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Mitochondrial dysfunction is involved in a wide array of devastating diseases, but the het-
erogeneity and complexity of the symptoms of these diseases challenges theoretical
understanding of their causation. With the explosion of omics data, we have the unprece-
dented opportunity to gain deep understanding of the biochemical mechanisms of mito-
chondrial dysfunction. This goal raises the outstanding need to make these complex
datasets interpretable. Quantitative modelling allows us to translate such datasets into
intuition and suggest rational biomedical treatments. Taking an interdisciplinary approach,
we use a recently published large-scale dataset and develop a descriptive and predictive
mathematical model of progressive increase in mutant load of the MELAS 3243A>G
mtDNA mutation. The experimentally observed behaviour is surprisingly rich, but we find
that our simple, biophysically motivated model intuitively accounts for this heterogeneity
and yields a wealth of biological predictions. Our findings suggest that cells attempt to
maintain wild-type mtDNA density through cell volume reduction, and thus power
demand reduction, until a minimum cell volume is reached. Thereafter, cells toggle from
demand reduction to supply increase, up-regulating energy production pathways. Our
analysis provides further evidence for the physiological significance of mtDNA density
and emphasizes the need for performing single-cell volume measurements jointly with
mtDNA quantification. We propose novel experiments to verify the hypotheses made here
to further develop our understanding of the threshold effect and connect with rational
choices for mtDNA disease therapies.

Introduction
Mitochondria are organelles which are present across much of eukaryotic life and are known for their
role in the production of ATP, the major energy currency of the cell. In humans, mitochondrial
dysfunction is associated with a host of diseases because of the role of mitochondria in metabolism,
biosynthesis [1] and energy supply, as well as their importance in cell death signalling [2], implicating
them in diseases ranging from neurodegeneration [3] to cancer [4]. Fundamental understanding of
these organelles and their dysfunction is, therefore, of far-reaching biomedical importance.
Mitochondria generate ATP by pumping electrons across their inner membrane to generate an

electrochemical gradient, which is used by ATP synthase to convert ADP into ATP. The process of
electron pumping is known as the electron transport chain (ETC), and this pathway of ATP gener-
ation is called oxidative phosphorylation (OXPHOS). Mitochondria also possess their own circular
DNA (mtDNA), which are held in multiple copies per cell. In humans, these genomes encode 13
proteins (which encode subunits of complexes I, III and IV of the ETC and ATP synthase), 22
tRNAs and 2 rRNAs. An important class of diseases which affect mitochondria are those which are
caused by a mutation in mtDNA. The most common, and most studied, of these is MELAS
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(mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome, which is often asso-
ciated with a mitochondrial tRNA mutation at position 3243A>G of the mitochondrial genome [5,6]. Its
incidence rate shows large regional variability, with a prevalence of 1 : 6000 in Finland [7] to 1 : 424
in Australia [8]. tRNAs affected by the mutation cause amino acid misincorporations during translation and
generate defective mitochondrial proteins, inducing defective respiration when mutant load (or heteroplasmy,
which is the ratio of the mutant mtDNA copy number to the total mtDNA copy number per cell) is
high [9].
A common feature in many diseases associated with mutations of mitochondrial DNA, including MELAS, is

the non-linear physiological response of cells and tissues to increasing levels of mtDNA heteroplasmy. In par-
ticular, cells appear to be able to withstand high levels of heteroplasmy without showing any significant meta-
bolic or physiological defect. For instance, fibroblasts possessing the MELAS mutation were shown to have
unaffected respiratory enzyme activity until mutant load exceeded ∼60% [10]. Also, Chomyn et al. [11] showed
that oxygen consumption of cells does not significantly reduce until MELAS heteroplasmy exceeds ∼90%. This
observation has been named the threshold effect (reviewed in ref. [12]).
It has been argued that the threshold effect occurs because mitochondria possess spare capacity at the trans-

lational, enzymatic and biochemical levels, which are each able to absorb some degree of stress and thus delay
the phenotypic response of increasing heteroplasmy, until a particular threshold heteroplasmy is exceeded,
which is typically large [12]. Within this picture, each physiological feature (such as enzymatic activity or
oxygen consumption) may be expected to display step-like behaviour with respect to increasing heteroplasmy.
Asynchrony of thresholds between different features, such as 60% for enzyme activity [10] and 90% for oxygen
consumption [11], may be explained by spare capacity at intermediate levels. For example, a biochemical
threshold effect could account for asynchrony in oxygen consumption and enzyme activity thresholds, where
metabolic fluxes are altered to compensate for fewer functional enzymes and hence prolong an oxygen con-
sumption deficit to higher levels of enzymatic dysfunction [12].
A recent study published by Picard et al. [13] established 143B TK− cybrid osteosarcoma cell lines contain-

ing the MELAS 3243A>G mutation across the full-dose response of mutant load. These cybrid cell lines were
generated via the transfer of mtDNAs from a lymphoblastoid cell line, derived from a heteroplasmic 3243A>G
patient, into 143B TK− mtDNA-deficient cells. Although cybrid models such as this have had many non-
physiological perturbations made to them, the advantage in using this system is that all cells possess the same
nuclear background, and can be generated with heteroplasmies across the full spectrum of mutant load. The
authors measured a diverse array of features including RNA expression, protein expression, cell volume, growth
rates, mitochondrial morphology and mtDNA content. The sheer diversity of data collected, across multiple
levels of heteroplasmy, makes this an important dataset in understanding the threshold effect and mitochon-
drial dysfunction (despite the fact that the experiment consists of a single biological replicate, albeit with
several technical replicates). Under the interpretation of the threshold effect presented above, one might expect
a monotonic response to heteroplasmy, as spare capacity is depleted and the cell seeks alternative means of
energy provision. However, Picard et al. [13] observed complex multiphasic responses across numerous physio-
logical readouts as heteroplasmy was increased.
The authors of the study identified four distinct transcriptional phases in the gene expression profiles of

MELAS 3243A>G cells: 0%, 20–30%, 50–90% and 100% mutant load. They argue that continuous changes in
heteroplasmy result in discrete changes in phenotype, because there exist a limited number of states that the
nucleus can acquire in response to progressive changes in retrograde signalling [13]. In this work, by consider-
ing a distilled subset of the data from ref. [13], and using simple, physically motivated arguments, we attempt
to provide a simplified account of this dataset to gain better understanding of the consequences of this muta-
tion and the threshold effect.
Our mathematical model suggests that cells attempt to maintain homeostasis in wild-type mtDNA density at

low heteroplasmies, through reduction in cell volume and therefore cellular power demand. We propose the
existence of a single critical heteroplasmy, where cells are no longer able to maintain wild-type mtDNA density
homeostasis, and toggle from power demand reduction to supply increase. In this regime, energy supply path-
ways are up-regulated. Our model also identifies an additional bioenergetic transition, in excess of 90% mutant
load, as cells become fully homoplasmic. We explore the possibility of reduced transcriptional activity in
mutant mtDNAs/mitochondria, limited tRNA diffusivity and a connection between cellular proliferation rate
and cell volume, finding all of the above to have explanatory power. We propose new experiments to verify the
novel hypotheses made here to drive forward understanding of the threshold effect.
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Materials and methods
Data normalization
We considered a core subset of six physiological features from the dataset of ref. [13] for mathematical model-
ling: mitochondrially encoded ETC mRNA pool size, ETC protein levels, glycolysis mRNA pool size, cell
volume, cell proliferation rate (or cell growth rate as termed in ref. [13]) and maximal respiratory capacity. We
performed many normalizations to the data, the result of which is shown in Figure 1.
OXPHOS, as well as glycolysis, have multiple different mRNAs participating in their respective pathways. To

have some measure of the overall expression level of a pathway (�E), we used the mRNA concentration (in RPMK,
reads per kilobase of transcript per million mapped reads), for each gene corresponding to enzymes of the
pathway (ei,k(h), for gene i and technical replicate k at heteroplasmy h) and took a normalized sum as follows:

�E ¼ 1
N

1
nr

Xnr
k¼1

XN
i¼1

ei,k hð Þ
1=nr

Pnr
l¼1 ei,l h ¼ 0ð Þ� � , (1)

Figure 1. Multiphasic physiological response to increasing heteroplasmy — core data considered from Picard et al.

renormalized to be in per-cell dimensions.

