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Aims: Diabetic nephropathy (DN) is one of the most important causes of chronic renal

disease, and the incidence of DN is increasing worldwide. Considering our previous

report (Gomes et al., 2014) indicating that chronic treatment with oral low-dose quercetin

(10mg/Kg) demonstrated anti-oxidative, anti-apoptotic and renoprotective effects in the

C57BL/6J model of DN, we investigated whether this flavonoid could also have beneficial

effects in concurrent DN and spontaneous atherosclerosis using the apolipoprotein

E-deficient mouse (apoE−/−).

Methods: Streptozotocin was used to induce diabetes (100mg/kg/day, 3 days) in male

apoE−/− mice (8 week-old). After 6 weeks, the mice were randomly separated into DQ:

diabetic apoE−/− mice treated with quercetin (10mg/kg/day, 4 weeks, n = 8), DV:

diabetic ApoE−/− mice treated with vehicle (n = 8) and ND: non-treated non-diabetic

mice (n = 8).

Results: Quercetin treatment diminished polyuria (∼30%; p < 0.05), glycemia (∼25%,

p < 0.05), normalized the hypertriglyceridemia. Moreover, this bioflavonoid diminished

creatininemia (∼30%, p < 0.01) and reduced proteinuria but not to normal levels. We

also observed protective effects on the renal structural changes, including normalization

of the index of glomerulosclerosis and kidney weight/body weight.

Conclusions: Our data revealed that quercetin treatment significantly reduced DN

in hypercholesterolemic mice by inducing biochemical changes (decrease in glucose

and triglycerides serum levels) and reduction of glomerulosclerosis. Thus, this study

highlights the relevance of quercetin as an alternative therapeutic option for DN, including

in diabetes associated with dyslipidemia.
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Introduction

Diabetic nephropathy (DN) is the major cause of chronic renal
disease in industrialized nations and is linked with a significant
increase in cardiovascular morbi-mortality (Foggensteiner
et al., 2001; Ahmad, 2015; Donate-Correa et al., 2015). It
occurs because of an interaction between both genetic and
environmental factors in diabetic individuals, such as genetic
pre-disposition, sedentary lifestyle, hypertension, persistent
hyperglycemia and dyslipidemia (Lassila et al., 2004; Matheus
et al., 2013; Ahmad, 2015). By different routes, all these factors
can contribute directly and/or indirectly to an abnormal
balance between reactive oxygen species (ROS) production and
its antioxidant mechanisms aggravating the pathogenesis of
DN (Lassila et al., 2004; Xu et al., 2006; Duran-Salgado and
Rubio-Guerra, 2014; Gorin and Wauquier, 2015; Lv et al., 2015).

In recent decades, although the use of animal models has
provided new insights into understanding the pathogenesis,
diagnosis and treatment of nephropathy (Balakumar et al., 2008),
most of the models employed do not associate comorbidities,
limiting the extrapolation of these studies to humans. In
an attempt to combine the effects of two severe clinical
risk factors (dyslipidemia and diabetes) for renal disease, we
used the hyperlipidemic diabetic apolipoprotein E-deficient
(apoE−/−) mouse in our study. Recent data indicate that
when this animal is administered streptozotocin (STZ), a
toxin widely used to induce experimental diabetes (Like and
Rossini, 1976; Vessal et al., 2003), it develops accelerated
hypercholesterolemia/atherosclerosis (Candido et al., 2004;
Vedantham et al., 2011) and nephropathy (Wen et al., 2002;
Lassila et al., 2004; Xu et al., 2006).

