The log-likelihood is �3512.3, thus the observed change in the log-likelihood is 215.0. (C) A Monte Carlo sample with the initial

changepoints at f305, 600g shown. The observations in each segment are randomly drawn from a normal with a mean and standard deviation equal to that for

the corresponding segment in (A). The log-likelihood is �3746.6. (D) The same Monte Carlo sample from (C) but now with the next set of changepoints at f49, 60,

305, 600g shown. The log-likelihood is �3745.0. The change in the log-likelihood for this Monte Carlo sample under the null is therefore 1.6. The process in (C)

and (D) is repeated a large number of times to generate an empirical null distribution for the change in the log-likelihood. In all plots, the segments between the

identified changepoints are numbered.
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segment fits. However, for nuisance changepoints that are part of an

ongoing linear or seasonal trend, the best cross-segment and piece-

wise fits should perform similarly.

To illustrate this, Figure 3B shows a sudden mean-shift at index

60. Here, the best piecewise fit outperforms the best cross-segment

fit by nearly a factor of 3, suggesting that this is a relevant change-

point. In contrast, Figure 3C shows a nuisance changepoint that is

within a linear trend. In this case, a linear regression across both

segments performs only marginally worse than the best piecewise

fit to the segments. Similarly, Figure 3D shows a changepoint

within a seasonal pattern. In that example, the cross-segment har-

monic regression performs only marginally worse than the best

piecewise fit.

ASCEPT preforms this process of fitting piecewise and cross-

segment models for every changepoint identified in stage 1. For each

changepoint, we record the ratio of the RMSE for the best cross-

segment fit to the RMSE for the best piecewise fit. The changepoint

that corresponds to the smallest ratio is then removed if it falls

below a chosen “trimming threshold.” This process repeats for the

remaining changepoints until no ratio falls below the threshold, as

depicted in Figure 1B.

Segment correction
ASCEPT’s main purpose is to select changepoints, rather than to

correct for them. However, it is important to illustrate the impact of

Figure 3. The trimming process in ASCEPT. (A) The simulated data with an initial set of changepoints. For illustrative purposes, only a subset of the changepoints

found after running the first stage of ASCEPT is shown. (B) Assessing the changepoint between segments 2 and 3, a relevant changepoint. The cross-segment

fits are more than 3 times worse than the best piecewise fit. (C) Assessing the changepoint between segments 4 and 5, a nuisance changepoint due to a linear

trend. The cross-segment linear fit is only about 3% worse than the best piecewise fit. (D) Assessing the changepoint between segments 8 and 9, a nuisance

changepoint due to seasonality. The cross-segment harmonic fit is only about 9% worse than the best piecewise fit.
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the selection process when adjusting data downstream. Therefore,

we performed a basic correction procedure. We used changepoints

identified by ASCEPT and CBS to fit constant, linear, and harmonic

regressions to the corresponding segments. We declared a linear or

harmonic regression to be the best fit to a segment if the ratio of the

constant fit’s RMSE to the best corresponding linear or harmonic

regression’s RMSE was greater than a given “fitting threshold.” In

these cases, we detrended or deseasonalized those segments. We

then shifted and scaled all segments to match the location and scale

of a chosen reference segment. The location was defined as the mean

of the reference segment before any correction was performed and

the scale was defined as the residual standard error for the best-

fitting model on that segment.

Parameters
For all main text analyses, we ran stage 1 of ASCEPT using a signifi-

cance level of a ¼ :01 and N ¼ 10 000 Monte Carlo simulations.

We ran stage 2 using a trimming threshold of 1.2, such that change-

points whose best cross-segment fit had an RMSE within 20% of

the best piecewise fit were subject to removal. Supplementary Figure

S2 shows results from a sensitivity analysis in which we ran ASCEPT

on the simulated data using various trimming threshold values.

We ran CBS, as implemented in R’s “DNAcopy” package,18

using a significance level of a ¼ :01 and 10 000 permutations. We

set CBS’s pruning threshold to .5; this yielded comparable results to

ASCEPT’s 1.2 trimming threshold in terms of the number of change-

points identified per time series.

For segment correction, we used a fitting threshold of 1.75. We

shifted and scaled with respect to the seasonal segment, as captured

by either ASCEPT or CBS, as the reference.