Selected measurements of 143B TK− osteosarcoma cells heteroplasmic in MELAS 3243A>G, from ref. [13]. (A) mRNA levels

for 11 mitochondrially encoded ETC subunits (COX3, ND2, ND5, CYTB, ND3, ND6, COX1, ND4, COX2, ND1 and ND4L).

(B) Protein levels for complexes I, III and IV. (C) Glycolysis mRNA levels, for genes (PKM2, ENO1, PGAM4, PGK1, GAPDH,

ALDOA, PFKP, GPI, HK2 and SLC2A1). All errors in A–C are the standard error of the transformed renormalized mean [see eqn

(2)]. (D) Mean cell volume of an asynchronous population of growing cells ± SEM. (E) Growth rate, determined by linear

regression. Error is the standard error in the slope from linear regression. (F) Maximum respiratory capacity. Details of the data

normalization and regression may be found in Materials and Methods. See ref. [13] for experimental protocols.
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where nr = number of technical replicates and N = number of genes in the pathway of interest. This quantity nor-
malizes the expression level of each gene to mean h = 0 levels, to avoid effects from consistently highly expressed
genes. The factor of 1/N results in �E having the value of 1 at h = 0, so may be interpreted as a fold-change in
expression relative to h = 0.
The standard error of �E over technical replicates k may be written as follows:

s�E ¼ 1
N

1ffiffiffiffiffi
nr

p Vk

XN
i¼1

ei,k hð Þ
1=nr

Pnr
l¼1 ei,l h ¼ 0ð Þ� �" # !1=2

; (2)

where Vk(xk) is the sample variance over xk. Eqns (1) and (2) are applied to glycolysis and ETC mRNAs in
our main model, which yield dimensionless, normalized, measures of transcript levels for each biological
pathway.
ATP synthase was excluded from both ETC mRNA and protein data, as it is expected to be regulated differ-

ently from other ETC proteins. This difference arises because mitochondrial membrane potential is required
for cell growth [14], and glycolytic ATP may be used, even in cells without mtDNA, by ATP synthase to main-
tain membrane potential [15]. Thus, protein levels of ATP synthase may be expected to be regulated quite dif-
ferently to those of the ETC, and not generally indicative of respiratory activity.
For ETC protein, we simply used the sample mean of complexes I, III and IV, since the data given by Picard

et al. [13] are already normalized.

Data transformation to per-cell dimensions
The data we considered of Picard et al. [13] consist of RNA-seq and Western blot measurements for mRNA
and protein levels, respectively. We wished to model the bioenergetic strategy of an average cell, so it is import-
ant that the data used to parameterize the model are of per-cell dimensions. We show in Supplementary Text
S1 that it is appropriate to multiply protein and transcript data by cell volume to gain per-cell dimensions.

Error propagation
Our work focuses on describing the mean behaviour of various cellular processes with respect to heteroplasmy,
so uncertainty in these means must be quantified. For Mgly and METC, we used error propagation on the
normalized transcript levels �E [see eqn (1)] and V, to derive the volume-adjusted transcript uncertainties for
the data shown in Figure 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E2s2V þ V2s2�E

q
(3)

where s�E is defined in eqn (2) and sV is the SEM for cell volume (raw data provided by Martin Picard). For the
case of ETC protein data, since the corresponding experiments in Picard et al. [13] had only a single technical
replicate, we derived an uncertainty by simply multiplying the normalized protein value (see ‘Data
Normalization’) by sV.

Growth rate determination
The speed with which cells proliferate is dependent on heteroplasmy, as can be seen in Supplementary
Figure S1. However, by day 6 of growth, cell growth appeared to change its behaviour, with evidence of satur-
ation; we, therefore, truncated the raw data to day 5 and calculated the exponential growth rate by linear regres-
sion in log-lin space.

Model inference
We used Bayesian inference to determine the parametric uncertainty in the mathematical model presented
below, given the data in ref. [13], for the six features considered here. We assumed Gaussian noise for the error
in the normalized versions of each feature. For full details of the priors used for each feature, see
Supplementary Text S2.
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Results
Per-cell interpretation of omics data highlights multiphasic dynamics in
response to heteroplasmic load
A simple interpretation of the threshold effect predicts the existence of spare capacity in the transcription,
translation, enzyme complex and biochemical levels of the cell, in response to increasing heteroplasmy [12].
Under this interpretation of the threshold effect, we might expect all of these functions to have no more than
one turning point with increasing heteroplasmy.
However, the data in Figure 1, and indeed the dataset of Picard et al. [13] overall, show a much more

complex response. For instance, ETC transcripts clearly show two turning points, suggesting some kind of tran-
sient compensatory response. Across the features, these data also appear to be asynchronous in their turning
points. For instance, ETC transcripts peak at h = 0.6, but glycolysis transcripts peak at h = 0.9. This highlights
the need for an extension in our understanding of the threshold effect, as well as the challenge in trying to par-
simoniously model such a complex dataset.
We note that the measurement uncertainty, reported in [13], for our selected features of interest is small rela-

tive to the variation with respect to heteroplasmy (see Figure 1), justifying a non-linear fit to the data. It should
be noted, however, that this uncertainty only reflects the technical variability in measurement and does not
include potential biological variability of these features. We use a Bayesian approach to appropriately account
for this uncertainty (see Supplementary Text S2).

Integrated omics data motivate a model of the causal relationships between
bioenergetic variables
We present a qualitative description of our model in Figure 2, which we will develop into a full quantitative
description below. One of our central claims is the existence of a single transition in cellular behaviour, in
response to increasing heteroplasmy of the 3243A>G mutation, over the 0–90% heteroplasmy range. We
propose that, at low heteroplasmy values, cells attempt to maintain homeostasis in wild-type mtDNA density by
reducing their volume. This reduces biosynthetic and translational power demands, by the simplifying assump-
tion that power demand scales directly with cell volume.

Figure 2. Qualitative description of continuous increase in MELAS mutant load.

(A) At low levels of heteroplasmy (h), cells attempt to maintain homeostasis in wild-type mtDNA density by reducing their volume

(V). This reduces power demands, allowing power supply/demand balance to be maintained despite rising heteroplasmy.

A further increase in heteroplasmy triggers a power demand/supply toggle at a critical heteroplasmy h*, where energy provision

pathways are up-regulated. This includes up-regulation of both oxidative phosphorylation, by reduction in mRNA degradation (δm),

and glycolysis transcripts (Mgly). Cell volume consequently recovers. A further increase in heteroplasmy exhausts ETC

stabilization, as δm→ 0, and ETC protein (P+) continues to deplete. In the transition to homoplasmy, glycolysis and ATP levels

reduce, yet cell volume and growth rate are retained. In this regime, the mode of energy production is unclear. (B) Flow of

causality in our mathematical model. N+, wild-type mtDNA copy number; METC, ETC mRNA; Rmax, maximum respiratory capacity;

G, cellular growth rate. Heteroplasmy shown in red connecting to variables with explicit dependence.
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Our model suggests that at a critical heteroplasmy, h*, cells undergo a demand/supply toggle where power
supply is up-regulated. ETC transcripts are stabilized through reduced degradation, and glycolysis is increased.
This bioenergetic compensatory behaviour at intermediate heteroplasmies allows cell volume to recover.
As heteroplasmy continues to increase, we claim that degradation of ETC transcripts becomes negligible.

