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ABSTRACT
Background. Gastric cancer (GC) is the fourth most frequently diagnosed malignancy
and the second leading cause of cancer-associated mortality worldwide. The tumor
microenvironment, especially tumor-infiltrating immune cells (TIICs), exhibits crucial
roles both in promoting and inhibiting cancer growth. The aim of the present study
was to evaluate the landscape of TIICs and develop a prognostic nomogram in GC.
Materials andMethods. A gene expression profile obtained from a dataset from The
CancerGenomeAtlas (TCGA)was used to quantify the proportion of 22 TIICs inGCby
the CIBERSORT algorithm. LASSO regression analysis andmultivariate Cox regression
were applied to select the best survival-related TIICs and develop an immunoscore
formula. Based on the immunoscore and clinical information, a prognostic nomogram
was built, and the predictive accuracy of it was evaluated by the area under the curve
(AUC) of the receiver operating characteristic curve (ROC) and the calibration plot.
Furthermore, the nomogram was validated by data from the International Cancer
Genome Consortium (ICGC) dataset.
Results. In theGC samples,macrophages (25.3%), restingmemoryCD4T cells (16.2%)
and CD8 T cells (9.7%) were the most abundant among 22 TIICs. Seven TIICs were
filtered out and used to develop an immunoscore formula. The AUC of the prognostic
nomogram in the TCGA set was 0.772, similar to that in the ICGC set (0.730) and
whole set (0.748), and significantly superior to that of TNM staging alone (0.591).
The calibration plot demonstrated an outstanding consistency between the prediction
and actual observation. Survival analysis revealed that patients with GC in the high-
immunoscore group exhibited a poor clinical outcome. The result of multivariate
analysis revealed that the immunoscore was an independent prognostic factor.
Discussion. The immunoscore could be used to reinforce the clinical outcome
prediction ability of the TNM staging system and provide a convenient tool for risk
assessment and treatment selection for patients with GC.

Subjects Bioinformatics, Gastroenterology and Hepatology, Immunology, Oncology
Keywords Tumor-infiltrating immune cells, Nomogram, Gastric cancer

INTRODUCTION
Gastric cancer (GC) is the fourth most frequently diagnosed malignancy and the second
leading cause of cancer-associated mortality worldwide (Sitarz et al., 2018; Wang et al.,
2016). Annually, it is estimated that approximately one million new cases of GC are
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diagnosed and there are >800,000 cases of GC-associated mortality (Park et al., 2018).
With the advancements in treatment and diagnostic technology, the clinical prognosis of
patients with GC has been significantly improved (Wu et al., 2019). However, for patients
in advanced stage the 5-year relative survival rate remains limited to only 20% (Wei et
al., 2017). What’s worse is that, due to a lack of classical symptoms in the early stage, the
majority of GC patients are in the advanced stage at the time of diagnosis and almost
50% of patients have experienced metastasis (Wang et al., 2018a;Wang et al., 2018b). TNM
staging classified by the American Joint Committee on Cancer and International Union
against Cancer and histological subtype are the most commonly used clinicopathological
variables for clinical decision making and prognosis stratification of GC (Jiang et al., 2018).
However, an increasing number of studies have reported differences in clinical outcomes
among GC patients with the same TNM stage and similar therapeutic regimens (Noh et
al., 2014; Zeng et al., 2018), suggesting that TNM staging alone cannot provide complete
information for prognosis prediction of GC.

The tumor microenvironment (TME) is a complicated system consisting of extracellular
matrix, chemokines, cytokines and non-tumor cells (Yang et al., 2018). Tumor-infiltrating
immune cells (TIICs) are a component of non-tumor cells in TME. Several studies have
reported crucial functions of TIICs both in promoting and inhibiting cancer growth as
independent prognostic factors in various cancer types (Xiong et al., 2018; Liu et al., 2018).
In addition, novel insights about the role of TIICs support that the composition of TIICs
along with their functionality may be relevant for cancer management (Bense et al., 2016).
However, conventional detection technology for TIICs, such as immunohistochemistry
(IHC) and flow cytometry, are based on several marker proteins and are not capable of
systematically evaluating the functions of diverse immune cells, due to the restriction of the
number of markers that cannot be measured simultaneously with current methods (Zhou
et al., 2019). As an alternative, the CIBERSORT algorithm can simultaneously determine
the landscape of 22 TIICs by assessing the relative expression changes of a set of barcode
genes (521 genes) compared with the expression of all other genes in the sample with a
support vector regression approach (Newman et al., 2015). The CIBERSOFT algorithm
has been considered to be the most accurate method for identifying TIICs and is used to
develop the immunoscore model in several cancer types (Bense et al., 2016; Liu et al., 2017).

