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Introduction

Liver cancer is one of the most common malignant tumors. 
In 2020, the incidence and mortality rates of liver cancer 
ranked seventh and third, respectively, among all malignant 
tumors worldwide (1). Hepatocellular carcinoma (HCC) 
is the most common histological subtype of primary liver 

cancer, accounting for approximately 85% to 90% of 
malignant tumors originating in the liver (2). HCC is highly 
malignant and invasive, and surgery is a potentially effective 
means to cure this disease. However, because early clinical 
symptoms are not obvious, most patients are already in the 
advanced stage of the disease at the time of diagnosis, and 
the opportunity for radical surgical resection is lost. Even 
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after surgical resection, approximately 70% of patients 
experience recurrence within 5 years, and approximately 
two-thirds of these patients will experience relapse within  
2 years due to intrahepatic spread (3).

With the advancement of next-generation sequencing 
(NGS) technology in recent years, a more in-depth 
understanding of the molecular mechanisms of tumors 
have been gained (4). This has facilitated the identification 
of an increasing array of genetic targets implicated in the 
initiation and progression of tumors. Consequently, the 
development of targeted therapeutics informed by these 
discoveries has significantly influenced the enhancement of 
prognostic outcomes for patients with cancer. In the realm 
of potential targets for cancer therapy, ErbB receptor family 
proteins have emerged as significant players. The aberrant 
expression of members of the transmembrane tyrosine 
kinase (TK) receptor family plays a role in the initiation and 
progression of tumors, especially lung cancer, breast cancer, 
and gastric cancer (5-7). On activation by their respective 
ligands, these receptors undergo dimerization and 
autophosphorylation, triggering a cascade of downstream 
signaling pathways that regulate cellular processes, such 
as proliferation, differentiation, migration, and survival. 
In cancer, the overexpression, mutation, or continuous 
activation of these receptors leads to the dysregulation of 
these signaling pathways, contributing to oncogenesis and 
progression (8). Drugs such as trastuzumab and gefitinib 
have been shown to target these receptors, demonstrating 
remarkable efficacy in cancer treatment (9,10). Currently, 
targeted therapeutic strategies against the ErbB family in 
HCC have been proposed and have undergone preliminary 
clinical exploration. This article reviews the research 
progress on ErbB family proteins in HCC to provide a 
reference for clinical decision making and to guide future 

research directions. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://tcr.amegroups.com/article/view/10.21037/tcr-24-
837/rc).

Methods

A comprehensive, narrative review of the literature was 
conducted to examine the current progress of ErbB family 
receptors in HCC in both the pre-clinical and clinical 
arenas. Studies from all periods were reviewed from 
PubMed/MEDLINE using the keywords “liver cancer”, 
“hepatocellular carcinoma”, “HCC”, “ErbB”, “EGFR”, 
“HER1”, “HER2”, “HER3”, and “HER4”.

Articles relevant to the topic of this study were fully 
reviewed. The search strategy is summarized in Table 1.

ErbB family members in HCC: expression and 
mechanism pathways

The ErbB family belongs to the TK receptor family 
that comprises four members: epidermal growth factor 
receptor (EGFR; ErbB1 or HER1), ErbB2 (HER2), ErbB3 
(HER3), and ErbB4 (HER4). These members have similar 
structures, mainly consisting of the extracellular domain, 
transmembrane domain, and intracellular TK domain 
(Figure 1) (11,12). With the exception of ErbB2, which has 
no known endogenous ligand, the other receptors promote 
autophosphorylation and downstream signaling cascades 
by binding to their respective ligands to form homodimers 
or heterodimers. However, ErbB2 forms heterodimers 
with the other three receptors (8). These distinct activated 
signaling pathways, such as the phosphoinositide 3-kinase 
(PI3K)/protein kinase B (Akt) signaling pathway, the 

Table 1 The search strategy summary

Items Specification

Date of search April 20th, 2024

Databases and other sources searched PubMed/MEDLINE

Search terms used Liver cancer/hepatocellular carcinoma/HCC/ErbB/EGFR/HER1/HER2/HER3/HER4

Timeframe All periods

Inclusion criteria Original Article; Clinical Trial; Meta-analysis; Review; Systematic Review; written in the 
English language

Selection process All the authors selected the studies together

HCC, hepatocellular carcinoma; EGFR, epidermal growth factor receptor.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-837/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-837/rc
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Janus kinase (JAK)/signal transducers and activators of 
transcription (STAT) signaling pathway, and the mitogen-
activated protein kinase (MAPK) signaling pathway, 
govern various cellular functions, including proliferation, 
cell cycle regulation, and migration (13,14). In living 
organisms, intercellular communication generates spatially 
heterogeneous gene expression patterns that are crucial for 
the development of tissues and organs. Cells can engage 
in autocrine signaling, where ligands produced by the cell 
directly activate receptors on the same cell, allowing for a 
rapid response to its own signals. Another mechanism is 
paracrine signaling, in which ligands are released into the 
extracellular environment, diffuse to neighboring cells, and 
interact with their receptors, facilitating communication 
between different cell types. In the endocrine mechanism, 
ERBB ligands secreted by cells are transported through the 
bloodstream or other body fluids to distant cells, activating 
ERBB receptors on those cells. This process is similar to 
hormone action, transmitting signals over long distances 
within the body to regulate the functions of various tissues 
and organs (15). Elevated levels of ErbB ligands have been 
reported in several cancers, including ovarian, gastric, 
and breast cancer, and are suspected to promote tumor 
invasiveness (16,17). For instance, amphiregulin (AREG) is 

overexpressed in various cancers, including HCC, and its 
role in tumor development and prognosis is well established 
(18-20). The trafficking, processing, and release of ERBB 
family ligands determine the scope, intensity, and duration 
of downstream signal transduction. Endocrine, paracrine, 
and autocrine mechanisms are recognized modes of ERBB 
ligand action (21). A critical step in these mechanisms is the 
ectodomain shedding of membrane-bound EGFR ligands. 
Protease-mediated cleavage releases soluble EGFR ligands 
into the extracellular environment, enabling them to 
participate in autocrine, paracrine, and endocrine signaling. 
This shedding process not only generates soluble ligands 
but also leaves a free cytoplasmic tail that can interact with 
other cytoplasmic proteins to regulate gene expression (22). 
For example, a gene replacement study on HBEGF has 
shown that mice expressing non-cleavable HBEGF develop 
severe heart failure and enlarged heart valves, resembling 
the phenotype of full HBEGF knockout (23). In contrast, 
mice expressing constitutively soluble HBEGF exhibit 
severe hyperplasia in the skin and heart (23). G-protein-
coupled receptors (GPCRs) can utilize a metalloprotease-
dependent process to transactivate EGFR, generating 
potent mitogenic signals. This signaling mechanism, known 
as the “triple membrane-passing signal”, is widely observed 
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Figure 1 Schematic of the ErbB protein structure. ErbBs contain four N-terminal extracellular domains, transmembrane domains and an 
intracellular TK domain with catalytic activity. The extracellular domain of ErbB2 is in an active conformation and cannot bind a ligand. 
The kinase domain of ErbB3 is not fully functional. EGFR, epidermal growth factor receptor; HER, human epidermal growth factor 
receptor; TK, tyrosine kinase.
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in various cancers and other diseases, modulating cell 
proliferation, apoptosis, and migration (24). ERBB family 
ligands can activate EGFR and its downstream signaling 
pathways through autocrine, paracrine, and endocrine 
mechanisms, thereby regulating cell proliferation, 
migration, and survival in different ways.