Thus, further increases in heteroplasmy result in reduction in ETC protein content and ETC exhaustion
ensues.
These behaviours are captured in the mathematical framework of our model. However, as cells transition

from 90 to 100% mutant mtDNA, another transition in cellular behaviour appears to occur, according to the
data of ref. [13]. Cells down-regulate glycolysis, yet retain cell volume and growth rate. The mode of energy
production in this case is unclear and opens new questions as to the most relevant energy supplies and
demands in homoplasmic cells (see ‘Key Claims and Predictions of Biophysical Model of Heteroplasmy’).

Interactions between bioenergetic variables can be cast as a bottom-up
quantitative model
We now present a quantitative description of our model, see Table 1, whose mechanistic interpretations will be
more fully explored in the section ‘Key Claims and Predictions of Biophysical Model of Heteroplasmy’. Our
model attempts to unify the experimentally measured features of ref. [13] within a simple, physically plausible,
bottom-up cell biological representation. We stress that our choice of model structure was not developed inde-
pendently of the data in ref. [13]; hence, at the level of choice of model structure, we have limited control of
over-fit. However, the uncertainty in its parameters, given the data and a set of priors (see Supplementary Text
S2), was computed using Bayesian inference. So, while our parameterization of the model has statistical control
for uncertainty, we have not employed a statistical model selection framework. We believe this to be appropriate
and practically unavoidable, as our objective is to yield a new reduced account for these heterogeneous data,
present novel hypotheses and propose new experiments.

Wild-type mtDNA scaling
A theme apparent in the data of Picard et al. is an overall downward trend of ETC mRNA and ETC protein
with increasing heteroplasmy (h). We, therefore, use the hypothesis that these quantities scale with the amount
of wild-type mtDNA (N+). Total mtDNA copy number showed only a weak dependence on heteroplasmy, with
only one heteroplasmy value displaying statistically significant deviation from h = 0 copy number (Figure 1I of
[13]). We, therefore, assume that N =mtDNA copy number = const (set to 1 after normalization, without loss

Table 1 Mathematical model of MELAS 3243 A>G mutation with progressive mutant load
See Supplementary Table S1 for parameter descriptions. Heteroplasmy = h, mtDNA copy number
=N.

Description Equation Equation numbers

Wild-type mtDNA, N+ Nþ ¼ N 1� hð Þ (4)

ETC mRNA, METC METC ¼ b

dm þ 1
Nþ (5)

dm hð Þ ¼ kmRNA

1þ exp km h� h0ð Þ½ � (6)

ETC protein, P+ Pþ ¼ NþMETC

dp
(7)

Glycolysis mRNA, Mgly Mgly ¼ c1, h � h�

m2hþ c2, h . h�

�
(8)

Cell volume, V koPþ þ kgMgly|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
supply

¼ V|{z}
demand

(9)

Growth rate, G G ¼ kgr
V

(10)

Maximum respiratory capacity, Rmax Rmax ¼ kpPþ (11)
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of generality) which then defines N+, see eqn (4). The successful performance of this simple model for N+ is
shown in Supplementary Figure S2. Note that this model has no free parameters, so was not associated with
our inferred posteriors.

ETC mRNA
Transcript copy number is determined by the balance of transcription (β) and degradation (δm) rates. Given
our assumption of N+ scaling, it can be shown (see Supplementary Text S3) that eqn (5) may be used to model
the ETC mRNA pool size (METC). We further assume a constant mean transcription rate β for parsimony and
allow the degradation rate δm to vary with heteroplasmy in response to cellular signals. We require the degrad-
ation rate to be high for low heteroplasmies, and low at high heteroplasmies, to describe the ability of cells to
up-regulate their transcript copy number with rising heteroplasmy. A biologically motivated choice of function
which achieves this is a sigmoid, see eqn (6), where kmRNA, km and h0 are constants.

ETC protein
It is intuitive to assume that mean protein levels scale with transcript levels, although this relationship may be
noisy [16]. Following a similar assumption for ETC mRNA, we also assume that ETC protein (P+) scales with
wild-type mtDNA levels. Using analogous arguments to METC (see Supplementary Text S3), we show that a
reasonable model for ETC protein is eqn (7), where δp = const, denoting the baseline degradation of mitochon-
drial protein.

Glycolysis mRNA
We assume that the glycolysis mRNA pool size (Mgly) is invariant to heteroplasmy, until a critical heteroplasmy
h*, where glycolysis is gradually up-regulated as a result of cellular control. It is, therefore, parsimonious to
assume that glycolysis regulation obeys a spline of a constant and linear model which toggles at h*, see eqn (8),
where c1 and m2 are free parameters, and c2 = c1−m2h*, by continuity.

Cell volume
We propose that the power demands of the cell may be well approximated as scaling with cell volume (see
Supplementary Text S3 for further discussion). As glycolysis and OXPHOS provide power supply to a first
approximation, we assume that mean cell volume in an asynchronous population of cells (V) is effectively
determined by a scaled sum of glycolysis and OXPHOS contributions, such that the cell obeys a power supply
= power demand relationship, see eqn (9), where ko, kg = const. We propose that changes in cellular volume are
a long-term adaptation to heteroplasmy and therefore power availability.
From Figure 1, it is clear that this assumption fails at h = 1, where glycolysis levels and cell volume are com-

parable to h = 0 levels, and yet ETC proteins are only 30% of wild-type levels. As ATP levels are below wild-
type levels in these cells (see Supplementary Figure S6E in [13]), the mode of energy production is not clear
and further metabolomic data may be required. We, therefore, exclude all h = 1 data and limit the domain of
our model to 0≤ h≤ 0.9.

Growth rate
We observe that the cellular proliferation rate (which we call growth rate, G, for consistency with ref. [13])
varies with heteroplasmy (see Figure 1). We hypothesize that there exists a relationship between mean cell
volume and growth rate. It can be shown that, assuming individual cells increase their volume linearly through
the cell cycle, growth rate varies inversely with mean cell volume (shown in Supplementary Text S3). This is
shown in eqn (10), where kgr is a constant.
We show in Supplementary Text S3 that, under an exactly exponential model of cell growth, G is independ-

ent of V. However, given that there is presumably a wide class of cytoplasmic growth-vs.-time profiles which
cells may obey, we use a linear model as a parsimonious example of how cell growth may be connected to cyto-
plasmic volume.

Maximum respiratory capacity
It has long been recognized that cells carrying the MELAS mutation experience a respiratory defect when het-
eroplasmic load exceeds ∼90% [11,17], and that this is due to a defect in protein synthesis [9,11]. We,
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therefore, assume that maximum respiratory capacity (Rmax) is always determined by protein content. This
yields a simple linear expression, see eqn (11), where kp = const.

Model summary
In summary, our model of mean cellular behaviour with respect to heteroplasmy describes seven features from
Picard et al. [13] (N+, METC, P

+, Mgly, V, G and Rmax) and has 12 adjustable parameters (as discussed later, this
is fewer than the number required for seven linear models with offsets), a table of which is shown in
Supplementary Table S1. In writing down this phenomenological model, we have attempted to account for a
physiologically important subset of the data generated in ref. [13], using bottom-up arguments wherever pos-
sible. In doing so, many novel, falsifiable, hypotheses are made.