Considering that only partial renoprotection from DN is
achieved by current standard therapies (e.g., by the inhibition
of the renin-angiotensin-aldosterone system), the search for
alternative, effective and safer therapeutic approaches is an
interesting goal. In this context, recent findings from our
laboratory (Gomes et al., 2014) demonstrate that an orally
administered low-dose of the antioxidant quercetin (10mg/Kg),
a bioflavonoid ubiquitously contained in vegetables and fruits
(Kawabata et al., 2015), exhibits metabolic, anti-oxidative, anti-
apoptotic and renoprotective effects in the C57BL/6J mouse
model of DN. In parallel, others have found cardiovascular
protection from quercetin in the ApoE−/− mouse model
(Lara-Guzman et al., 2012; Ulasova et al., 2013). In light
of these evidences, we tested the hypothesis that, due to
its antioxidant properties, quercetin treatment could improve
metabolic parameters and renal function in the diabetic apoE−/−

mouse model.

Materials and Methods

Animals
The apoE−/− male mice (8 week-old, n = 24) were obtained
from the animal facilities of the Laboratory of Translational
Physiology, at the Federal University of Espirito Santo, Brazil.
The mice were fed a normal laboratory chow diet (Labina R©) and
water ad libitum until the time of the experiments. The animals

were housed at 22◦C, 50% humidity with a 12 h-light/12 h-dark
cycle. All of the procedures were conducted in accordance with of
the institutional guidelines for animal research, and the protocols
were previously certified by the Institutional Ethics Committee
for Use of Animals (Protocol # 013/2010).

Experimental Protocol
Diabetes was induced by three daily intraperitoneal injections
of streptozotocin (STZ, Boehringer Mannheim, Mannheim,
Germany) at a dose of 100mg/kg diluted in citrate buffer solution
(10mM, pH 4.5). Non-diabetic apoE−/− mice were administered
the vehicle citrate buffer and served as controls. One week
after the STZ injection, the glycemia was measured using blood
samples (tail vein) obtained from mice after 6 h of inanition.
The inclusion criteria were those animals that 1 week after STZ
injection exhibited hyperglycemia (>250 mg/dL), when it was
confirmed at least in two independent moments (success rate was
approximately 65%). After 6 weeks, the animals were randomized
to receive vehicle (soy oil, DV, n = 8) or oral quercetin (DQ,
n = 8; Sigma, St. Louis, MO, USA) at a dosage of 10mg/kg per
day orally for 4 weeks, based on our prior study (Gomes et al.,
2014) and others (Ajay et al., 2006; Machha and Mustafa, 2005).

Metabolic and Biochemical Parameters
The body weight of all the animals was measured weekly. At week
4, the mice were adapted to 24-h in individual metabolic cages.
Thereafter, a known quantity of food and water were positioned
in the feeder and the drinking bottles, respectively. After 24 h, we
measured the volume of water and amount of chow remaining in
the cages. Urine volume wasmeasured and protein concentration
was determined by the Bradford method (Bradford, 1976).
Finally, animals received a lethal dose of thiopental (Cristalia,
Sao Paulo, Brazil, 200mg/kg, i.p.) after 6 h of inanition in the
morning. The blood samples were collected using the retro-
orbital sinus of the mouse as a source of venous blood for all
measurements, with exception of the determination of glycemia,
which was trough the tail venipuncture. The biochemical analysis
of glucose, triglycerides, cholesterol, creatinine, urea and uric
acidmeasurements were performed by colorimetric kits. Animals
were perfused with cold PBS (pH 7.4, 0.1 mol/L) through the left
ventricle. Creatinine clearance was calculated using serum and
urine creatinine levels and urine flow through the standardized
formula: [urine creatinine concentration (mg/dL) × 24 h
urine volume (µL)]/[serum creatinine concentration (mg/dL)
1440min].