The present study applied the CIBERSORT algorithm for analysis of gene expression
profiles fromTheCancer GenomeAtlas (TCGA; https://cancergenome.nih.gov) to quantify
proportions of 22 TIICs in GC and develop an immunoscoremodel, which was validated by
data from the International Cancer Genomics Consortium (ICGC) dataset. By integrating
the immunoscore and clinical information, a prognostic nomogram for predicting the
3-year overall survival (OS) in GC was constructed. A novel prognostic nomogram is
required for improvement of treatment selection and outcome prediction compared with
TNM staging, and may assist with the development of novel strategies for diagnosis and
the identification of potential drug targets of GC.
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MATERIALS AND METHODS
Data profile
The gene expression profiles were obtained from TCGA and ICGC datasets (downloaded
in April 2019), and then subjected to background correction and normalization with Perl
5.0 (http://www.perl.org/). Meanwhile, relevant clinical characteristics of cancer cases were
also collected. Patients with a follow-up time <30 days or a lack of pathological diagnosis
were excluded from the study. The differences of demographic and baseline characteristics
between two sets were compared by 2 tests, using SPSS 20.0 (IBM Corp.). P < 0.05 was
considered to indicate a statistically significant difference.

Evaluation of tumor-infiltrating immune cells
As described previously (Liu et al., 2017), the CIBERSORT method was used to quantify
the proportions of 22 TIICs both in GC samples and normal samples using the LM22
signature and 1,000 permutations. Cases with CIBERSORT P < 0.05, which reflected that
the deconvolution results were accurate, would be selected for further analysis. In the
present study, a total of 222 samples (15 normal samples and 207 GC samples in TCGA
dataset; 52 GC samples in the ICGC dataset) were filtered out. Group comparisons of
22 TIICs proportions were performed by t -test between normal and GC samples, and
one-way ANOVA among different TNM stages using SPSS 20.0 (IBM Corp.). P < 0.05 was
considered to indicate a statistically significant difference.

Construction and evaluation of a nomogram
LASSO Cox regression analysis was used to select TIICs that were highly associated with
the overall survival of GC patients among the 22 TIICs. Subsequently, candidate TIICs
were subjected to multivariate Cox regression analysis to further screen out the best
survival-related candidate TIICs and develop an immunoscore formula. On the basis of
immunoscore, patients were divided into low- and high-immunoscore groups. Ultimately,
a prognostic nomogram integrating immunoscore and clinical information was developed
for predicting 3-year survival probabilities of GC patients. Meanwhile, a calibration plot
with bootstrapping set to 1,000 resamples and receiver operating characteristic curve (ROC)
analysis was performed to assess the predictive capacity of the prognostic nomogram by
calculating the area under the curve (AUC). Similarly, ROC curve analyses of TNM stage
alone, the ICGC set and the whole set were also performed to validate the prognostic
nomogram.

Expression analysis of differentially expressed genes (DEGs)
between low- and high immunoscore groups
The statistical software programR (version 3.5.2;R Core Team, 2018) and the Bioconductor
package edgeR (http://www.bioconductor.org/packages/release/bioc/html/edgeR.html)
were used to identify DEGs between the low- and high-immunoscore groups, with the
criteria of |log(fold-change)|>1.5 and false discovery rate <0.05.
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Functional enrichment analysis and protein-protein interaction (PPI)
network construction
All DEGs between the low- and high-immunoscore groups were utilized for Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis with
adjusted P < 0.01 as the threshold. Meanwhile, all DEGs were inputted into STRING
(https://string-db.org) (Szklarczyk et al., 2019) to predict protein-protein interactions,
with a confidence >0.9 as the cut-off criterion. Data of the PPI network were processed
by Cytoscape and genes in significant modules (MCODE score >10 and number of nodes
>10) were extracted from the PPI network as the most important targets of differing
immunoscores and were used for further analysis.