Parameterizations of a simple biophysical model account for complex
observations across range of heteroplasmic load
The fit of the model described above is shown in Figure 3. Between 0≤ h≤ h*, h* being the critical hetero-
plasmy where glycolysis is up-regulated (0.34≤ h*≤ 0.44, 25–75% CI), our model reproduces the reduction in
ETC transcript pool size. Similarly, we observe that ETC protein pool size also reduces, as does cell volume and
maximum respiratory capacity.
Our model successfully captures the transient compensatory responses in ETC mRNA, ETC protein and cell

volume which begin around the critical heteroplasmy h*. For heteroplasmies between h� & h & 0:5, ETC
mRNA degradation reduces causing ETC mRNA to be up-regulated, along with ETC protein and maximum
respiratory capacity. In this region, glycolysis becomes induced above wild-type levels, and cell volume can be
observed to also recover.
In excess of h≈ 0.5, our model shows the observed reductions in ETC mRNA, ETC protein and maximum

respiratory capacity. We see that continued up-regulation of glycolysis mRNA allows cell volume to remain at
an approximately constant value, although diminished relative to a wild-type cell. Consequently, heteroplasmic
cells between 0.2≤ h≤ 0.9 are predicted to proliferate at a faster rate than wild-type cells (see Figure 3E).

Key claims and predictions of biophysical model of heteroplasmy
Here, we discuss the interpretations of our model in light of the mathematical description developed above and
explore the evidence for the biological insights it provides. We make experimental proposals to validate our
claims, which are given in Supplementary Text S4. The set of mechanistic interpretations which follow from
our mathematical model are as follows:

• Wild-type mtDNA density is maintained homeostatically at low heteroplasmy.
• There exists a minimum possible cell volume which is approached at the critical heteroplasmy.
• Cells toggle from demand reduction (i.e. cell volume reduction) to supply increase (i.e. glycolysis and ETC

mRNA up-regulation), at the critical heteroplasmy.
• Mutant mtDNAs do not significantly contribute to the mitochondrial mRNA pool.
• Mitochondrial tRNAs remain moderately localized to their parent mtDNA.
• Maximum respiratory capacity is determined by ETC protein levels through a linear relationship.
• Cell growth rate is the reciprocal of mean volume, thus smaller cells proliferate faster.

Wild-type mtDNA density homeostasis is maintained until a minimum volume is reached
near the critical heteroplasmy
The parameter h* determines the extent of mutant load, for which the cell begins to up-regulate ETC mRNA
and glycolysis mRNA. But what causes this change in behaviour, at this particular value of heteroplasmy? By
examining the posteriors of our model fit (Figure 3), we infer that cell volume takes its minimum value shortly
before the most probable value of h* (see Figure 4). We hypothesize that an attempt to conserve wild-type
mtDNA density (N+/V) determines the position of h*.
For h & h�, wild-type mtDNA density is maintained despite increasing heteroplasmy, because cell volume

diminishes. As a result of this reduced demand, the cell can tolerate diminished mitochondrial power supply.
However, cell shrinkage cannot continue indefinitely and we hypothesize that the cell reaches a minimum cell
volume at h≈ h*. Once heteroplasmy exceeds this value, the cell toggles its energy balance strategy from power
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demand reduction to supply increase, and the cell recovers in volume. We note that this observation was robust
to removal of h = 0.6 data points where present, see Supplementary Figure S3.
There is evidence in the literature that wild-type mtDNA density is an important quantity. Bentlage and

Attardi [17] observed that long-term culture of heteroplasmic MELAS cells resulted in an increase in mtDNA
copy number, resulting in increased oxygen consumption. While this was often accompanied by a decrease in
heteroplasmy, some cell lines also exhibited this at constant heteroplasmy. This is consistent with the cell
attempting to increase the absolute number of wild-type mtDNAs, perhaps to compensate for heteroplasmic
load, and suggests that the absolute value of N+ is a physiologically important quantity.
The density of mitochondrial content per unit cytoplasmic volume has been observed by many authors to be

tightly regulated and physiologically predictive. The historical observations of Posakony et al. [18] showed that
the mean ratio of mitochondrial content to cytoplasmic volume is kept relatively constant throughout the cell
cycle in HeLa cells, occupying ∼10–11% of cytoplasmic area throughout. Similar observations have been repro-
duced in more recent studies, in various other systems. Rafelski et al. [19] found in budding yeast that mito-
chondrial content was proportional to bud size, and that all buds attain the same average ratio regardless of the
mother’s age or mitochondrial content, suggesting a stable scaling relation. Also, Johnston et al. [20] found that
the density of mitochondrial mass was predictive of cell cycle dynamics, indicating that N/V (N = total number
of mtDNAs) is physiologically relevant and potentially linked to cell power supply and growth dynamics.

Figure 3. A simple biophysical model is consistent with complex observations across a range of heteroplasmic load.

(A–F) Approximations for the maximum a posteriori estimate (black line), posterior mean (red line) and 25–75% Bayesian

credible intervals (pink bands), for the model fits to selected data from ref. [13]. The model makes predictions over the range

0≤ h≤ 0.9 (see the Main Text). Data for h = 1 have been plotted in grey, as they have not been used to train the model. Error

bars are conservative and merely show the technical variability reported in ref. [13] (see Materials and Methods).
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Indeed, Jajoo, Paulsson and co-workers [21] found that the density of mitochondrial DNA tracks the quantity
of cytoplasm inherited upon division in wild-type fission yeast. Most recently, re-analysis of a work by
Miettinen and Björklund [22] found a scaling relationship between cell volume and mitochondrial mass in a
population of normal cells [23]: the assumption of constant mitochondrial density was subsequently found to
be explanatory in accounting for the data of Miettinen and Björklund [22] using mathematical modelling [23].
We may speculate as to the interpretation of a minimum possible cell volume. One straightforward interpret-

ation is that a minimum cell volume corresponds to a mechanical constraint: a cell may only become so small,
because the machinery required to perform tissue-specific metabolic and structural tasks requires a minimum
amount of space. Alternatively, a bioenergetic limit to cell volume may exist. For instance, appreciable power
demands which scale with, for example, surface area or are invariant to cell size [24–26], may become large
relative to power supply as cells become smaller. This is because cellular power supply (through glycolysis and
oxidative phosphorylation) likely scales with cell volume. This mismatch in scaling behaviour between power
supply and power demand may place a constraint on the minimum cell size.

ETC mRNA degradation diminishes at the critical heteroplasmy contributing to power
demand/supply toggle
The induction of glycolysis at the critical heteroplasmy is observed in our model by construction, see eqn (8),
since glycolysis is modelled to increase linearly when heteroplasmy exceeds this point. However, by observing
the posterior distribution of the ETC mRNA degradation rate (see Figure 5), we see that the critical hetero-
plasmy also coincides with the beginning of reduction in ETC transcript degradation with respect to hetero-
plasmy. Since ETC mRNA pool size varies with the inverse of this degradation rate [see eqn (5)], ETC
transcripts are consequently up-regulated in tandem with glycolysis transcripts. This occurs until ETC degrad-
ation diminishes to negligible levels around h≈ 0.5, where this particular control mechanism becomes
exhausted. Thus, the critical heteroplasmy coincides with a shift from power demand reduction to supply
increase from both glycolysis and OXPHOS contributions.
Since mtDNA is transcribed as a single polycistronic transcript [27], the relative stoichiometry of individual

mRNA species must be controlled via active degradation. This is achieved by a balance between processes
which stabilize and degrade mRNA [28]. The Picard dataset can be explored further to seek corroborating evi-
dence, by observing the ratio of ETC mRNA degraders to stabilizers. We find a qualitative similarity between
this ratio (see Supplementary Figure S4) and the posterior distribution of the ETC degradation rate (see
Figure 5), both displaying a substantial reduction between h = 0.3 and h = 0.5.

Figure 4. Wild-type mtDNA density (N+/V) homeostasis may trigger supply/demand toggle.