Kidney Histology
After perfusion of the animal, the kidneys were carefully fixed
with Duboscq solution (aqueous solution of 0.4% picric acid,
54% ethanol, 27% formaldehyde, and 7% acetic acid), weighed
and managed for histological and morphometric analysis. The
samples were dehydrated in increasing concentrations of alcohol
and finally mounted in paraffin blocks. Thereafter, the kidneys
were sliced using a microtome into 3-µm-thick cross-sections
with hematoxylin-eosin staining. Images were obtained with
video camera (VKC150, Hitachi, Tokyo, Japan) connected to
a microscope (AX70, Olympus, Center Valley, PA, USA). The
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mean glomerular tuft area of each kidney was obtained by
calculating the mean value of 30 individual glomeruli measured
by Image J software (version 1.33u, Public Domain). Masson’s
trichrome staining was used to quantify glomerulosclerosis. A
total of 30 glomeruli were used to calculate the percentage of
the stained area for each kidney using the Image J program
(Public Domain Image Processing Program, National Institutes
of Health, Bethesda, MD).

Statistical Analysis
The data are presented as the mean ± SEM. The normality of
the variables was tested by Kolmogorov-Smirnov. The statistical
analysis was performed using One-Way analysis of variance
(ANOVA) followed by the Tukey’s post-hoc test using Prism
software (Prism 6, GraphPad Software, Inc., San Diego, CA,
USA). The level of significance was set at p < 0.05.

Results

The Effects of Quercetin on Metabolic
Parameters
Figure 1 summarizes the data obtained through metabolic cages
(food intake, water intake, and urine volume) and the body
weight gain in the three groups studied. DV mice showed
hyperphagia (p < 0.05, Figure 1A) and polydipsia (p <

0.05, Figure 1B) when compared with ND mice and no effect
of quercetin was observed on these parameters. Interestingly,
DV mice showed polyuria (p < 0.05), which was reduced
by approximately 30% of DQ mice (p < 0.05) (Figure 1C).
Body weight was statistically similar in the three groups at the
beginning of the protocol, but as shown in Figure 1D, over the

2-week period, only the DV mice showed reductions in body
weight, in contrast to the ND mice and DQ mice (p < 0.05),
which showed significant increases in body weight.

Effects of Quercetin on Biochemical Parameters
As summarized in Figure 2, DV mice exhibited a significant
augmentation in glycemia (2.5-fold), triglycerides (1.9-fold)
and total cholesterol (2.3-fold) when compared with control
ND mice (p < 0.05). The treatment of diabetic apoE−/−

mice with quercetin caused significant attenuation of plasma
glucose (∼25%) and abolished the hypertriglyceridemia (p <

0.05); however, this dose of quercetin did not reverse the
hypercholesterolemia.

Effects of Quercetin on Kidney Functional and
Morphometric Parameters
Figure 3 shows the mean values of the traditional renal function
biomarkers. As expected, DV mice exhibited significantly
high plasma concentrations of creatinine (Figure 3A), urea
(Figure 3B), uric acid (Figure 3D), and impairment of renal
clearance (Figure 3C) compared with ND animals (p < 0.05). In
DQ mice, plasma creatinine and clearance returned to baseline
levels (p < 0.05, Figure 3C). In addition, quercetin did not
modify the high plasma both urea and uric acid (p > 0.05).
Proteinuria was significantly increased (4.4-fold, p < 0.05)
in the DV mice compared to the ND mice (p < 0.01,
Figure 3E). Treatment with quercetin showed a tendency to
reduce proteinuria (∼15%), but the levels were still significantly
higher than those of the ND mice.

Diabetes was related to an augment of ∼35% in the kidney
weight/body weight ratio when compared with ND mice (p <

FIGURE 1 | Food and water intake, urine volume and body weight gain in diabetic apoE−/− mice treated with quercetin (DQ) compared with

diabetic apoE−/− mice administered vehicle (DV) compared with non-diabetic apoE−/− (ND) mice. Values are the means ± SEM for n = 6–8 mice

per group. *p < 0.05 vs. ND, #p < 0.05 vs. DV.
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FIGURE 2 | Total plasma glucose (A), triglycerides (B), and cholesterol (C) in diabetic apoE−/− mice treated with quercetin (DQ) compared with

diabetic apoE−/− mice administered vehicle (DV) compared with non-diabetic apoE−/− (ND) mice. Values are the means ± SEM for n = 6–8 mice

per group. *p < 0.05 vs. ND, #p < 0.05 vs. DV.