R package
ASCEPT is implemented in “changepointSelect,” an R package

hosted on GitHub at https://github.com/matthewquinn1/change-

pointSelect.

RESULTS

ASCEPT on the simulated data
When we first applied ASCEPT to simulated data, we found that

stage 1 detected 7 relevant changepoints at indices 49, 60, 225, 400,

600, 699, and 700, as well as many nuisance changepoints that were

subsequently trimmed in stage 2 (Figure 4A). Comparing with

known features of the simulated data (see Materials and Methods

section), we observe that of these 7 detected relevant changepoints,

5 directly correspond to mean-shifts in the simulated data (at indices

49, 60, 600, 699, and 700), while the other 2 segment off the linear

trend (which extended from indices 201 to 400 in the simulated

data) and the seasonal trend (which extended from indices 401 to

600 in the simulated data). Thus, ASCEPT does an excellent job of

identifying known changepoints in the simulated data, capturing 6

perfectly (at indices 49, 60, 400, 600, 699, and 700) and closely

approximating the seventh (identified at index 225 instead of 200).

To provide an indication of ASCEPT’s runtime on the simulated

data, we note that stage 1 took 14.05 seconds in serial on an 11th

Gen Intel Core i7-1165G7 processor with a 2.80GHz clock speed.

This decreased to 10.50 seconds when using 4 cores. Stage 2 took

0.85 seconds in serial.

ASCEPT on the Precision VISSTA mHealth data
Next, we applied ASCEPT to mHealth data from the Precision VIS-

STA study. Figure 4B, C shows the results for deep and light sleep.

We observed similar results for these variables, which was expected

because both contribute to total sleep. For deep sleep, ASCEPT iden-

tified changepoints on July 19, 2017, September 1, 2017, September

6, 2017, February 14, 2018, and February 15, 2018. For light sleep,

ASCEPT identified changepoints on July 19, 2017, August 9, 2017,

August 31, 2017, September 6, 2017, February 14, 2018, and Febru-

ary 15, 2018. Based on this analysis, we hypothesize that Fitbit

changed how it calculated sleep stage information immediately after

these dates, impacting the relationship between deep and light sleep.

We further assessed these changepoints by cross-referencing with

online information and found that some of the identified change-

points corresponded to known firmware updates and glitches. Alta

HR received firmware update 26.62.6 between August 1, 2017 and

August 10, 2017,19 corresponding to the August 9, 2017 change-

point for light sleep. Likewise, Fitbit modified its calculation of sleep

by introducing “Sleep Stages,” starting on March 6, 2017.20 Users

reported glitches with Sleep Stages from within a week of the release

through July 24, 2017 for Alta HR, Blaze, and Charge 2 devices,21

encompassing the changepoint on July 19, 2017. Users again

reported glitches for Blaze devices between September 3, 2017 and

September 7, 2017,22 corresponding to the September 6, 2017

changepoint.

Cross-referencing with online information primarily allows us to

investigate changepoints associated with major software/app

updates announced by Fitbit, such as the introduction of the REM

sleep variable in March 2017, or those that significantly impacted

user experience. However, there are several changepoints that

ASCEPT identified for which we did not find corresponding online

information. In these cases, it is possible that Fitbit implemented

minor algorithmic updates that the company felt did not warrant a

public announcement and that did not cause any obvious “glitches”

to individual users. We believe identifying these changepoints high-

lights a strength of ASCEPT. Namely, the timing and significance of

mHealth algorithmic and/or device updates are not always docu-

mented and thus may be unknown to the public. At the same time,

identifying and appropriately accounting for these changepoints

may be important for downstream analysis.

Next, we used the daily median total sleep as a negative control

(Figure 4D). While there were some large fluctuations in median

total sleep during 2015, this variance was likely because relatively

few individuals (as few as 7; see Supplementary Figure S1) contrib-

uted data on any given day. Accordingly, ASCEPT did not identify

any changepoints in this time series after trimming. We do not sus-

pect that Fitbit changed the calculation of total sleep during the

study.

Comparison between ASCEPT and CBS
ASCEPT shares some principles with CBS7 (see Supplementary

Material). Therefore, we compared the changepoints identified by

CBS to those identified by ASCEPT. For the simulated data

(Figure 5A), we found that CBS failed to capture the single-point

segment at index 700, while ASCEPT successfully did. ASCEPT also

successfully segmented off the linear and seasonal trends while CBS

split the linear trend into 4 segments.