Posterior statistics show an initial maintenance of N+/V. When cell volume (V) takes its minimum value, the most probable value

of h* shortly follows. N+/V then reduces. We suggest that the inability of the cell to maintain N+/V = const, due to the existence

of a minimum cell volume, causes cells to toggle in their strategy at h*, from demand reduction to supply increase. Data from

ref. [13].
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Mitochondrial tRNAs are enriched in the vicinity of their corresponding parental mtDNA
The co-location for redox regulation (CoRR) hypothesis states that mtDNA exists in the close proximity of
respiratory units for the rapid and direct regulatory control of respiration [29,30]. This hypothesis, which aligns
with several leading theories on the origins of complex life [31,32], has recently been supported by studying
mitochondrial gene loss throughout the eukaryotic tree of life [33], as well as other experimental evidence
reviewed in ref. [30].
Given the CoRR hypothesis, one might expect there to exist a functional link between the genotype of an

mtDNA and the phenotype of its spatially closest respiratory units. In other words, mitochondrial nucleoids
(protein–DNA complexes which are thought to possess ∼1.1 mtDNA molecules per nucleoid [34]) may each have
a limited sphere of influence; this has been put forward as the ‘leaky-link’ hypothesis by other authors [35,36].
The 3243A>G MELAS mutation causes amino acid misincorporations, resulting in unstable translation pro-

ducts [9]. It is reasonable to assume that mutant mtDNAs have a locally higher concentration of mutant
tRNAs, since they are the source of these molecules, as well as the presence of cristae which may limit diffusion
in the mitochondrial matrix [37]. ETC mRNAs in the vicinity of mutant mtDNAs will more often be translated
into unstable protein due to the presence of defective tRNAs. Therefore, mutant mtDNAs may give a weaker
contribution to the total functional ETC protein content of the cell than wild-type mtDNAs. Hence, low diffu-
sivity inside the mitochondrial matrix is hypothesized to induce a local phenotype–genotype link [35,36]. We
take the limit of mutant mtDNAs providing zero contribution to the total ETC protein content of the cell,
rather than a limited contribution, for parsimony — i.e. P+∝METCN

+. This is equivalent to assuming a strong
local phenotype–genotype link. See Supplementary Text S5 for an alternative model of well-mixed tRNAs.
Evidence in the literature for this claim is mixed. It has been observed that mitochondrial mRNAs localize to

mtDNA, suggesting that mtDNA may be a site for mitochondrial translation [38,39]. However, cybrid experi-
ments by Ono et al. [40] involving homoplasmic tRNA mutants 3243A>G and 4269A>G are able to recover
their respiratory function by fusing such cells together to form hybrids. Their recovery is presumably due to
the diffusion of the healthy form of each tRNA, so that normal proteins may be translated. Yet, one might
expect there to exist at least limited local coupling between mtDNA and their gene products under the CoRR
hypothesis [29,30,33] and the leaky-link hypothesis [35,36], as described above. It is noteworthy that the cybrid
experiments by Ono et al. [40] show recovered respiration after a long adaptation phase of 10 days. Since this
is a much larger timescale than that of mtDNA replication, which is typically hours [41], it is conceivable that
some kind of long-term adaptation occurred in this system which is still compatible with a strong local pheno-
type–genotype link; for example, the presence of nucleoids with an mtDNA of each kind of mutant, allowing
the local transcription of both of the corresponding wild-type tRNAs. See Supplementary Text S4 and Table S2
for experimental suggestions to determine the extent of tRNA diffusivity.

Figure 5. Critical heteroplasmy induces ETC mRNA stabilization.

Posterior distributions for ETC mRNA degradation rate and critical heteroplasmy (0.34≤ h*≤ 0.44, 25–75% CI and 0.27≤ h*≤
0.89, 5–95% CI). It can be seen that the critical heteroplasmy coincides with the reduction in ETC degradation, signalling a

power demand/supply toggle.
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Mutant mtDNAs have a transcriptional defect
It has been hypothesized that, due to the limited diffusion of gene products, mutant mtDNAs may experience
a local energy deficiency [36]. This local energy deficiency could conceivably reduce the ability of mutant
mtDNAs to perform transcription through a local depletion of ATP. Since the concentration of ATP inside the
mitochondrial matrix is low in the physiological setting [42], this may leave processes in the vicinity of mutant
mtDNAs with increased susceptibility to local fluctuations in energy availability. If mutated mtDNAs are tran-
scribed more slowly, they may have a lower contribution to the ETC transcript pool.
Alternatively, some other mechanism may generate a functional dependence between mitochondrial tran-

scription and mtDNA genotype. For instance, mitochondrial transcription machinery (such as mitochondrial
RNA polymerase, POLRMT) could be preferentially transported to functional mtDNAs, potentially via mem-
brane potential sensing. Since dysfunctional mitochondria are observed to bud off from fused networks [43], it
is possible that this mechanism allows the cell to sense the individual performance of mitochondria/mtDNAs
[44] and hence target nuclear proteins accordingly. It is also possible that mitochondrial translational machin-
ery could be preferentially targeted to functional mitochondria, which would also result in P+∼N+.
We adopted a model of no transcription for mutant mtDNAs, as opposed to limited transcription, for parsi-

mony — i.e. METC∼N+. See Supplementary Text S5 for an alternative model where mutant mtDNAs provide a
non-zero contribution to METC. We provide experimental suggestions for determining the extent of mutant
mtDNA transcription in Supplementary Text S4.

Cell volume is not explained by cell cycle variations
Our model predicts that cells, on average, change their size as heteroplasmy is varied, due to variation in power
supply from OXPHOS and glycolysis. However, since cells vary their volume by a factor of 2 throughout the
cell cycle, it is possible that cells with different heteroplasmies spend different durations at various stages of the
cell cycle, explaining the observed variation in expected cell volume with heteroplasmy (see Figure 1D). We
sought evidence for this hypothesis by computing the ratio of the expression level for genes associated with dif-
ferent stages of the cell cycle [45] (see Supplementary Figure S5). However, we found little evidence to support
the enrichment of cell cycle markers at any particular level of heteroplasmy.

OXPHOS contributions to power supply are stabilized at the critical heteroplasmy
The relative contribution of OXPHOS to power supply, i.e. koP

+/(koP
++ kgMgly), is also interesting to observe

as heteroplasmy is varied. We observed a transient stabilization in OXPHOS contributions around h*. A discus-
sion of this is presented in Supplementary Text S6.

Cells proliferate inversely with their size
Owing to our reciprocal model connecting cell volume and growth [see eqn (10)], our model suggests that
wild-type cells proliferate more slowly relative to heteroplasmic cells due to their larger size.

Maximum respiratory capacity linearly tracks ETC protein content
It has long been suggested that cells above a particular threshold heteroplasmy experience a respiratory defect
[10,11,17]. With a more classical interpretation of the threshold effect, we might have expected the need for a
model which has switching behaviour in excess of 60% heteroplasmy [10] for maximum respiratory capacity,
in analogy with glycolysis transcript levels [see eqn (8)]. However, in our model, we found that a simple linear
relationship between ETC protein and maximum respiratory capacity was sufficient to describe the data avail-
able [see eqn (11)].

Reactive oxygen species may explain the transition to homoplasmy, but the
corresponding mode of energy production remains unclear
In eqn (9), we claim that cell volume is determined by the weighted sum of glycolysis transcripts and ETC
protein. Over the range 0.9 < h≤ 1, glycolysis transcripts reduce by 57%, whereas ETC protein and cell volume
remain comparable, thus breaking the supply = demand relationship, as we have modelled it. Consequently, our
model fails to describe the transition from h = 0.9→ 1.
A potential explanation for the reduction in glycolysis transcripts over this range comes from the fact that

glycolysis provides substrate for oxidative phosphorylation. Damaged ETC proteins may produce an excess of
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reactive oxygen species (ROS) [46], which can damage mitochondrial proteins, DNA and membranes. If, at
high heteroplasmy, any flux through the ETC causes high levels of ROS, then cells may attempt to reduce flux
through glycolysis, to avoid production of these species.
Some evidence from Picard et al. supports this hypothesis, where superoxide dismutase (SOD) activity is

largely constant with heteroplasmy, except for homoplasmic mutant MELAS cells, which have ∼20% higher
SOD activity than wild-type cells (see Supplementary Figure S7D of [13]). Furthermore, it is known that ROS
can reversibly inhibit the activity of GAPDH, one of the enzymes involved in glycolysis [47,48].
However, given that fatty acid oxidation (see Supplementary Figure S6) is strongly down-regulated over this

range, it remains unexplained how homoplasmic mutant cells maintain their cell volume (and growth rate),
given their reduced reliance upon mitochondrial and glycolytic metabolism. Further metabolomic measure-
ments may be required to uncover this mode of energy production.
ATP levels are also observed to decrease over this range (see Supplementary Figure S6E of [13]), which may

even suggest that an alternative fuel currency besides ATP supports the growth and size of these cells. However,
more careful investigation of this observation may be of value, since it is important to draw the distinction
between ATP pool sizes and ATP fluxes, the latter perhaps being more indicative of ATP usage, and the former
being indicative of only relative production/consumption rates.