FIGURE 3 | Plasma creatinine (A), urea (B), creatinine clearance (C), uric acid (D), and proteinuria (E) in diabetic apoE−/− mice treated with quercetin

(DQ) compared with diabetic apoE−/− mice administered vehicle (DV) compared with non-diabetic apoE−/− (ND) mice. Values are the means ± SEM for

n = 6–8 mice per group. *p < 0.05 vs. ND, #p < 0.05 vs. DV.

0.05), whereas quercetin reversed this consequence of diabetes in
the apoE−/− mice (p < 0.05, Figure 4A). As illustrated in the
typical microscopy images (Figure 4D), the glomerulosclerosis,
which was characterized by glomerular hyperplasia and by
deposition of extracellular matrix in the mesangium, was more
prominent in the DV mice, than in the ND mice, and quercetin
showed a favorable effect on this condition. More specifically,
the analysis of glomerulosclerosis demonstrated a significant
increase of approximately 50% when compared with ND mice
(p < 0.05), and quercetin abolished this glomerular injury

(Figure 4B). Additionally, the mean glomerular tuft area of each
kidney revealed an increase of approximately 40% compared to
those of NDmice (p < 0.05), andDQhad a tendency to attenuate
this glomerular injury (Figure 4C).

Discussion

Recent data from our laboratory showed that oral
low-dose quercetin ameliorated the consequences of
hyperglycemia-induced ROS overproduction in the kidney

Frontiers in Physiology | www.frontiersin.org 4 September 2015 | Volume 6 | Article 247

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gomes et al. Quercetin effects in hypercholesterolemic-diabetic mice

FIGURE 4 | Kidney weight (wt)/body weight ratio (A), glomerulosclerosis (B), glomerular tuff area (C) in diabetic apoE−/− mice treated with quercetin

(DQ) compared with diabetic apoE−/− mice administered vehicle (DV) compared with non-diabetic apoE−/− (ND) mice. Photomicrographs (D) are

representative glomerular sections (magnification of 400x), stained with Masson’s trichrome. Values are the means ± SEM for n = 6–8 mice per group. *p < 0.05 vs.

ND, #p < 0.05 vs. DV.

in wild-type diabetic mice (Gomes et al., 2014), the most
common genetic background for gene-modified mice (Haug
et al., 2013). The novelty of this study is that the same dose
of this bioflavonoid was capable of reducing the classical signs
of diabetes and attenuated the progression of nephropathy in
diabetic-induced apoE−/− mice. These data are reinforced by
a reduction in hyperglycemia, hypertriglyceridemia, azotemia,
proteinuria and the diminution of mesangial matrix expansion
in the kidneys of diabetic apoE−/− mice.

Although there are limitations to the experimental diabetic
mouse model compared to humans (Wu and Huan, 2007;
Müller et al., 2012), STZ-induced diabetic ApoE−/− mouse
is an interesting model for exploring new therapeutic options
for diabetes-associated dyslipidemia and renal injury. First,
the diabetic condition in this model is preserved for many
weeks, which allowed us long periods of treatment with
quercetin. Second, the diabetic status is not refractory to medical
interventions (Wu and Huan, 2007), which was evidenced in our
study in the antidiabetic protection observed with administration
of this bioflavonoid. Moreover, in order to avoid interference
with the direct nephrotoxic effects of STZ, the experiments were
performed after 6 weeks to avoid acute renal injury bias (Ortega
et al., 2013; Gomes et al., 2014).