We also compared ASCEPT and CBS on mHealth data from the

Precision VISSTA study. For most variables, the 2 procedures

yielded similar changepoints, although there were some important
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differences. For example, CBS failed to detect changepoints for the

single-day shift in a deep sleep on February 15, 2018, while ASCEPT

did (Figure 5B). The 2 procedures also greatly differed when applied

to the times woken variable (Figure 5C). In particular, CBS failed to

capture multiple changepoints from late 2017 to early 2018 and did

not trim 2 nuisance changepoints that appeared to be within linear

or seasonal trends. In contrast, ASCEPT successfully captured the

major relevant changepoints and trimmed nuisance changepoints.

We provide comparisons of ASCEPT and CBS for the remaining

mHealth variables in Supplementary Figures S3 and S4. Visual

inspection of these results demonstrates that ASCEPT generally out-

performed CBS on real-world data. In some cases, ASCEPT identi-

fied several apparent changepoints that were missed by CBS (eg, for

the light sleep and time awake variables), while in other cases CBS

identified changepoints that did not seem well supported (eg, for the

total sleep, time awake, and 4 analyzed activity variables).

While ASCEPT’s primary purpose is to select changepoints, we

also performed a simple correction to demonstrate the importance

of accurately identifying changepoints. In particular, we found the

best fit model for each segment (Figure 6A, B) and then adjusted the

Figure 4. Overall results from applying ASCEPT to (A) the simulated data, as well as mHealth data from the Precisions VISSTA study measuring (B) median deep

sleep, (C) median light sleep, and (D) median total sleep.
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data to match the location and scale of the segment containing the

seasonal pattern, which was accurately identified by ASCEPT as

indices 401–600 inclusive and identified by CBS as indices 356–600

inclusive. If the changepoints were accurately identified, then we

expected the transformed time series to look like normally distrib-

uted noise without any mean-shifts. We found this to be true for the

ASCEPT segment-corrected time series (Figure 6C). In contrast, the

CBS segment-corrected time series (Figure 6D) still contained trends,

seasonality, and other mean-shifts due to the less accurate identifica-

tion of changepoints. Supplementary Figures S5 and S6 show results

when using fitting thresholds other than 1.75.

DISCUSSION AND CONCLUSIONS

We have presented an approach, ASCEPT, for identifying change-

points in mHealth data. ASCEPT builds upon the current state-of-

the-art method, PELT, by incorporating the principles of statistical

significance and trimming. ASCEPT adopts progressively larger sets

Figure 5. Comparison of ASCEPT with CBS when applied to (A) the simulated data, as well as mHealth data from the Precisions VISSTA study measuring (B)

median deep sleep and (C) median times woken during the night.
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of changepoints until the newly proposed set does not provide a stat-

istically significant improvement in goodness of fit. ASCEPT then

trims changepoints within linear and seasonal trends. In mHealth

data, these trends are often attributable to human behavior or health,

rather than technological issues. As a result, an investigator handling

data downstream should be interested in studying these trends as a

whole, rather than arbitrarily splitting them up and correcting them

in the same manner as for technological changepoints. The final

result from ASCEPT is a set of estimated changepoints that can be

used to adjust mHealth data prior to additional downstream analy-

ses, for example, estimating statistical associations between mHealth

variables and other independently collected data, such as medical

information (eg, disease diagnoses and treatment), phenotypic varia-

bles (eg, weight and blood pressure), or omics measurements.

ASCEPT offers many advantages over comparable methods. For

example, using PELT to detect multiple changepoints requires speci-

Figure 6. Illustration of applying a simple correction process to simulated data after identifying changepoints using either ASCEPT or CBS. (A) The best model fits

using ASCEPT changepoints. (B) The best model fits using CBS changepoints. (C) The corrected series using ASCEPT changepoints. (D) The corrected series

using CBS changepoints.
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fying an optimization penalty while ASCEPT allows an investigator

to specify a significance level, a more intuitive statistical parameter.