Survival analysis
Kaplan–Meier analysis and a log-rank test were performed to construct a survival curve
and assess the survival difference between the low- and high-immunoscore groups, and
analyze the association of the proportions of 22 TIICs with overall survival. In addition,
univariate and multivariate Cox regression models were used to determine independent
prognostic factors. P < 0.05 was set as cut-off value.

Expression profile of immunomodulators
Immune checkpoint inhibitors have revolutionized cancer therapy and have been approved
for various cancer treatments. In the present study, several key immunomodulators (LAG3,
TIM3, NKG2A, VISTA, CTLA-4, IFNG, IL2, IL6, ICOS, ICAM1, TIGIT, PD-1 and PD-L1)
were quantified both in normal samples and GC samples. The differences in expression
of the immunomodulators between normal and GC samples, as well as low- and high-
immunoscore groups, were compared by t -test.

RESULTS
Patient characteristics
After cases with a follow-up time <30 days and CIBERSORT P > 0.05 were removed, 274
samples were enrolled in the present study, including 15 normal gastric samples and 207 GC
samples in TCGA set and 52 GC samples in the ICGC set. All 259 patients were diagnosed
pathologically with GC. The detailed demographic and baseline characteristics of the 259
GC patients are presented in Table 1. There were no statistically significant differences
in the clinical information, including age, sex, ethnicity, tumor stage, immunoscore and
survival status, between the two datasets.

Evaluation of tumor-infiltrating immune cells
With the CIBERSORT method, the present study quantified the proportions of 22 TIICs
both in GC samples and normal samples, including naïve B cells, memory B cells, plasma
cells, naïve CD4 T cells, resting memory CD4 T cells, activated memory CD4 T cells, CD8
T cells, gamma delta T cells, T follicular helper cells, regulatory T cells, resting dendritic
cells, activated dendritic cells, macrophages (M0, M1 and M2), resting NK cells, activated
NK cells, resting mast cells, activated mast cells, monocytes, neutrophils and eosinophils
(Fig. 1A). In normal gastric samples, the proportion of plasma cells (29.3%) was the most
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Table 1 Clinical factors of patients with CIBERSORT p-value< 0.05.

Parameter TCGA dataset
(n= 207)

ICGC dataset
(n= 52)

Whole set
(n= 259)

P value

Age (years) 0.742
<60 70(33.8%) 16(30.8%) 86(33.2%)
≥60 137(66.2) 36(69.2%) 173(66.8%)

Gender 0.692
Male 128(61.8%) 33(63.5%) 161(62.2%)
Female 79(38.2%) 19(35.5%) 98(37.8%)

Race 0.872
White 137(66.2%) 33(63.5%) 170(65.6%)
Black 13(6.3%) 4(7.7%) 17(6.6%)
Asian 43(20.7%) 10(19.2%) 53(20.5%)
Other 14(6.8%) 5(9.6%) 19(7.3%)

Pathologic Stage 0.165
Stage i 28(13.5%) 8(15.4%) 36(13.9%)
Stage ii 70(33.8%) 15(28.9%) 85(32.8%)
Stage iii 85(41.1%) 19(36.5%) 104(40.2%)
Stage iv 24(11.6%) 10(19.2%) 34(13.1%)

Immunoscore 0.765
Low 104(50.2%) 26(50%) 130(50.2%)
High 103(49.8%) 26(50%) 129(49.8%)

Survival status 0.127
Alive 121(58.5%) 37(71.2%) 158(61.0%)
Dead 86(41.5%) 15(28.8%) 101(39.0%)

abundant among 22 TIICs, followed by resting memory CD4 T cells (17.5%) and CD8 T
cells (13.8%). However, in GC samples, the highest proportion among the 22 TIICs was
macrophages (25.3%), followed by resting memory CD4 T cells (16.2%) and CD8 T cells
(9.7%). As presented in Fig. 1B, the percentage of plasma cells (P < 0.001) and monocytes
(P = 0.001) in GC samples was significantly lower than that in normal gastric samples,
whereas, the fraction of activated memory CD4 T cells (P = 0.002) and macrophages (M0,
P < 0.001; M1, P < 0.001; M2, P < 0.001) was opposite.