Discussion
In the present study, through the use of a distilled subset of data from ref. [13] and using minimal arguments,
we have attempted to explore the apparent marked difference between the complex multiphasic observations of
Picard et al. and the classical step-like models associated with the threshold effect.
We note that the model presented here relies on data from cybrid cells [13]. Such cell lines are often unstable

in the number of chromosomes that they possess, and the cybridization process itself may induce transcrip-
tional [49] and metabolic changes [50]. A technical concern one may raise with the dataset of Picard et al. [13]
is, therefore, the extent to which their observations may be explained by random genetic drift in the nucleus.
However, Picard et al. [13] point out that the observations made with respect to heteroplasmy (at least for a
subset of features) appear to be non-random with respect to increasing heteroplasmy: for example, the expres-
sion of heat shock proteins appeared to increase monotonically with heteroplasmy, which would not be
expected under unbiased random perturbations at each level of heteroplasmy. We note also that cybrid systems
are not without merit, as cells have the same nuclear background (although this background may be volatile),
and have furthered progress in understanding mitochondrial dysfunction (reviewed in ref. [51]). As is the case
generally with model biological systems, it is important to seek corroborating evidence from multiple model
systems before accepting the observations from any single experiment. Hence, we have suggested a range of
experiments to validate the hypotheses we have generated here.
We have argued that a single critical heteroplasmy, h*, is sufficient to explain this subset of data over the het-

eroplasmy range 0≤ h≤ 0.9 and that other multiphasic behaviour arises naturally from the simple physical/bio-
logical assumptions of our model. Our model suggests that cells undergo a power demand/supply toggle at h*,
from demand reduction to supply increase. We hypothesize that homeostasis in wild-type mtDNA density is
maintained via cell volume reduction, ensuring that the available functioning power sources are matched to a
corresponding level of cellular demand, until a minimum cell volume is reached which coincides with h*. This
triggers the demand/supply bioenergetic toggle where energy production pathways are up-regulated. We believe
that this re-emphasizes the need for quantification of single-cell mtDNA content to be associated with volume
measurements of the same cell: mtDNA density is a relevant physiological variable [18–21,52]. We find that
the mode of energy production over the range 0.9≤ h ≤ 1 is unclear, and that further metabolomic investiga-
tions may be required to determine this.
Our model further predicts that mutant mtDNAs have a reduced contribution to transcription and that

tRNAs have low diffusivity. These hypotheses potentially follow from the ‘leaky-link’ hypothesis whereby
mtDNAs have a limited extent of influence, such that there exists a phenotype–genotype link between an
mtDNA and its spatially closest respiratory units [35,36]. We also predict that a relationship exists between
mean cell volume and cell growth.
A potential consequence of our predictions is that modulation of either mtDNA copy number, wild-type

mtDNA copy number or wild-type mtDNA copy number density to ensure optimal values of wild-type
mtDNA copy number density could be valuable control axes in therapy. Increasing mitochondrial DNA copy
number, for instance through activation of the PGC-1α pathway, may facilitate the increase in cell volume,
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deferring the critical heteroplasmy to higher values by delaying the approach towards a minimum cell volume.
We might reason that this enhances a wild-type phenotype at higher heteroplasmy values, potentially deferring
the full MELAS phenotype to higher heteroplasmies, which typically appears between ∼50 and 90% mutant
load [53]. Indeed, it has been found that increasing mitochondrial biogenesis can ameliorate mitochondrial
myopathy in vivo [54].
We might also argue that as cells toggle from power demand reduction to supply increase, further bolstering

of this compensatory response may have clinical significance. For instance, since we observe that cells switch to
glycolytic metabolism to compensate for diminishing mitochondrial power supply, further encouragement of
this energy mode may be therapeutic. This is supported by the recent observation that promoting the hypoxia
response is protective against multiple forms of respiratory chain inhibition [55]. Alternatively, since we predict
that cells innately down-regulate ETC mRNA degradation, seeking to up-regulate mitochondrial transcription
may aid the cell in maintaining a sufficient mRNA pool size. Furthermore, promoting alternative energy pro-
duction pathways such as fatty acid oxidation via the ketogenic diet may also aid in reducing the dependence
on oxidative phosphorylation. This diet has been associated with increased mitochondrial transcripts [56],
mitochondrial content [56,57] and has been shown to slow mitochondrial myopathy progression in transgenic
Deletor mice [57]. Indeed, the diet has recently been used in clinic as an adjunctive therapy for a patient suffer-
ing from MELAS, harbouring the 3260A>G mutation, which successfully decreased the frequency of seizures
and stroke-like episodes [58].

Abbreviations
CoRR, co-location for redox regulation; ETC, electron transport chain; MELAS, mitochondrial
encephalomyopathy, lactic acidosis and stroke-like episodes; OXPHOS, oxidative phosphorylation; ROS, reactive
oxygen species; SOD, superoxide dismutase.

Author Contribution
N.S.J. and I.G.J. devised the project. J.A., I.G.J. and N.S.J. developed the theory. J.A. carried out the analysis
and wrote the manuscript with input from I.G.J. and N.S.J.

Funding
J.A. is supported by the Biotechnology and Biological Sciences Research Council [grant code BB/J014575/1].
I.G.J. was supported by a Medical Research Council fellowship [MR/J013617/1] and a Birmingham Fellowship
from the University of Birmingham. N.S.J. is supported by Engineering and Physical Sciences Research Council
[grant code EP/N014529/1].

Acknowledgements
We are grateful to Martin Picard for providing raw data, advice on our model, and experimental suggestions. Till
Hoffmann provided technical advice for the Bayesian inference aspects of our work. We thank David Fell,
Thomas Ouldridge, Thomas McGrath and Hanne Hoitzing for their useful comments and suggestions.

Competing Interests
The Authors declare that there are no competing interests associated with the manuscript.

References
1 Ahn, C.S. and Metallo, C.M. (2015) Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 3, 1 https://doi.org/10.1186/

s40170-015-0128-2
2 Taylor, R.C., Cullen, S.P. and Martin, S.J. (2008) Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 https://doi.

org/10.1038/nrm2312
3 Lin, M.T. and Beal, M.F. (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 https://doi.org/10.