As in other STZ models, STZ-induced diabetic ApoE−/−

mice showed damaged β cells that compromised the secretory
capacity of insulin (Like and Rossini, 1976; Wu and Yan, 2015).
Consequently, this atherosclerotic model exhibits the expected
progressive signs of the disease, such as hyperglycemia, polyuria,
polydipsia, polyphagia, proteinuria and the decline of renal
function, similar to those in C57BL/6J mice (Gomes et al.,
2014). Based on the 5 stages of the clinical classification of DN

and by the sum of these characteristics (Mogensen et al., 1983;
Jerums et al., 2009), we consider this model to correspond to
stage 4 clinical classification because the animals exhibited a
diminished creatinine clearance and proteinuria similar to that
observed in C57BL/6J mice (Gomes et al., 2014). Exceptionally,
only the loss of body weight was more evident when compared to
their respective genetic background, probably due to the lack of
apoE. Pendse et al. (2009) demonstrated that the absence of this
apolipoprotein contributes directly to the suppression of body
weight gain and consequent fat accumulation in apoE−/− mice,
which corroborates our hypothesis.

For more than almost 20 years, it has been known that
oxidative stress plays a crucial role in the development of
diabetic complications (Baynes, 1991; Wright et al., 2006;
Alam et al., 2014). In this context, the search for nontoxic
natural antioxidant compounds to prevent oxidative damage
in experimental models of diabetes (Wang et al., 2012) and
in diabetic patients (Valensi et al., 2005; Lobo et al., 2010;
Sunarwidhi et al., 2014) has been intensified in recent years.
Typically, the best candidates are molecules that exhibit high
antioxidant activity, long half-lives (Sesink et al., 2001; Manach
et al., 2005), and high mitochondrial permeability (Ortega and
García, 2009) and are able to suppress pro-oxidant enzymes
and stimulate antioxidant enzymes (Bouayed and Bohn, 2010).
Interestingly, quercetin exhibits all of these advantages (Sanders
et al., 2001; Ortega and García, 2009; Gomes et al., 2014).
Similarly, recent studies from our group (Gomes et al., 2014) and
other groups (Pereira Braga et al., 2013) have demonstrated that
this bioflavonoid diminishes ROS bioavailability through distinct
pathways: (1) by the chelation of metals, (2) by neutralizing
lipid peroxyl radicals, (3) by interacting directly with O−

2 during
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initiation and (4) by increasing the activity of glutathione
peroxidase/reductase/transferase, superoxide dismutase and
catalase (Oršolic et al., 2011; Alam et al., 2014).

Although the antioxidative benefits of quercetin are well-
established in diabetic experimental models (Kobori et al.,
2009; Oršolic et al., 2011; Kanter et al., 2012), other effects
still require further investigation (Youl et al., 2010; Gomes
et al., 2014). Interestingly, our results demonstrated for the
first time that quercetin attenuates hyperglycemia in a mouse
model of dyslipidemia and diabetes, as observed recently by
others in diabetic rats (Kanter et al., 2012), in Balb/C mice
(Kobori et al., 2009) and by us in diabetic C57BL/6J mice
(Gomes et al., 2014). The beneficial effect of quercetin on
glycemia may work through different mechanisms, such as
through the stimulation of glucose influx via GLUT4 (Alam
et al., 2014; Xu et al., 2014) and via augmented glucokinase
activity and, consequently, the increase in glucose liver uptake,
inhibiting hepatic glycogenolysis and gluconeogenesis (Alam
et al., 2014). Moreover, it has been shown that quercetin can
inhibit α-glucosidase (Ishikawa et al., 2007; Kim et al., 2011)
and the intestinal glucose transporter GLUT2 (Kwon et al.,
2007), reducing the absorption of monosaccharides in the small
intestine. Because the low dose of quercetin we used has been
associated with intrinsic low bioavailability, interference with the
absorption of monosaccharides seems reasonable (Gomes et al.,
2014) and is consistent with the findings of Galindo et al. (2012),
who showed a better effect when compared to administration
via the intraperitoneal route. However, we cannot exclude the
protective role of quercetin in Langerhans β-cells from damage
on improving insulin production in STZ models, as observed by
others (Vessal et al., 2003; Kim et al., 2011). Independent of this
mechanism, the attenuation of chronic hyperglycemia reduces
damage to a number of cell types through several pathways,
such as the augmented formation of advanced glycation end-
products (AGEs) and its respective receptor, polyol pathway flux,
the overactivity of the hexosamine pathway, activation of protein
kinase C (PKC) isoforms and even mitochondrial dysfunction
(Wright et al., 2006; Giacco and Brownlee, 2010; Alam et al.,
2014), which attenuates progressive damage to major target
organs.