The development of liver cancer is a complex, multistep 
process characterized by alterations in several signaling 
cascades, culminating in the emergence of heterogeneous 
neoplasms. Research indicates that the ErbB signaling 
pathway is one of the most commonly mutated pathways 
in HCC (25). Therefore, exploring the ErbB signaling 
pathway in HCC could provide greater insights into the 
biology and progression of this disease, and potential 
therapeutic strategies.

EGFR in HCC

EGFR, also known as HER1 or ErbB1, belongs to the 
receptor TK ErbB family and plays a carcinogenic role 
in various tumors (26). It is known that seven ligands 
[i.e., epidermal growth factor (EGF), AREG, epigen, 

epiregulin, betacellulin, heparin-binding EGF-like growth 
factor, and transforming growth factor (TGF)-alpha] 
can bind to the extracellular domain of EGFR, inducing 
receptor dimerization and TK activation, thus triggering 
downstream signaling pathways (Figure 2). This pathway 
is referred to as the canonical ligand-dependent EGFR 
signaling pathway, which transduces various signaling 
pathways, including the renin-angiotensin system (RAS)/
rapidly accelerated fibrosarcoma (RAF)/MAP kinase-
ERK kinase (MEK)/extracellular signal-regulated kinase 
(ERK) pathway, PI3K/Akt/mammalian target of rapamycin 
(mTOR) pathway, and phospholipase C (PLC)/protein 
kinase C (PKC) pathway (27). As a crucial hub for external 
growth and survival signals, the EGFR system primarily 
regulates biological processes, such as cell proliferation, 
apoptosis, differentiation, and migration (28).

As a member of the ErbB family, EGFR frequently 
undergoes mutation and/or overexpression in various 
types of human cancers. EGFR can be phosphorylated at 
multiple sites, and in the majority of HCCs, the tyrosine 
residue at position 845 of EGFR is phosphorylated, and 
its phosphorylation sites are related to the subsequently 
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Figure 2 ErbB receptor family and ligands. Representative images show the ligands that can reportedly bind to ErbB receptors. TGF-α, 
transforming growth factor-α; HB-EGF, heparin-binding EGF-like growth factor; EGF, epidermal growth factor; NRG, neuregulin; EGFR, 
epidermal growth factor receptor; HER, human epidermal growth factor receptor.
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activated signaling pathways (29). Mutations in EGFR have 
been shown to promote tumor development both in vitro  
and in animal models (30,31). In 2003, Fitch et al. (32) 
identified EGFR (Leu863Gln and Dsk5) as a new class 
of pigmentation mutation (Dsk) phenotype that results in 
elevated basal EGFR kinase activity and signaling levels, 
leading to spontaneous primary HCC in mice older than  
8 months (33).

EGFR is overexpressed in 68–96% of HCC cases, 
while mutations occur in only 1% of cases (34-36). A study 
has shown that EGFR expression is closely related to the 
degree of differentiation, proliferative activity, incidence 
of intrahepatic metastasis, and prognosis of HCC patients, 
with high EGFR expression possibly indicating poor 
prognosis in HCC patients (37). Song et al. (35) discovered 
that the EGFR/mesenchymal-epithelial transition factor 
(MET)-induced RAS/MAPK pathway stabilized HCC cells 
and participated in distant metastasis through circulating 
tumor cells, while also partially inhibiting the killing ability 
of immune cells. High phosphorylation levels of EGFR/
MET, such as platelet-derived growth factor receptor 
βand fibroblast growth factor receptor 1, also preserve 
the elevated phosphorylation status of clinical targets in 
HCC treatment, which may result in the ineffectiveness 
of targeted therapies and facilitate extrahepatic metastasis. 
Ji et al. (38) discovered that EGF-EGFR upregulates the 
expression of T-box (TBX) 19 via the ERK/ nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-κB) 
pathway, and TBX19 further upregulates the expression of 
EGFR and Rac family small GTPase 1 (RAC1), forming an 
EGF-TBX19-EGFR-positive feedback loop that promotes 
liver cancer metastasis.

Abnormal DNA methylation is closely linked to the 
occurrence, development, and malignant transformation 
of tumors, and EGFR also plays a role in this process. For 
example, the hypermethylation of empty spiracle homeobox 
1 (EMX1), which binds to the EGFR promoter, promotes 
EGFR transcription and activates the EGFR-ERK signaling 
pathway, triggering the onset and metastasis of HCC (39). 
Su et al. (40) reported that sublethal heat treatment boosts 
EGFR N6-methyladenosine (m6A) modification and its 
binding with YTH N6-methyladenosine RNA binding 
protein 1, enhancing EGFR messenger RNA translation 
and elevating EGFR levels, which in turn fosters malignancy 
in HCC cells. Concurrently, Quiescin sulfhydryl oxidase 1 
(QSOX1) inhibits nuclear factor erythroid 2-related factor 2 
(NRF2) activation by promoting EGFR ubiquitination and 
endosomal trafficking, increasing oxidative stress sensitivity 

in HCC cells and decreasing their viability (41). The 
overexpression of 5’-nucleotidase domain containing 2 has 
been shown to fuel liver cancer cell proliferation and tumor 
growth by directly engaging with EGFR and augmenting its 
expression through the modulation of EGFR ubiquitination, 
thereby stimulating downstream signal transduction (42). 
These findings highlight the pivotal role of EGFR in the 
survival and progression of HCC.

EGFR-mediated activation of the PI3K/AKT/mTOR 
pathway regulates HCC cell survival, proliferation, and 
the cell cycle, illustrating its central function in cancer cell 
biology (43). VersicanV1 serves as an upstream activator 
of EGFR, activating this signaling pathway to enhance the 
Warburg effect in liver cancer cells, thereby promoting 
the malignant phenotype of liver cancer cells (44). The 
PI3K/AKT signaling pathway not only conveys external 
proliferation signals from receptors on the cell membrane 
to the nucleus, enhancing cell growth and division, but also 
elevates the expression of glucose transport proteins on 
the cell surface, affecting glucose uptake and metabolism, 
thereby providing the energy and material foundation for 
rapid cancer cell proliferation (45). In addition, EGFR has 
been demonstrated to facilitate aerobic glycolysis through 
a variety of kinase-dependent and kinase-independent 
mechanisms, profoundly affecting cancer metabolism and 
progression. Moreover, a study revealed that in cirrhotic 
mouse models, an interaction between the RAS and the 
EGFR signaling pathway activates the MAPK pathway, 
facilitating the transition from liver cirrhosis to HCC.