Construction and evaluation of a prognostic nomogram
Using the LASSOCox regressionmodel (Fig. 2A), TIICs that were highly correlated with the
OS of GC patients were determined and subjected to multivariate Cox regression analysis
to identify the best survival-related TIICs. Ultimately, seven TIICs (CD8 T cells, activated
memory CD4 T cells, gamma delta T cells, monocytes, macrophages M2, neutrophils and
eosinophils) were filtered out and used to develop an immunoscore formula (Fig. 2B).
Based on the immunoscore, GC patients were divided into low- and high-immunoscore
groups. The distribution of immunoscore, survival status and expression profile of the
seven TIICs of each patient are presented in Figs. 2C–2E. No significant difference was
identified between different TNM stages (Fig. 2F).
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Figure 1 The landscape of 22 tumor-infiltrating immune cells. (A) The proportions of 22 TIICs in each samples quantified by CIBERSORT (B)
The difference of the proportions of 22 TIICs between normal samples and GC sample.

Full-size DOI: 10.7717/peerj.7993/fig-1

By integrating clinical information and the immunoscore, a prognostic nomogram for
predicting 3-year survival probabilities of GC patients was built (Fig. 3). The AUC of the
prognostic nomogram and TNM stage alone in TCGA set was 0.772 and 0.591, respectively
(Figs. 4B and 4E). In addition, the AUC of the ICGC set and whole set was 0.730 and 0.748,
respectively (Figs. 4C and 4D). The calibration plot of the prognostic nomogram for 3-year
survival probability is shown in Fig. 4A.

Functional enrichment analysis and PPI network
A total of 342 DEGs (257 upregulated and 85 downregulated genes) were determined
between the low- and high-immunoscore groups (Fig. S1). The results of KEGG analysis
revealed that 342 DEGs were predominantly involved in 13 pathways, among which, a few
pathways were highly associated with the human immune system, such as ‘Cell adhesion
molecules (CAMs)’, ‘Chemokine signaling pathway’ and ‘Cytokine-cytokine receptor
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Full-size DOI: 10.7717/peerj.7993/fig-2

interaction’ (Fig. 5A). In GO analysis (Fig. 5B; Table S1), 147 biological processes were
related to 342 DEGs, including ‘T cell migration’ and ‘regulation of T cell migration’.

A PPI network of DEGs with confidence >0.9 was gathered from the online STRING
database and then processed by Cytoscape. There were 86 nodes (60 upregulated and 26
downregulated genes) and 262 edges in the PPI network (Fig. 5C).WithMCODE score >10
and number of nodes >10 as the cut-off values, a MCODE containing 13 genes (CCL20,
CXCL10, SAA1, CCL5, CXCR6, CXCL13, CXCL11, CXCL9, ADCY5, PYY, TAS1R3, NMU
and CHRM2) was extracted from the PPI network and used for further analysis (Fig. 5D).
KEGG analysis revealed that 13 genes in MCODE were mainly enriched in the following
four pathways: ‘Chemokine signaling pathway’, ‘Cytokine-cytokine receptor interaction’,
‘Toll-like receptor signaling pathway’ and ‘TNF signaling pathway’ (Fig. S2).
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Survival analysis
Kaplan–Meier analysis was performed to determine the association between the OS of
GC patients and the immunoscore, as well as the proportions of 22 TIICs. The results of
survival analysis indicted that the prognosis of GC patients in the high-immunoscore group
was significantly worse compared with those in the low-immunoscore group (P < 0.001;
Fig. 6A). In addition, a low proportion of activatedmemory CD4T cells (P = 0.002; Fig. 6B)
and CD8 T cells (P = 0.034; Fig. 6C), along with a high proportion of M2 macrophages
(P = 0.019; Fig. 6D) was negatively associated with a favorable outcome for GC patients.
All results of the univariate Cox regression analysis in TCGA [hazard ratio (HR), 2.406;
95% confidence interval (CI) [1.521–3.807]; P < 0.001], the ICGC (HR, 6.671; 95% CI
[2.017–22.063]; P = 0.002) and whole sets (HR, 2.858; 95% CI [1.870–4.369]; P < 0.001)
suggested that the association of immunoscore with OS was significant (Figs. 7A–7C).
Furthermore, the results of multivariate Cox regression analyses in three sets indicated that
the immunoscore was an independent prognostic factor (TCGA set: HR, 2.515; 95% CI
[1.585–3.992]; P < 0.001; ICGC set: HR, 7.719; 95% CI [2.249–26.493]; P = 0.001; whole
set: HR, 3.033; 95% CI [1.977–4.656]; P < 0.001; Figs. 7D–7F).