Although treatment with quercetin ameliorated the reduction
in body weight gain and polyuria, it probably prevented
reductions in body weight gain and polyuria. This effect
may be justified as a consequence of better glycemic control,
with a reduction of the compensatory lipolytic response and
consequent normalization of triglyceridemia without modifying
the hypercholesterolemia, as recently observed by our group
(Gomes et al., 2014) and others (Ozcelik et al., 2011).
Furthermore, we cannot reject the possibility of a modification in
the non-HDL/HDL ratio, which maintains invariable total serum
cholesterol levels (Negi et al., 2013; Gomes et al., 2014).

In a previous study, we have shown that apoE−/− mice
exhibit early impaired renal function when compared with
normocholesterolemic C57 mice (Balarini et al., 2011).
Now, using the experimental model of DN aggravated by

hyperlipidemia, we observed signs of renal glomerular injury,
which could be justified by azotemia with reduced creatinine
clearance associated with the histological assessment. Moreover,
the glomerular tuft size was exacerbated in diabetic apoE−/−

mice, indicating an initial diabetes-induced renal injury, which is
consistent with the literature (Xu et al., 2006; Menini et al., 2015).
For the first time, our study demonstrates that treatment with
quercetin ameliorated the glomerulosclerosis and recovered the
kidney weight/body weight ratio. However, we emphasize that
this latter finding should not be interpreted as an occurrence of
renal hypertrophy because we observed that the diabetic animals
exhibited lower body weight. Additionally, this bioflavonoid also
exhibited marked beneficial effects on renal function as indicated
by the significant decrease of creatininemia, restoration of the
clearance of creatinine and tended to reduce the proteinuria in
diabetic apoE−/− mice. The non-modification of the uremia
and uric acid parameters may be justified by the following: (1)
an intense purine and amino acid catabolism (respectively) in
this induced diabetic experimental model (Gomes et al., 2014)
and (2) by more glomerular sensitivity to oxidative injuries than
other nephron segments (Schena and Gesualdo, 2005; Gomes
et al., 2014), favoring the amelioration of renal filtration that we
observed in the present study. All of these renoprotective effects
of quercetin could be explained by direct benefits such as the
vasorelaxant effect in vascular tissues recently described (Schena
and Gesualdo, 2005; Lodi et al., 2009; Galindo et al., 2012),
in addition to indirect effects such as its hypoglycemic/anti-
dyslipidemic actions (Lassila et al., 2004) and the reduction
of ROS formation (Gomes et al., 2014). Likewise, we cannot
reject that quercetin can also positively modulate the functional
activities of endothelial progenitor cells (EPCs) in vascular and
kidney repair after damage, as observed recently in vitro by Zhao
et al. (2014), offering new insights into antidiabetic therapies.

In conclusion, we have demonstrated that an oral
administered low-dose of quercetin exhibits antidiabetic and
renoprotective effects in a mouse model of concurrent apoE−/−-
induced hypercholesterolemia and STZ-induced DN. Although
further studies are needed to reveal the intrinsic mechanisms
involved, this bioflavonoid is a potential nutraceutical alternative
to prevent and/or treat renal dysfunction caused by diabetes and
dyslipidemia as shown in the present study.
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