The angiotensin-converting enzyme inhibitor captopril 
has been found to effectively mitigate liver fibrosis 
and decrease the incidence of HCC (46). Additionally, 
polymorphisms in the EGF gene lead to increased human 
EGF expression, which exacerbates liver cirrhosis and 
hastens progression to HCC by activating additional EGFR 
signaling pathways (47,48). The internalization of EGFR is 
a critical step in the cellular signaling process, and a study 
has shown that the ubiquitination of the ultraviolet (UV) 
radiation resistance-associated gene enhances the lysosomal 
degradation of EGFR, thereby inhibiting the initiation 
and development of HCC (49). Sorting nexin 5 facilitates 
the growth and spread of liver cancer cells through the 
suppression of EGFR endocytosis and degradation, which 
in turn triggers the activation of the ERK1/2 signaling  
pathway (50). The EGFR-related signaling pathway 
effectively substantiates the concept of “oncogene addiction”, 
whereby cancer cells rely on the sustained specific 
activation or overexpression of oncogenes to maintain their 
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proliferation, invasion, and other phenotypes, thereby 
accelerating cancer progression (51). In addition, cholestatic 
bile acids activate Nicotinamide Adenine Dinucleotide 
Phosphate Hydrogen (NADPH) oxidase, triggering YES-
mediated EGFR phosphorylation through a ligand-
independent pathway, which in turn activates hepatic stellate 
cells, thereby promoting the development of liver fibrosis 
and cirrhosis and increasing the incidence of HCC (52,53). 
EGFR and ephrin receptor A2 act as cofactors to facilitate 
hepatitis C virus (HCV) infection in the host, indirectly 
inducing liver cirrhosis and HCC (54). In summary, EGFR 
plays a crucial role in the development of HCC, and its 
underlying mechanisms are worthy of further investigation.

ErbB2 in HCC

ErbB2 (HER2) is a membrane receptor protein that 
belongs to the EGFR family and regulates cell growth, 
differentiation, and survival. In a variety of malignancies, 
including breast cancer, gastric cancer, colorectal cancer, 
and other cancers, the HER2 gene is overexpressed, 
and has been identified as an oncogenic driver that is 
closely associated with poor patient prognosis (55-57). 
ErbB2 differs structurally from other family members 
and lacks known natural ligands. Its extracellular domain 
maintains constitutive activity, allowing spontaneous 
homodimerization (ErbB2 binding to ErbB2) in cells 
overexpressing ErbB2 (Figure 2). Additionally, ErbB2 
tends to form heterodimers with other members of the 
EGFR family, exhibiting stronger signaling capacity 
than homodimerization, thus playing a significant role in 
cellular signaling (58). HER2 typically primarily activates 
downstream MAPK and PI3K/AKT pathways, regulating 
tumor cell proliferation and suppressing apoptosis (59).

The overexpression of HER2 typically manifests in 
tumors through gene amplification. HER2 overexpression 
has been observed in approximately 20–40% of patients 
with HCC (34,60). In early studies, it was generally believed 
that HER2 played a limited role in the occurrence and 
progression of HCC (61,62). However, with increasing 
research, new evidence has revealed the complex and 
diverse role of HER2 in the pathogenesis of HCC. 
These studies suggest that the overexpression of HER2 
is closely associated with poor clinical prognosis in HCC 
patients, and HER2 may influence the development of 
HCC through multiple pathways, including promoting 
the proliferation, invasion, and migration of tumor cells. 
A bioinformatics analysis of differentially expressed genes 

in HCC demonstrated that HER2 is a key gene closely 
associated with the occurrence and progression of HCC (63). 
Therefore, the role and clinical significance of HER2 in the 
pathophysiology of HCC are being re-evaluated and further 
studied.

Additionally, HER2 is considered a factor that promotes 
tumor metastasis. It is involved in multiple biological 
processes related to tumor invasiveness and metastatic 
capability, including matrix degradation, increased 
proteolytic activity, enhanced vascular permeability, and 
the growth, proliferation, migration, and differentiation of 
endothelial cells. These processes not only contribute to the 
growth of tumors at the primary site but also facilitate the 
spread of cancer cells through the vascular and lymphatic 
systems, leading to the formation of metastatic lesions 
in other parts of the body. A recent study indicated that 
the overexpression or activation of HER2 leads to the 
upregulation of β-catenin levels, resulting in increased 
accumulation of β-catenin in the nucleus (60). This process 
concurrently disrupts the TGF-β signaling pathway by 
inhibiting the activation of the small mothers against 
decapentaplegic 2/3 (SMAD2/3) complex. Such modulation 
of cellular responses diminishes the growth-inhibitory 
effects of the TGF-β pathway, thereby facilitating tumor 
proliferation, invasion, and metastasis (60). 

Epithelial-mesenchymal transition (EMT) refers to 
the primary cellular process by which epithelial cells lose 
their cell polarity and cell-to-cell adhesion and acquire 
mesenchymal cell traits, thereby increasing their motility 
and invasiveness. EMT plays a significant role in tumor 
metastasis and progression, and HER2 participates in HCC 
cell EMT through the MAPK/ERK pathway, thereby 
promoting tumor invasion and migration (64). Moreover, it 
has been reported that the HER2 protein is upregulated in 
patients with HCC with a background of hepatitis B virus 
(HBV) infection, and such patients typically exhibit a poorer 
prognosis. The HBV-encoded X protein (HBx) is associated 
with the upregulation of the HER2 protein, leading to 
increased HER2 expression. Subsequently, this elevated 
expression may activate Akt activity, thus facilitating IκB 
kinase-α (IKK-α) nuclear translocation and ultimately 
enhancing the migratory capability of liver cancer cells (65).

With the in-depth exploration of the multifaceted roles 
of HER2 in HCC, significant strides can be made toward 
its clinical application, offering new hope to patients 
through targeted treatment options. Concurrently, the 
ongoing debate surrounding whether HER2 can serve as 
a prognostic factor in HCC needs further exploration to 
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optimize treatment strategies for HCC patients.

ErbB3 and ErbB4 in HCC

The ErbB3 (or HER3) gene is located on the long arm of 
human chromosome 12 (12q13), and it encodes a protein 
with a molecular weight of either 160 or 180 kDa (66). 
Previously, ErbB3 was thought to lack intrinsic kinase 
activity, but a recent study has revealed that it possesses 
weak kinase activity (33). It interacts with other members 
of the ErbB family to form heterodimers, thereby exerting 
its function (67). Neuregulin 1 (NRG1) and NRG2 act 
as ligands that bind to ErbB3, causing a conformational 
change in ErbB3, thereby facilitating the dimerization, 
phosphorylation, and activation of signaling pathways (68). 
There are nine classical ligands capable of activating ErbB4, 
among which NRG3 and NRG4 are unique (69,70).