Expression profile of immunomodulators
As presented in Fig. 8A, TIM3, CTLA4, INF-γ , IL6, ICAM1, TIGIT and PD-L1 were
significantly increased in GC samples compared with normal samples, whereas VISTA was
significantly decreased. In addition, when compared with the low-immunoscore group,
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LAG3, TIM3, NKG2A, CTLA4, INF-γ , IL2, ICOS, ICAM1, TIGIT, PD-1 and PD-L1 were
all significantly downregulated in the high- immunoscore group (Fig. 8B).

DISCUSSION
GC, one of the most prevalent digestive malignancies, is the second leading cause of cancer-
associated mortality, particularly in developing countries (Sitarz et al., 2018; Chen et al.,
2016). The TNM staging system is currently the most relevant clinical index for routine
predictions of outcome and treatment. However, emerging studies have reported that the
TNM staging system is not completely competent for prognosis stratification (Noh et al.,
2014; Zeng et al., 2018). TIICs, as well as the chemokines and cytokines secreted by TIICs,
are key regulators of antitumor immune responses (Rohr-Udilova et al., 2018). Previous
studies have shown that TIICs, such as lymphocytes, gamma delta T cells, regulatory T cells
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and macrophages, are significantly associated with the prognosis of GC patients (Zhang
et al., 2019; Lee et al., 2018; Yu et al., 2018; Wang et al., 2017; Kang et al., 2017; Jiang et al.,
2017; Li et al., 2017; Choi et al., 2016). In addition, Peng et al. (2017) found that NK-cell
function in human GC is impaired by monocytes and macrophages in TME and restoring
the function of NK cells could prevent GC tumor immune escape. Meanwhile, Koh et al.
identified that co-assessment of PD-L1 and CD8+ TILs is clinically relevant, which could
provide prognostic significance in stage II/III GCs (Koh et al., 2017). Nevertheless, due to
technological limitations of conventional methods, such as IHC and flow cytometry, these
previous studies only investigated a few immune cell types and/or a small sample size.

In the present retrospective study, the CIBERSORT method was applied, which is based
on deconvolution of bulk gene expression data to synchronously calculate the proportions
of 22 TIICs and comprehensively investigate the prognostic impact of 22 TIICs on GC. The
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present study identified that macrophages (25.3%), resting memory CD4 T cells (16.2%)
andCD8T cells (9.7%)were the highest proportion of immune cells among 22 TIICs in GC.
Furthermore, Kaplan–Meier analysis revealed that a low proportion of activated memory
CD4 T cells and CD8 T cells predicted a favorable prognosis in GC patients, whereas the
opposite result was observed for M2 macrophages. This result is consistent with previous
findings that demonstrated the CD8 T cell density in TME is an independent predictor of
the OS of GC patients (Wang et al., 2018a;Wang et al., 2018b; Dong et al., 2016) and a high
density of M2 macrophages predicts a poor prognosis in GC (Zhang et al., 2012).