1038/nature05292
4 Wallace, D.C. (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 https://doi.org/10.1038/nrc3365
5 Elliott, H.R., Samuels, D.C., Eden, J.A., Relton, C.L. and Chinnery, P.F. (2008) Pathogenic mitochondrial DNA mutations are common in the general

population. Am. J. Hum. Genet. 83, 254–260 https://doi.org/10.1016/j.ajhg.2008.07.004
6 Newkirk, J.E., Taylor, R.W., Howell, N., Bindoff, L.A., Chinnery, P.F., Alberti, K.G.M.M. et al. (1997) Maternally inherited diabetes and deafness:

prevalence in a hospital diabetic population. Diabetic Med. 14, 457–460<457::AID-DIA372>3.0.CO;2-W

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).4032

Biochemical Journal (2017) 474 4019–4034
https://doi.org/10.1042/BCJ20170651

https://doi.org/10.1186/s40170-015-0128-2
https://doi.org/10.1186/s40170-015-0128-2
https://doi.org/10.1186/s40170-015-0128-2
https://doi.org/10.1186/s40170-015-0128-2
https://doi.org/10.1186/s40170-015-0128-2
https://doi.org/10.1038/nature05292
https://doi.org/10.1038/nature05292
https://doi.org/10.1038/nrc3365
https://doi.org/10.1016/j.ajhg.2008.07.004
https://creativecommons.org/licenses/by/4.0


7 Majamaa, K., Moilanen, J.S., Uimonen, S., Remes, A.M., Salmela, P.I., Kärppä, M. et al. (1998) Epidemiology of A3243G, the mutation for
mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am. J. Hum. Genet. 63,
447–454 https://doi.org/10.1086/301959

8 Manwaring, N., Jones, M.M., Wang, J.J., Rochtchina, E., Howard, C., Mitchell, P. et al. (2007) Population prevalence of the MELAS A3243G mutation.
Mitochondrion 7, 230–233 https://doi.org/10.1016/j.mito.2006.12.004

9 Sasarman, F., Antonicka, H. and Shoubridge, E.A. (2008) The A3243G tRNALeu (UUR) MELAS mutation causes amino acid misincorporation and a
combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum. Mol. Genet. 17, 3697–3707 https://doi.
org/10.1093/hmg/ddn265

10 Miyabayashi, S., Hanamizu, H., Nakamura, R., Endo, H. and Tada, K. (1992) Defects of mitochondrial respiratory enzymes in cloned cells from MELAS
fibroblasts. J. Inherit. Metab. Dis. 15, 797–802 https://doi.org/10.1007/BF01800024

11 Chomyn, A., Martinuzzi, A., Yoneda, M., Daga, A., Hurko, O., Johns, D. et al. (1992) MELAS mutation in mtDNA binding site for transcription
termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc.
Natl Acad. Sci. U.S.A. 89, 4221–4225 https://doi.org/10.1073/pnas.89.10.4221

12 Rossignol, R., Faustin, B., Rocher, C., Malgat, M., Mazat, J.-P. and Letellier, T. (2003) Mitochondrial threshold effects. Biochem. J. 370, 751–762
https://doi.org/10.1042/bj20021594

13 Picard, M., Zhang, J., Hancock, S., Derbeneva, O., Golhar, R., Golik, P. et al. (2014) Progressive increase in mtDNA 3243A>G heteroplasmy causes
abrupt transcriptional reprogramming. Proc. Natl Acad. Sci. U.S.A. 111, E4033–E4042 https://doi.org/10.1073/pnas.1414028111

14 Martínez-Reyes, I., Diebold, L.P., Kong, H., Schieber, M., Huang, H., Hensley, C.T. et al. (2016) TCA cycle and mitochondrial membrane potential are
necessary for diverse biological functions. Mol. Cell 61, 199–209 https://doi.org/10.1016/j.molcel.2015.12.002

15 Appleby, R.D., Porteous, W.K., Hughes, G., James, A.M., Shannon, D., Wei, Y.-H. et al. (1999) Quantitation and origin of the mitochondrial membrane
potential in human cells lacking mitochondrial DNA. Eur. J. Biochem. 262, 108–116 https://doi.org/10.1046/j.1432-1327.1999.00350.x

16 Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y. et al. (2006) Noise in protein expression scales with natural protein
abundance. Nat. Genet. 38, 636–643 https://doi.org/10.1038/ng1807

17 Bentlage, H.A.C.M. and Attardi, G. (1996) Relationship of genotype to phenotype in fibroblast-derived transmitochondrial cell lines carrying the 3243
mutation associated with the MELAS encephalomyopathy: shift towards mutant genotype and role of mtDNA copy number. Hum. Mol. Genet. 5,
197–205 https://doi.org/10.1093/hmg/5.2.197

18 Posakony, J.W., England, J.M. and Attardi, G. (1977) Mitochondrial growth and division during the cell cycle in HeLa cells. J. Cell Biol. 74, 468–491
https://doi.org/10.1083/jcb.74.2.468

19 Rafelski, S.M., Viana, M.P., Zhang, Y., Chan, Y.-H.M., Thorn, K.S., Yam, P. et al. (2012) Mitochondrial network size scaling in budding yeast. Science
338, 822–824 https://doi.org/10.1126/science.1225720

20 Johnston, I.G., Gaal, B., das Neves, R.P., Enver, T., Iborra, F.J. and Jones, N.S. (2012) Mitochondrial variability as a source of extrinsic cellular noise.
PLoS Comput. Biol. 8, e1002416 https://doi.org/10.1371/journal.pcbi.1002416

21 Jajoo, R., Jung, Y., Huh, D., Viana, M.P., Rafelski, S.M., Springer, M. et al. (2016) Accurate concentration control of mitochondria and nucleoids.
Science 351, 169–172 https://doi.org/10.1126/science.aaa8714

22 Miettinen, T.P. and Björklund, M. (2016) Cellular allometry of mitochondrial functionality establishes the optimal cell size. Dev. Cell 39, 370–382 https://
doi.org/10.1016/j.devcel.2016.09.004

23 Aryaman, J., Hoitzing, H., Burgstaller, J.P., Johnston, I.G. and Jones, N.S. (2017) Mitochondrial heterogeneity, metabolic scaling and cell death.
BioEssays 39, 1700001 https://doi.org/10.1002/bies.201700001

24 Buttgereit, F., Brand, M.D. and Müller, M. (1992) Cona induced changes in energy metabolism of rat thymocytes. Biosci. Rep. 12, 109–114 https://doi.
org/10.1007/BF02351215

25 Brand, M.D., Couture, P., Else, P.L., Withers, K.W. and Hulbert, A.J. (1991) Evolution of energy metabolism. Proton permeability of the inner membrane
of liver mitochondria is greater in a mammal than in a reptile. Biochem. J. 275, 81–86 https://doi.org/10.1042/bj2750081

26 Rolfe, D.F. and Brown, G.C. (1997) Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758
PMID:9234964

27 Ojala, D., Montoya, J. and Attardi, G. (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470–474 https://doi.org/
10.1038/290470a0

28 Chujo, T., Ohira, T., Sakaguchi, Y., Goshima, N., Nomura, N., Nagao, A. et al. (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and
promotes polyadenylation in human mitochondria. Nucleic Acids Res. 40, 8033–8047 https://doi.org/10.1093/nar/gks506

29 Allen, J.F. (1993) Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J. Theor. Biol. 165,
609–631 https://doi.org/10.1006/jtbi.1993.1210

30 Allen, J.F. (2003) The function of genomes in bioenergetic organelles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 19–38 https://doi.org/10.1098/
rstb.2002.1191

31 Lane, N. and Martin, W. (2010) The energetics of genome complexity. Nature 467, 929–934 https://doi.org/10.1038/nature09486
32 Lane, N. (2011) Energetics and genetics across the prokaryote-eukaryote divide. Biol. Direct 6, 35 https://doi.org/10.1186/1745-6150-6-35
33 Johnston, I.G. and Williams, B.P. (2016) Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell

Syst. 2, 101–111 https://doi.org/10.1016/j.cels.2016.01.013
34 Kukat, C., Davies, K.M., Wurm, C.A., Spåhr, H., Bonekamp, N.A., Kühl, I. et al. (2015) Cross-strand binding of TFAM to a single mtDNA molecule forms

the mitochondrial nucleoid. Proc. Natl Acad. Sci. U.S.A. 112, 11288–11293 https://doi.org/10.1073/pnas.1512131112
35 Kowald, A. and Kirkwood, T.B.L. (2011) Evolution of the mitochondrial fusion-fission cycle and its role in aging. Proc. Natl Acad. Sci. U.S.A. 108,