ErbB3 and ErbB4 do not play as prominent roles in 
the TK family as EGFR and HER2; however, due to the 
overexpression of ErbB3 in certain cancers, it still garners 
significant interest as a potential therapeutic target. A study 
on a biocomputational model of the ErbB signaling network 
revealed that ErbB3 is a critical node in the activation of the 
ligand-induced ErbB receptor-PI3K axis, and plays a crucial 
role in the onset and development of cancer (71). Recent 
studies have also confirmed the critical role of ErbB3 in 
cellular transformation and cancer. Genetic mutations 
and methylations of ErbB3 exert a broad regulatory effect 
on the tumor microenvironment (TME), promoting the 
onset of cancer (72-74). ErbB3 has six YXXM motifs that 
bind to the p85 regulatory subunit of PI3K, activating it. 
The p85 regulatory subunit of PI3K (PI3KR) is one of the 
most thoroughly studied targets of ErbB3. PI3KR has been 
shown to promote cell growth and metastasis in a variety of 
tumors, including HCC. In addition, ErbB3 is significantly 
overexpressed in 70.4% of HCC patients and is closely 
associated with microvascular invasion, early recurrence 
and poor prognosis in HCC patients, while ErbB4 is not 
significantly expressed (75). The primary mechanism 
involves the autocrine activation of ErbB3 in HCC through 
the NRG1/ErbB3 autocrine loop, which in turn induces the 
PI3K/AKT and MAPK/ERK signaling pathways, playing 
a key role in the regulation of invasion and migration in 
HCC. Additionally, the study revealed a secreted isoform 
of ErbB3 in the serum of HCC patients, and the expression 
levels of this isoform significantly affected portal vein 
invasion and metastasis (75). The results of this study 
indicate that as a potential therapeutic target or co-target, 

the ErbB3 signaling pathway may be more effective in 
preventing and treating HCC recurrence and metastasis 
than in treating advanced HCC. ErbB3 has been reported 
to be crucial for the formation of HCC tumors and 
cellular proliferation (33). Ni et al. (76) explored the role of 
epithelial V-like antigen 1 (EVA1) in HCC and found that 
EVA1 promoted the growth and migration of HCC cells  
in vitro through the ErbB3-PI3K-AKT signaling pathway 
and induced metastasis in vivo.

ErbB4 (or HER4) is a unique member of the ErbB 
family with growth-inhibitory properties and plays a dual 
role in cancer initiation and progression. Its constitutively 
dimerization mutant, HER4 Q646C, has been shown to 
inhibit pancreatic tumors, breast cancer, and prostate cancer 
cell lines (77-79). Meanwhile, research also suggests that 
HER4 may reduce tumor formation and progression by 
enhancing differentiation and inhibiting growth through 
the expression of splice variants (80). HER4 may play a 
protective role in cancer by attenuating the proliferation 
and oncogenic effects of heterodimerization between other 
ErbB receptors (81). Recently, Liu et al. (82) used carbon 
tetrachloride and diethylnitrosamine to induce models of 
liver inflammation and tumors, respectively, in mice. These 
findings suggest that the absence of ErbB4 contributes 
to the development of HCC, and ErbB4 deficiency leads 
to poor differentiation and a poor prognosis in HCC 
patients. Reduced levels of TP53INP1, which are possibly 
linked to diminished ErbB4 expression or its absence, 
indirectly reduce the stability and apoptotic or cell cycle 
arrest functions of p53, thereby fostering the proliferation, 
survival, and advancement of HCC tumor cells. Similarly, 
additional research has reported that the overexpression 
of ErbB4 inhibits the proliferation and promotes the 
apoptosis of HCC cells by reducing cell viability and 
clonogenicity and inducing cell cycle arrest (83). In the 
context of immunity, the activation of ErbB2 and ErbB4 
receptors mediates the induction of interleukin-10 (IL-10) 
production by immune cells in response to NRG1, thereby 
exerting inhibitory effects on tumor cells (84). Therefore, 
ErbB4 may play a protective role in the occurrence and 
development of HCC, and its specific mechanisms warrant 
further exploration.

Membrane receptor trafficking and signaling are 
frequently altered in cancer. Clathrin is an essential 
structural protein in eukaryotic cells, predominantly 
involved in endocytosis and vesicle trafficking processes. It 
forms clathrin-coated vesicles to facilitate the intracellular 
and extracellular transport of various substances (85). 
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Clathrin-mediated endocytosis (CME) is the primary 
pathway for EGFR internalization (86,87).  ERBB 
endocytosis may also involve clathrin-independent 
endocytosis (CIE) pathways, depending on the ligand bound 
to ERBB and its concentration (88). For instance, when 
EGF binds to EGFR, it induces EGFR dimerization and 
autophosphorylation. This activated form of EGFR dimer 
undergoes rapid endocytosis, and the internalized EGF-
EGFR complex is transported to early endosomes. CME 
preferentially sorts EGFR to the recycling pathway, where 
some internalized EGFR is dephosphorylated and recycled 
back to the plasma membrane, preparing for another round 
of signaling. A small portion of EGFR, however, is directed 
to the lysosomal degradation pathway, where it is degraded, 
thereby regulating the termination of signaling. The CME 
mechanism of EGF-EGFR, mediated by clathrin and 
associated adaptor proteins, helps maintain and regulate 
EGFR signaling and recycling, which is crucial for cell 
proliferation and tumor development (89,90). Liu et al. (91) 
studied the effect of Clathrin on ErbB receptor signaling 
in HCC cell lines and found that clathrin knockdown 
reduced ErbB receptor phosphorylation and, in response 
to ligand AR, significantly reduced AKT phosphorylation. 
Meanwhile, clathrin knockdown increased STAT3 
phosphorylation regardless of ligand stimulation. A recent 
study found that during ligand stimulation, atypical CME of 
ligand-free EGFR monomers occurs parallel to the typical 
CME of ligand-bound EGFR dimers. The atypical CME of 
ligand-free EGFR monomers operates via a p38-dependent 
pathway under stress conditions, requiring phosphorylation 
at specific sites (Ser-1015, Thr-1017, and Ser-1018) 
on EGFR, ultimately leading to EGFR internalization 
and recycling (92). The regulation of ErbB signaling by 
clathrin in HCC is cell-specific and ligand-specific, further 
investigation into the relationship between grid and ErbB 
signaling proteins will contribute to enhancing targeted 
treatment strategies for the ErbB receptor family.

The ERBB signaling pathway promotes tumor growth 
by influencing antitumor immune responses within the 
TME, a complex ecosystem that provides conditions 
for tumor cell survival and proliferation. T lymphocytes 
(such as CD8 + T cells and Tregs), myeloid cells (such 
as macrophages and myeloid-derived suppressor cells), 
cytokines (such as IL-6 and TNF-α), and exosomes 
collectively construct a complex immunoregulatory network 
within the TME, affecting tumor immune evasion and 
progression (93). In the early stages of tumor development, 
T lymphocytes recognize and kill tumor cells through 