To further determine the effect of 22 TIICs on the prognosis of GC patients, LASSO and
multivariate Cox regression analysis were used to select the seven best survival-related TIICs
(CD8 T cells, activated memory CD4 T cells, gamma delta T cells, monocytes, macrophages
M2, neutrophils and eosinophils) and develop an immunoscore formula. The result of
survival analysis demonstrated that the high-immunoscore group had a poorer clinical
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outcome compared with the low-immunoscore group. Furthermore, multivariate Cox
regression analysis also demonstrated that variation in immunoscore was highly associated
with the clinical outcome of GC patients. A prognostic nomogram for predicting the
3-year OS of GC patients was also built based on immunoscore and clinical information.
The calibration plot of the prognostic nomogram demonstrated a good consistency
between the prediction and actual observation. In addition, the AUC of the prognostic
nomogram was 0.772, which was similar to that in the ICGC set (0.730) and whole set
(0.748), and significantly superior to that of TNM staging alone (0.591), indicating that
the immunoscore could be used to reinforce the prognostic power of TNM staging. All
data suggested that the established prognostic nomogram is suitable for estimating the of
3-year OS of GC patients.
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To explore the potential mechanism for the differences in immunoscore, the present
study performed an analysis of the DEGs between the low- and high immunoscore groups.
A total of 342 DEGs (257 upregulated and 85 downregulated genes) were identified and
mainly involved in 13 pathways, such as ‘CAMs’, ‘Chemokine signaling pathway’ and
‘Cytokine-cytokine receptor interaction’. In addition, a MCODE containing 13 genes
(CCL20, CXCL10, SAA1, CCL5, CXCR6, CXCL13, CXCL11, CXCL9, ADCY5, PYY,
TAS1R3, NMU and CHRM2) was extracted from the PPI network. Functional enrichment
analysis demonstrated that four pathways (‘Chemokine signaling pathway’, ‘Cytokine-
cytokine receptor interaction’, ‘Toll-like receptor signaling pathway’ and ‘TNF signaling
pathway’) were enriched for the13 genes and all of them were highly associated with the
human immune system, suggesting that the 13 genes may be the most important targets
that cause the variation in immunoscore among GC patients. In addition, CCL20, CXCL10,
CCL5, CXCR6, CXCL13, CXCL11 and CXCL9 are chemokines that can recruit immune
cells to the tumor microenvironment, which affects tumor immunity and angiogenesis
(Lee & Körner, 2019; Tokunaga et al., 2018; Zhang et al., 2018; Singh et al., 2016; Gao et al.,
2019).
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In recent years, immune checkpoint inhibitors, which function by affecting the immune
response, have been approved for the therapy of various cancer types, such as lung cancer,
gastric cancer, renal cell carcinoma and hepatocellular carcinoma (Kim & Park, 2019). The
present study identified 11 immunomodulators (LAG3, TIM3, NKG2A, CTLA4, INF-γ ,
IL2, ICOS, ICAM1, TIGIT, PD-1 and PD-L1) that were significantly decreased in the
high-immunoscore group compared with the low-immunoscore group, which may assist
with the development of effective therapeutics.

Although the prognostic nomogram demonstrated a good predictive accuracy for GC
patients in the present study, there are a few limitations to be addressed. First, as all
cases were obtained from public databases, it was not possible to collect all information
of the patients, such as history of treatment with anti-inflammatory drugs. Second, the
potential of selection bias could not be excluded. Third, all gene expression profiles used
were derived from core regions of cancer samples, which means deviation in immune
infiltration cells between the core and invasive margin of tumors could not be analyzed.
Finally, no experimental studies were conducted to confirm the findings of the present
study. Therefore, further investigations both in vitro and in vivo are required to support
the present results.

CONCLUSIONS
In summary, the present study comprehensively analyzed gene expression profiles of GC
from TCGA database to quantify the proportions of 22 TIICs with the CIBERSORT
algorithm. The seven best survival-related TIICs were screened out to develop an
immunoscore formula. By combining the immunoscore and clinical information, a
prognostic nomogram was built for predicting the 3-year OS. The results suggested the
immunoscore could be used to reinforce the clinical outcome prediction ability of the
TNM staging system and provide a convenient tool for risk assessment and treatment
selection for GC patients. However, further experimental research both in vitro and in vivo
is required to examine the present findings.
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