Additionally, ASCEPT is specifically designed for mHealth data,

which is not true of comparable methods like CBS. For instance,

CBS uses a permutation test to obtain P-values for changepoints,7

but this approach has difficulty capturing segments containing only

one observation, a feature we observed in the mHealth data from

the Precision VISSTA study (Figure 1A). In contrast, ASCEPT’s

Monte Carlo procedure can capture single-point segments

(Figure 4B). Additionally, CBS trims changepoints using a sum of

squared within-segment deviations measure,7 while ASCEPT

directly models the linear and seasonal trends in mHealth data,

thereby helping to differentiate between common behaviorally

driven patterns and other patterns that may be a result of technolog-

ical changes, such as software or hardware updates to a wearable

device.

Importantly, ASCEPT allows an investigator to identify potential

technological changepoints automatically. For example, while Fitbit

lists previous firmware versions online, it does not readily provide

release dates or specific notes regarding each one.23 Instead, a

researcher needs to manually read through online community forums

for details.24 In our investigation of these online notes, we found that

update rollouts and glitches often occurred over days or weeks, making

it difficult to precisely determine when the data reflect these changes.

Furthermore, some changes may not even be publicized, rendering a

manual search useless. In contrast, ASCEPT provides an effective way

to precisely identify when technologically driven changes occurred.

We note, however, that ASCEPT has some potential limitations.

First, since it involves a Monte Carlo method, ASCEPT does not

guarantee the same results over repeated runs; however, using a

large number of simulations mitigates this issue. This first stage of

ASCEPT also approximates P-values in a manner that may yield

false positives because we do not rerun PELT on each simulated ser-

ies when obtaining P-values. However, in most cases, these false

positives should be removed by ASCEPT’s trimming procedure.

Some time series may also be difficult for ASCEPT to analyze. For

example, ASCEPT may have difficulty precisely demarcating seg-

ments within a time series that includes multiple linear trends with

varying slopes. However, we found that ASCEPT generally per-

formed well even for several challenging scenarios in the simulated

and real mHealth data. ASCEPT is also computationally intensive,

but we parallelized its implementation for improved performance.

In addition, ASCEPT assumes that the observations are normally

distributed, which may not always be true. However, normality is

appropriate to use in many scenarios, such as when using the sample

mean or median of a variable,25 as we did in our application of

ASCEPT to mHealth data from the Precision VISSTA study. Lastly,

ASCEPT requires the selection of 2 thresholds: a significance level

and a trimming threshold. While these parameters are intuitive, we

recommend that investigators use a sensitivity analysis to select a

trimming threshold that is appropriate for their data. In our analy-

ses, we found that the changepoints identified by ASCEPT were

robust across a wide range of trimming threshold values.

While there are limitations, ASCEPT also has many strengths. For

instance, while we developed ASCEPT for mHealth data and tested it

on data from the Precision VISSTA study, the approach is generaliz-

able. For example, a researcher could apply ASCEPT to select mean-

shift changepoints in any univariate time series for which linear trends

and seasonality induce nuisance changepoints. Additionally, instead of

only applying ASCEPT to population-level data to identify technologi-

cal changepoints, an investigator could apply ASCEPT to an individu-

al’s time series data to identify behavioral shifts that are not associated

with broader seasonal or linear patterns. One could also modify

ASCEPT to identify and remove nuisance changepoints within other

trends, such as quadratic trends, which may be more common in other

types of data.26 ASCEPT could also be adjusted to handle change-

points associated with changes in variance, rather than only mean-

shift changepoints, and its normality assumption could be adjusted to

allow for other distributional assumptions. For example, one may

want to consider a Poisson distribution for count-related mHealth var-

iables (eg, steps) or consider lognormal, chi-squared, and gamma dis-

tributions for positive and skewed variables (eg, time active).

Accounting for these in ASCEPT would entail changing the distribu-

tion used when calculating the likelihood of segments. However, since

PELT assumes normality, one would also need to adjust PELT’s code.

While the current presentation of ASCEPT uses PELT, a researcher

could, in theory, also apply the same processes to other changepoint

detection algorithms.

We designed ASCEPT as a formal process to select relevant

changepoints among those proposed by PELT by using statistical

tests and modeling trends that are commonly associated with nui-

sance changepoints. Identifying these types of changepoints is a crit-

ical step for effectively analyzing mHealth data, which often

contains changepoints both from sudden changes in the propriety

algorithms used to record measurements and from changes in

human behavior. ASCEPT automates this process and only requires

selecting 2 intuitive parameters. This affords a distinct advantage

over using other methods or performing a manual identification of

technological changepoints, which supports ASCEPT’s broad

applicability to mHealth data analysis.
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