immune surveillance. However, as the tumor progresses, 
tumor cells employ various mechanisms to evade immune 
surveillance, resulting in altered T lymphocyte function 
and even immune suppression (94). Increasing evidence 
indicates that genomic alterations acquired during tumor 
development can modulate the TME, aiding tumor cells 
in evading immune surveillance (95). A study has found 
that ERBB signaling is one of the most extensively mutated 
pathways mediating antitumor immunity, with elevated 
levels of ERBB mutations correlating with poor prognosis 
in cancer patients (96). Mutations in the ERBB signaling 
pathway lead to complex interactions among different cell 
types (such as epithelial cells, macrophages, and T cells), 
creating a microenvironment conducive to tumor growth. 
In tumors with ERBB pathway mutations, the secretion of 
midkine (MDK) is significantly increased. MDK interacts 
with its receptor LRP1, promoting the differentiation of 
tumor-infiltrating macrophages into immunosuppressive 
M2 macrophages.  These M2 macrophages inhibit 
antitumor immune responses and promote tumor growth 
and progression. Additionally, the interaction between 
macrophage-secreted CXCL10 and its receptor CXCR3 
on regulatory T cells (Tregs) activates Tregs, further 
suppressing antitumor immune responses and leading to 
tumor progression (97). Wang et al. (98) discovered that 
AREG regulates Treg suppressive function and induces 
immune tolerance and evasion through the EGFR/GSK-
3/Foxp3 axis. CD8 + T cells play a major antitumor role in 
the TME by releasing various effector molecules to attack 
and destroy tumor cells. However, mutations in the ERBB 
signaling pathway can significantly reduce the number of 
CD8+ tumor-infiltrating lymphocytes (TILs), leading to 
immunosuppression (99). Moreover, MHC molecules are 
crucial for tumor antigen presentation. MHC I activates 
CD8+ T cells to specifically kill tumor cells, while MHC 
II enhances cytotoxicity through cytokine secretion and 
participates in the body’s positive feedback regulation 
against tumors (100). EGFR mutations can decrease MHC 
levels, contributing to immune evasion (101).

Future studies may further elucidate the roles of these 
receptors in HCC, thereby providing support for the 
development of new treatment strategies. In summary, 
the ErbB pathway is one of the most prominently 
mutated pathways in HCC and plays a crucial role in the 
development and progression of HCC (Figure 3). These 
findings serve as a crucial foundation for assessing the 
effectiveness of ErbB pathway-targeted therapies in the 
clinic or those currently under development for patients 
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with HCC.

ErbB inhibitors: clinical applications and 
exploration

With continuous advancements in science and technology, 

precision medicine has increasingly become a major trend 
in the field of cancer treatment. This approach largely relies 
on high-throughput NGS technologies and systematic 
analyses to achieve highly precise treatments tailored 
to the individual characteristics of cancers (102). The 
overexpression and/or functional alteration of oncogenes 
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are among the primary drivers of cancer cell proliferation 
and tumor development. Consequently, molecular 
targeted therapies against these key genes have been 
extensively researched and applied in recent years, proving 
to be an effective strategy for cancer treatment (103).  
In particular, as critical signaling molecules in tumor 
progression, members of the ErbB family have emerged 
as focal points in targeted therapy research (Table 2). Over 
the past few decades, small-molecule drugs targeting the 
ErbB family have been developed and successfully applied 
to various types of cancer, such as lung, gastric, colorectal, 
and pancreatic cancers, and have demonstrated significant 
efficacy (122-125). Currently, with a deeper understanding 
of the pathogenesis and pathological heterogeneity of 

cancers, such as HCC, a new era has been initiated for the 
use of novel targeted treatment strategies, including ErbB 
small-molecule inhibitors.

Targeting EGFR for HCC treatment

Gefitinib and erlotinib, first-generation EGFR tyrosine 
kinase inhibitors (TKIs), were approved by the Food 
and Drug Administration (FDA) for cancer treatment in 
2003 and 2004, respectively, and demonstrated significant 
therapeutic efficacy, particularly in the treatment of 
advanced non-small cell lung cancer (NSCLC) in the realm 
of oncology (126,127). However, the therapeutic efficacy of 
EGFR-TKIs for HCC still requires further exploration.

Table 2 Clinical trials of ErbB-targeted therapy in hepatocellular carcinoma

Study Drugs Phase Targets Design Sample size Results

Philip 2005, (104) Erlotinib II EGFR Single-arm 38 Positive

Thomas 2007, (105) Erlotinib II EGFR Single-arm 40 Positive

Thomas 2009, (106) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 40 Positive

Kaseb 2012, (107) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 59 Positive

Philip 2012, (108) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 27 Negative

Yau 2012, (109) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 10 Negative

Chiorean 2012, (110) Erlotinib + bevacizumab II EGFR Single-arm 14 Negative

Govindarajan 2013, (111) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 21 Negative

Hsu 2013, (112) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 51 Positive

Zhu 2015, (113) Erlotinib + sorafenib III EGFR; RAF; VEGFR; 
PDGFR; KIT

RCT 720 Negative

Placebo + sorafenib

Kaseb 2016, (114) Erlotinib + bevacizumab II EGFR; VEGFR Single-arm 44 Positive

Patt 2017, (115) Erlotinib + GEMOX II EGFR Single-arm 26 Negative

Thomas 2018, (116) Erlotinib + bevacizumab II EGFR; RAF; VEGFR; 
PDGFR; KIT

Single-arm 90 Negative

Sorafenib

Zhu 2007, (117) Cetuximab II EGFR Single-arm 30 Negative

Asnacios 2008, (118) Cetuximab + GEMOX II EGFR Single-arm 45 Positive

Weekes 2019, (119) Cetuximab + regorafenib Ib EGFR; RAF; VEGFR; 
PDGFR; KIT

Single-arm 42 Positive

Ramanathan 2009, (120) Lapatinib II EGFR; HER2 Single-arm 40 Negative

Bekaii-Saab 2009, (121) Lapatinib II EGFR; HER2 Single-arm 26 Negative

EGFR, epidermal growth factor receptor; VEGFR, vascular endothelial growth factor receptor; RAF, rapidly accelerated fibrosarcoma; 
PDGFR, platelet-derived growth factor receptor; KIT, receptor tyrosine kinase; HER2, human epidermal growth factor receptor 2; RCT, 
randomized controlled trial.
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In a phase II clinical trial involving 38 HCC patients, 
erlotinib was effective in controlling disease progression 
in only a minority of patients who were EGFR-positive 
(104). A subsequent phase II clinical trial also revealed that 
monotherapy with erlotinib exhibited moderate disease 
control benefits in approximately half of the 40 patients 
with advanced HCC (105). In a 16-week phase II single-
arm clinical trial of advanced stage HCC patients treated 
with bevacizumab [a humanized monoclonal antibody 
against vascular endothelial growth factor (VEGF) α] and 
erlotinib, the primary endpoint of progression-free survival 
(PFS) was 62.5%, with an overall clinical response rate 
of 25%, demonstrating significant clinical efficacy (106). 
Similar results were also achieved in another 16-week phase 
II clinical trial (107). 

Three phase II studies investigating the efficacy of 
combining bevacizumab with erlotinib for advanced HCC 
treatment yielded disappointing results, but this regimen can 
be used as an alternative for some patients who are intolerant 
to sorafenib treatment (108,109,111). The potential reasons 
for the failure of the experiments include the relatively small 
number of the patients recruited, coupled with the fact that 
all the participants were recruited from a single institution. 
Such a scenario significantly limits the extrapolation 
and accuracy of the findings. Further, the lack of any 
significant therapeutic response among patients during the 
administration of sorafenib suggests that the participants 
might possess intrinsic resistance to antiangiogenic 
strategies. This intrinsic resistance may have contributed to 
the unsuccessful outcomes observed in the study. 

A subsequent multicenter phase II study conducted 
in Asian countries revealed that the combination of 
bevacizumab and erlotinib demonstrated certain efficacy 
and tolerability in Asian patients (112). Another study 
evaluating the efficacy and safety of erlotinib combined 
with docetaxel in patients with refractory hepatobiliary 
cancer demonstrated preliminary safety and tolerability but 
no significant difference in efficacy compared to erlotinib 
monotherapy (110). In a randomized, multicenter, double-
blind, placebo-controlled phase III clinical trial (SEARCH 
III), 720 patients were randomly assigned to receive either 
a combination treatment of sorafenib and erlotinib or 
sorafenib with a placebo. The results indicated that the 
combination of sorafenib and erlotinib did not improve 
the survival of patients with advanced HCC, and there was 
a greater incidence of adverse events in the early stages of 
treatment in the sorafenib and erlotinib groups (113).

Subsequently, Kaseb et al. (114) evaluated the efficacy 

and tolerability of bevacizumab and erlotinib as second-
line treatments in 44 patients with sorafenib-resistant 
HCC. The results showed a median overall survival (OS) of  
9.9 months, with a 16-week PFS rate of 43%, demonstrating 
encouraging efficacy outcomes. Patt et al.’s phase II clinical 
study (115) did not demonstrate a significant survival 
benefit among HCC patients receiving combination therapy 
of oxaliplatin, gemcitabine, and erlotinib. Recent results 
from a multicenter phase II clinical trial indicated that 
the combination of bevacizumab and erlotinib, compared 
to sorafenib alone, did not affect the OS of patients with 
advanced HCC, but the combination therapy resulted 
in a longer median event-free survival and demonstrated 
superior safety and tolerability profiles (116).

Rodent models of chronic liver disease and human 
cirrhosis exhibit similar liver fibrosis/cirrhosis-associated 
molecular pathway patterns. Consistent with the findings 
of studies of humans, Fuchs et al. (128) evaluated the 
therapeutic effects of erlotinib in various animal liver injury 
models and reported that erlotinib effectively inhibits 
EGFR signaling and prevents the development of HCC. 
Another animal model study revealed that gefitinib reduces 
the formation of HCC tumor nodules, effectively inhibiting 
the progression of HCC (129).

Cetuximab is an EGFR-targeting monoclonal antibody 
that was first approved by the United States FDA in 2004 
for the treatment of advanced colorectal cancer. Common 
side effects include skin reactions, fatigue, diarrhea, 
and hypomagnesemia (130). A phase II clinical trial 
targeting advanced HCC patients demonstrated that while 
cetuximab exhibited good safety and tolerability, it showed 
no significant anti-tumor activity against HCC (117).  
Subsequently, Asnacios et al. (118) conducted a phase II 
clinical trial for advanced HCC using a combination of 
gemcitabine and oxaliplatin with cetuximab. The results 
indicated a disease control rate of 20%, with 40% of 
patients achieving disease stabilization, demonstrating 
some therapeutic efficacy and good tolerability. A recent 
phase Ib clinical trial of regorafenib in combination with 
cetuximab for the treatment of advanced, refractory solid 
tumors, including HCC, showed that patients treated with 
regorafenib and a standard dose of cetuximab had good 
tolerance and a low incidence of adverse toxic reactions, and 
thus the therapy was efficacious (119).

Targeting ErbB2/3/4 for HCC treatment

Compared to other cancer types, HCC typically exhibits 
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lower levels of HER2 expression, resulting in less research 
on HER2 inhibitors in HCC. Trastuzumab, a humanized 
monoclonal antibody, targets the HER2 receptor by binding 
to its extracellular subdomain IV. This interaction inhibits 
signal transduction and promotes antibody-dependent 
cellular cytotoxicity, among other mechanisms, effectively 
combating tumor growth (131). Currently, it is primarily 
used in the treatment of patients with HER2-positive breast 
cancer and gastric cancer (132,133).

A study conducted in vitro revealed that trastuzumab 
alone has certain anti-tumor effects on liver cancer cell 
lines (134). Sharafutdinova et al. (135) developed an HER2/
neu-expressing mouse liver cancer model and showed that 
trastuzumab treatment significantly curtails tumor growth, 
underscoring its potential therapeutic efficacy. Shi et al. (60) 
demonstrated that the use of trastuzumab in a rat model for 
HCC treatment can reduce tumor size and inhibit tumor 
metastasis. in vitro analyses showed that high concentrations 
of trastuzumab inhibit cell proliferation. In contrast to the 
aforementioned findings, Hsu et al. (136) reported that 
trastuzumab did not have significant anti-tumor effects 
on liver cancer cell lines. Currently, there are no clinical 
trials evaluating the use of trastuzumab for the treatment of 
HCC, an area that remains to be explored.

Lapatinib, a dual small-molecule TKI targeting 
EGFR and HER2 developed by GlaxoSmithKline, has 
been approved by the FDA for the treatment of HER2-
positive advanced or metastatic breast cancer following 
chemotherapy or trastuzumab failure (137). An in vitro 
study has shown that lapatinib induces autophagic cell death 
in human liver cancer cells, demonstrating its ability to 
inhibit HCC proliferation and metastasis (138). However, 
in phase II clinical trials, lapatinib did not show significant 
efficacy in treating patients with HCC (120,121).

Afatinib, a second-generation irreversible inhibitor 
targeting the ErbB family, including EGFR, HER2, and 
HER4, was approved by the FDA and European Medicine 
Agency in 2013 for treating advanced EGFR mutation-
positive NSCLC in adults (139). A pre-clinical study has 
confirmed that afatinib exerts a significant inhibitory effect 
on liver cancer cells, leading to the notable suppression 
of their proliferation, invasion, and migration (140). 
Specifically, Chen et al. (141) showed that afatinib reduces 
the activity of the ERK signaling pathway in liver cancer 
cell lines and decreases the expression levels of VEGF and 
matrix metalloproteinase 9, leading to reduced viability, 
migration, and invasion of liver cancer cells, thereby 
inhibiting tumor development. This finding underscores 

the potential of afatinib as a promising candidate for the 
treatment of liver cancer.

Canertinib is a panTKI that simultaneously suppresses 
the activity of HER1 (EGFR), HER2, and HER4. Similar 
to lapatinib, it achieves favorable therapeutic outcomes 
in HCC cell lines characterized by mutation signature 
cluster 1 expression (142). Concurrent research has shown 
that canertinib inhibits the growth of xenograft tumors 
in MAN2A1-FER cells and prevents their metastasis  
in mice (143).

Neratinib is an oral irreversible inhibitor of ErbB1/2/4 
that was approved by the FDA in 2017 as an adjuvant 
treatment for HER2-positive breast cancer (144). Notably, 
11% of HCC patients have the HER2 H878Y mutation (145).  
Hu et al. (146) reported that neratinib exhibits compelling 
sensitivity to this mutation, suggesting that these patients 
may be a potential beneficiary group.

Based on studies conducted on various HCC cell lines, 
Lee et al. (147) discovered that pelitinib, an EGFR small-
molecule TKI, induces Twist1 by inhibiting the MAPK 
and Akt signaling pathways, thereby suppressing the EMT 
activity of HCC cells and consequently inhibiting the 
migration and invasion of Huh7 cells. Additionally, the novel 
EGFR-TKI EKB-569 significantly blocks the cell cycle of 
HCC cells, exhibiting greater efficacy than first-generation 
reversible EGFR-TKIs (148). AST1306 is an orally active, 
irreversible small-molecule inhibitor that targets the 
EGFR, HER2, and HER4 signaling pathways. A phase 
I trial investigating AST1306 demonstrated that the oral 
administration of AST1306 was safe and well tolerated, and 
AST1306 exhibited preliminary anti-tumor activity (149).

Overall, HCC is a highly heterogeneous tumor, the 
occurrence of which can be triggered by a variety of 
factors, including viral infections (e.g., HBV and HCV), 
alcohol consumption, metabolism, and other genetic 
and environmental factors. As a result, the functions of 
pathways, such as the ErbB pathway, may vary among 
different tumors or subgroups, leading to variations in the 
efficacy of these drugs. As we gain a deeper understanding 
of the role of the ErbB pathway in the pathogenesis of 
HCC, an increasing number of localized and systemic 
targeted drugs may emerge, bringing new hope to patients 
with HCC. Beyond the drugs mentioned, many targeted 
therapies against the ErbB pathway, such as tucatinib and 
dacomitinib, have yet to be explored in pre-clinical trials 
for HCC. The advent of novel targeted therapies holds 
tremendous therapeutic potential for HCC, necessitating 
ongoing research and exploration to develop more effective 
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and safer treatment methods. This is crucial for improving 
the therapeutic landscape for HCC and enhancing patient 
outcomes.

ErbB-driven resistance and related targeted therapies

Targeted therapies, which address pathways, such as tumor 
angiogenesis, tumor cell proliferation, and the TME, 
are a crucial treatment modality for advanced HCC, and 
effectively mitigate disease progression and improve patient 
prognosis. However, over time, some patients develop 
reduced efficacy and treatment insensitivity, posing a 
significant challenge of acquired resistance in targeted 
therapy. Investigating resistance mechanisms and seeking 
novel therapeutic approaches or strategies to overcome 
drug resistance are critical issues that targeted therapies 
need to address. Primary and acquired resistance in HCC 
is a complex phenomenon involving various factors, such as 
signaling pathways, hypoxia, cellular autophagy, EMT, and 
the TME (150).

Hypoxia is a common phenomenon in the TME that 
significantly affects the biological behavior and metabolism 
of cancer cells by activating hypoxia-inducible factors 
(HIFs), particularly HIF-1α, to promote metabolic 
reprogramming, thus enhancing multidrug resistance in 
tumors (151). In HCC, hypoxia-mediated pleomorphic 
adenoma gene-like 2 and HIF-1/2α signaling pathways 
increase resistance to erlotinib, and 2-methoxyestradiol 
(2ME2) restores the efficacy of erlotinib by disrupting 
this signaling pathway (152). An experiment investigating 
the efficacy of erlotinib and sorafenib in treating HCC 
organoids and cell lines revealed that erlotinib induces 
VEGF production in liver cancer cells, leading to drug 
resistance (153). The overexpression of C-X-C chemokine 
receptor 4 (CXCR4) has been found to be associated with 
resistance to gefitinib in HCC. CXCR4 promotes gefitinib 
resistance in HCC through the caveolin-1 signaling 
pathway and c-Met signaling pathway (154). The treatment 
of HCC cells with gefitinib may induce cancer stem cell 
resistance through the increased nuclear translocation of 
insulin-like growth factor 1 receptor and the upregulation 
of Cluster of Differentiation 133 (CD133) expression (155).

Autophagy is an essential intracellular process of self-
digestion that degrades and recycles damaged organelles, 
protein aggregates, and other cellular components through 
the lysosomal pathway to maintain cellular stability and 
meet the demands of biosynthesis (156). Autophagy plays 
dual roles in tumor initiation and progression, acting as 

a tumor-suppressive mechanism in the early stages but 
aiding tumor cells in adapting to stress and promoting their 
survival and growth once a tumor forms (157). Tumor cells 
enhance autophagy to counteract the cytotoxicity induced 
by chemotherapy, radiotherapy, or targeted therapy, 
thereby reducing the effectiveness of drugs. Autophagy is 
a significant factor in resistance to EGFR-targeted therapy 
in HCC. Li et al. (158) demonstrated that the upregulation 
of p57 activates the PI3K/AKT/mTOR signaling pathway, 
thereby attenuating the protective effects of autophagy and 
promoting the response of HCC cell lines to erlotinib or 
cetuximab.

EMT not only plays a critical role in the metastatic 
process of cancer but also contributes to the development 
of resistance to various anti-tumor treatments, leading to a 
loss of sensitivity. KIAA1199 is an intracellular protein that 
is overexpressed in a variety of tumor types. Xu et al. (159)  
reported that KIAA1199 enhances the transmission of 
EGF signals, accelerates the activation of EMT-related 
transcription factors, directly affects the loss of cell adhesion 
and cell polarity, and promotes the transition of epithelial 
cells to mesenchymal cells. This not only enhances the 
migration and invasion capabilities of liver cancer cells 
but also exacerbates cell resistance to targeted therapeutic 
drugs. EMT has been reported to induce resistance to 
erlotinib and gefitinib in various types of tumors (160,161). 
Fuchs et al. (162) analyzed the sensitivity of 12 human liver 
cancer cell lines to erlotinib, gefitinib, and cetuximab by 
categorizing them into epithelial and mesenchymal types, 
and found that drug sensitivity was greater in epithelial cell 
lines. Additionally, reducing integrin-linked kinase activity 
and AKT activation in mesenchymal cell lines increases the 
sensitivity to EGFR inhibitors. Another study revealed that 
the ECM molecule laminin-5 counteracts the continuous 
dephosphorylation of AKT induced by gefitinib (restoring 
p-AKT), thereby reducing the sensitivity of HCC to 
gefitinib (163).

The mutation of EGFR T790M plays a critical role 
in the rapid onset of resistance to EGFR-TKIs among  
patients (164). Third-generation EGFR-TKIs, such as 
osimertinib, initially proved effective in treating these 
mutated tumors, but resistance emerged shortly thereafter, 
possibly due to the cis-p.Cys797Ser (C797S) mutation, 
inactivation of Retinoblastoma 1, and transformation of 
tumor tissue (165). EGFR C797S mutations, located in 
the kinase-binding site, also lead to resistance to third-
generation irreversible EGFR inhibitors (166). EGFR, 
HER2, and MET amplification not only affects the initial 
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response to treatment but also plays a role in tumor 
evasion by targeted therapies, affecting sensitivity and 
resistance to EGFR-TKIs while driving tumor growth and  
survival (167,168).

The heterogeneity of tumors, the plasticity of HCC 
tumor cells, and escape mechanisms pose additional 
challenges for HCC-targeted therapy. The ErbB signaling 
pathway also mediates resistance to other targeted 
drugs. Currently, drugs such as sorafenib and lenvatinib 
are approved as first-line treatments for patients with 
unresectable advanced HCC (169). EGFR plays a pivotal 
role in mediating sorafenib resistance by activating 
downstream signaling pathways, such as the RAF/MEK/
ERK and PI3K/AKT pathways (170). Kruppel-like factor 
4 (KLF4) is a zinc-finger transcription factor involved in 
cell growth, differentiation, and cell cycle regulation (171).  
Pang et al. (172) reported a positive feedback loop between 
EGFR and KLF4, where nuclear EGFR induces KLF4 
transcription by binding to its promoter, and vice versa. 
Additionally, EGFR may promote KLF4 expression by 
activating the RAF/MEK/ERK signaling pathway, thus 
contributing to sorafenib resistance in HCC. Research has 
revealed that lenvatinib achieves an overall response rate of 
approximately 24% in patients with HCC, with inevitable 
resistance to subsequent treatments affecting patient 
prognosis (173). A recent study suggests that the activation 
of EGFR may contribute to lenvatinib resistance (174).  
Further, clinical trials have demonstrated that combining 
lenvatinib with gefitinib significantly improves clinical 
outcomes (175). EGFR is significantly expressed in 
lenvatinib-resistant HCC cell lines, and Miyazaki et al. (176) 
discovered through whole-genome transcriptome analysis 
that the EGFR-PI3K-AKT pathway is overly activated. 
By inhibiting this pathway, resistance to lenvatinib can be 
overcome (176).

In summary, the abnormal activation of the ErbB 
family signaling pathway plays a crucial role in the 
occurrence and development of cancer. Targeting these 
specific molecules can effectively block their aberrant 
signal transduction, inhibiting tumor cell proliferation 
and survival. Moreover, targeting molecules or pathways 
relevant to cancer can reduce side effects, improving patient 
tolerance. The abnormal activation of the ErbB signaling 
pathway also affects the function of immune cells in the 
tumor microenvironment. Inhibiting ErbB signaling can 
improve the infiltration and function of immune cells, 
disrupt tumor cell immune escape mechanisms, restore the 
immune system’s ability to recognize and kill tumors, and 

enhance anti-tumor immune responses. Therefore, these 
molecules are promising targets for anti-cancer drugs. The 
continuous development of novel inhibitors and antibody 
drugs targeting the ErbB signaling pathway in the future 
will provide new hope for patients.

To date, the exploration and understanding of resistance 
mechanisms, particularly those concerning the ErbB 
pathway, in targeted therapies for liver cancer are still 
in their early stages. Therefore, more reliable clinical 
model studies are needed to deepen our understanding of 
HCC oncology, reduce the occurrence of drug treatment 
resistance, and benefit more patients with advanced liver 
cancer.

Advances in and prospects of ErbB 
combinational therapies

In cl inical  practice,  the combined applicat ion of 
pharmacological treatments or their combination with 
interventional therapies has demonstrated significant 
benefits in prolonging patient survival and enhancing 
quality of life. This not only brings hope to patients but 
also gradually shifts the traditional treatment paradigms for 
HCC. With the rise and evolution of precision medicine, 
the implementation of combined treatment strategies, 
particularly among patients with advanced HCC, has shown 
greater therapeutic effects compared to single treatment 
modalities.

ErbB family inhibitors combined with other therapies 
have shown significant therapeutic potential in most 
cancers, including breast cancer, and head and neck cancer 
(177,178). Based on the results of the CLEOPATRA 
phase III clinical trial, the combination of pertuzumab and 
trastuzumab with chemotherapy has been established as 
the standard first-line treatment for HER2-positive breast 
cancer, achieving significant success (179). Breast cancer 
research has shown that the combination of lapatinib and 
paclitaxel slows the occurrence of brain metastasis compared 
to the combination of trastuzumab and paclitaxel as a first-
line treatment (180). The combination of cetuximab and 
radiotherapy is an effective treatment regimen for patients 
with locally advanced head and neck cancer, significantly 
improving their survival rates (181). Additionally, studies 
conducted both in vitro and in vivo have shown that both 
cetuximab and radiation therapy synergistically reduce cell 
proliferation and induce apoptosis (182,183).

Multiple studies have shown the potential of applying 
anti-ErbB-targeted drugs in combination with other 
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therapeutic strategies for HCC treatment. miR-34a is a 
microRNA that inhibits tumor growth. Erlotinib and miR-
34a exhibit strong synergistic effects on HCC cell models, 
significantly inhibiting tumor cell growth compared to 
monotherapy (184). As mentioned earlier, a previous 
study has shown that the combination of erlotinib with 
doxorubicin, docetaxel, or SN-38 exhibits significant 
synergistic anti-tumor effects on HCC cell lines (Huh-
7 and HepG2) (185). Current phase II and III clinical 
trials have investigated the use of erlotinib in combination 
with bevacizumab or docetaxel. However, due to various 
factors, such as sample size, the clinical efficacy of these 
treatments remains controversial. Recent research has 
revealed that the combined use of erlotinib and 2ME2 
has synergistic effects on combating liver cancer, inducing 
apoptosis in hypoxic liver cancer cells and inhibiting their 
stem cell characteristics (152). Yu et al. (140) reported 
that the combination of afatinib and an anti-programmed 
death-1 (PD1) agent inhibits the ErbB2 signaling pathway 
and indirectly activates the STAT3 pathway, leading to 
the upregulation of programmed death ligand-1 (PD-L1) 
expression. This process not only suppresses the direct 
growth and spread of tumor cells but also modulates the 
immune microenvironment, enhancing immunotherapy 
efficacy in liver cancer. The use of natural remedies in 
adjunctive cancer therapy is also receiving increasing 
attention. Ethoxy-erianin phosphate (EBTP) is a low-
toxicity, antiangiogenic compound derived from the 
structural modification of the natural product erianin. 
When combined with afatinib, EBTP effectively targets 
the VEGF and EGFR signaling pathways, inhibiting the 
proliferation, motility, and angiogenesis of liver cancer cells 
and tumor vasculature (186).

Challenges and future directions

In this article, we discussed ErbB signaling, particularly 
that involving the EGFR family, which plays a significant 
role in the development and progression of HCC. One 
of the major challenges in targeting ErbB signaling in 
HCC is the inherent tumor heterogeneity. HCC tumors 
exhibit diverse molecular profiles, including variations in 
ErbB receptor expression levels and downstream signaling 
pathways. This heterogeneity complicates the development 
of targeted therapies and necessitates personalized 
treatment approaches. In addition, resistance to EGFR-
targeted therapies is another significant challenge in HCC 
treatment. Tumor cells can develop various mechanisms 

to evade EGFR inhibition, such as the upregulation of 
alternative signaling pathways, mutations in downstream 
effectors, or activation of compensatory feedback loops. 
Overcoming these resistance mechanisms requires a deeper 
understanding of the molecular drivers of HCC progression 
and the development of combination therapies that target 
multiple signaling pathways simultaneously.

Conclusions

In conclusion, in the era of precision medicine, exploration 
into tumor treatment has entered a new age, particularly 
in the treatment of malignant tumors, where ErbB-
targeted therapy has demonstrated tremendous potential 
and prospects. Despite numerous challenges, including 
the singularity of treatment strategies, suboptimal clinical 
efficacy, and controversies in treatment, advancements 
in technology and in-depth research on targeted therapy 
and immunotherapy hold promise for the continuous 
improvement of treatment strategies through the ongoing 
discovery and validation of new therapeutic approaches 
and targets. In the future, we believe that through in-depth 
research and the application of ErbB-targeted therapy, 
broader avenues will be opened for the treatment of HCC 
and other tumors, leading to more personalized and precise 
treatment approaches.
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