10237–10242 https://doi.org/10.1073/pnas.1101604108
36 Busch, K.B., Kowald, A. and Spelbrink, J.N. (2014) Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA

integrity? Philos. Trans. R. Soc. B Biol. Sci. 369, 20130442 https://doi.org/10.1098/rstb.2013.0442
37 Dieteren, C.E.J., Gielen, S.C.A.M., Nijtmans, L.G.J., Smeitink, J.A.M., Swarts, H.G., Brock, R. et al. (2011) Solute diffusion is hindered in the

mitochondrial matrix. Proc. Natl Acad. Sci. U.S.A. 108, 8657–8662 https://doi.org/10.1073/pnas.1017581108

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 4033

Biochemical Journal (2017) 474 4019–4034
https://doi.org/10.1042/BCJ20170651

https://doi.org/10.1086/301959
https://doi.org/10.1016/j.mito.2006.12.004
https://doi.org/10.1007/BF01800024
https://doi.org/10.1073/pnas.89.10.4221
https://doi.org/10.1042/bj20021594
https://doi.org/10.1073/pnas.1414028111
https://doi.org/10.1016/j.molcel.2015.12.002
https://doi.org/10.1046/j.1432-1327.1999.00350.x
https://doi.org/10.1046/j.1432-1327.1999.00350.x
https://doi.org/10.1038/ng1807
https://doi.org/10.1093/hmg/5.2.197
https://doi.org/10.1083/jcb.74.2.468
https://doi.org/10.1126/science.1225720
https://doi.org/10.1371/journal.pcbi.1002416
https://doi.org/10.1126/science.aaa8714
https://doi.org/10.1016/j.devcel.2016.09.004
https://doi.org/10.1002/bies.201700001
https://doi.org/10.1042/bj2750081
http://www.ncbi.nlm.nih.gov/pubmed/9234964
https://doi.org/10.1038/290470a0
https://doi.org/10.1093/nar/gks506
https://doi.org/10.1006/jtbi.1993.1210
https://doi.org/10.1098/rstb.2002.1191
https://doi.org/10.1098/rstb.2002.1191
https://doi.org/10.1038/nature09486
https://doi.org/10.1186/1745-6150-6-35
https://doi.org/10.1186/1745-6150-6-35
https://doi.org/10.1186/1745-6150-6-35
https://doi.org/10.1186/1745-6150-6-35
https://doi.org/10.1016/j.cels.2016.01.013
https://doi.org/10.1073/pnas.1512131112
https://doi.org/10.1073/pnas.1101604108
https://doi.org/10.1098/rstb.2013.0442
https://doi.org/10.1073/pnas.1017581108
https://creativecommons.org/licenses/by/4.0


38 Iborra, F.J., Kimura, H. and Cook, P.R. (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9 https://doi.org/10.
1186/1741-7007-2-9

39 Ozawa, T., Natori, Y., Sato, M. and Umezawa, Y. (2007) Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4,
413–419 https://doi.org/10.1038/nmeth1030

40 Ono, T., Isobe, K., Nakada, K. and Hayashi, J.-I. (2001) Human cells are protected from mitochondrial dysfunction by complementation of DNA products
in fused mitochondria. Nat. Genet. 28, 272–275 https://doi.org/10.1038/90116

41 Davis, A.F. and Clayton, D.A. (1996) In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 135, 883–893 https://
doi.org/10.1083/jcb.135.4.883

42 Imamura, H., Nhat, K.P.H., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y. et al. (2009) Visualization of ATP levels inside single living cells with
fluorescence resonance energy transfer-based genetically encoded indicators. Proc. Natl Acad. Sci. U.S.A. 106, 15651–15656 https://doi.org/10.1073/
pnas.0904764106

43 Twig, G., Elorza, A., Molina, A.J.A., Mohamed, H., Wikstrom, J.D., Walzer, G. et al. (2008) Fission and selective fusion govern mitochondrial segregation
and elimination by autophagy. EMBO J. 27, 433–446 https://doi.org/10.1038/sj.emboj.7601963

44 Hoitzing, H., Johnston, I.G. and Jones, N.S. (2015) What is the function of mitochondrial networks? A theoretical assessment of hypotheses and
proposal for future research. BioEssays 37, 687–700 https://doi.org/10.1002/bies.201400188

45 Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E. et al. (2002) Identification of genes periodically expressed in the
human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 https://doi.org/10.1091/mbc.02-02-0030

46 Murphy, M.P. (2009) How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 https://doi.org/10.1042/BJ20081386
47 Brodie, A.E. and Reed, D.J. (1990) Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to

hydroperoxides. Arch. Biochem. Biophys. 276, 212–218 https://doi.org/10.1016/0003-9861(90)90028-W
48 Knight, R.J., Kofoed, K.F., Schelbert, H.R. and Buxton, D.B. (1996) Inhibition of glyceraldehyde-3-phosphate dehydrogenase in post-ischaemic

myocardium. Cardiovasc. Res. 32, 1016–1023 https://doi.org/10.1016/S0008-6363(96)00137-X
49 Danielson, S.R., Carelli, V., Tan, G., Martinuzzi, A., Schapira, A.H.V., Savontaus, M.-L. et al. (2005) Isolation of transcriptomal changes attributable to

LHON mutations and the cybridization process. Brain 128, 1026–1037 https://doi.org/10.1093/brain/awh447
50 Hao, H., Morrison, L.E. and Moraes, C.T. (1999) Suppression of a mitochondrial tRNA gene mutation phenotype associated with changes in the nuclear.

Hum. Mol. Genet. 8, 1117–1124 https://doi.org/10.1093/hmg/8.6.1117
51 Wilkins, H.M., Carl, S.M. and Swerdlow, R.H. (2014) Cytoplasmic hybrid (cybrid) cell lines as a practical model for mitochondriopathies. Redox Biol. 2,

619–631 https://doi.org/10.1016/j.redox.2014.03.006
52 Otten, A.B.C., Theunissen, T.E.J., Derhaag, J.G., Lambrichs, E.H., Boesten, I.B.W., Winandy, M. et al. (2016) Differences in strength and timing of the

mtDNA bottleneck between zebrafish germline and non-germline cells. Cell Rep. 16, 622–630 https://doi.org/10.1016/j.celrep.2016.06.023
53 Goto, Y.-i., Nonaka, I. and Horai, S. (1990) A mutation in the tRNALeu (UUR) gene associated with the MELAS subgroup of mitochondrial

encephalomyopathies. Nature 348, 651–653 https://doi.org/10.1038/348651a0
54 Viscomi, C., Bottani, E., Civiletto, G., Cerutti, R., Moggio, M., Fagiolari, G. et al. (2011) In vivo correction of COX deficiency by activation of the AMPK/

PGC-1α axis. Cell Metab. 14, 80–90 https://doi.org/10.1016/j.cmet.2011.04.011
55 Jain, I.H., Zazzeron, L., Goli, R., Alexa, K., Schatzman-Bone, S., Dhillon, H. et al. (2016) Hypoxia as a therapy for mitochondrial disease. Science 352,

54–61 https://doi.org/10.1126/science.aad9642
56 Bough, K.J., Wetherington, J., Hassel, B., Pare, J.F., Gawryluk, J.W., Greene, J.G. et al. (2006) Mitochondrial biogenesis in the anticonvulsant

mechanism of the ketogenic diet. Ann. Neurol. 60, 223–235 https://doi.org/10.1002/ana.20899
57 Ahola-Erkkilä, S., Carroll, C.J., Peltola-Mjösund, K., Tulkki, V., Mattila, I., Seppänen-Laakso, T. et al. (2010) Ketogenic diet slows down mitochondrial

myopathy progression in mice. Hum. Mol. Genet. 19, 1974–1984 https://doi.org/10.1093/hmg/ddq076
58 Steriade, C., Andrade, D.M., Faghfoury, H., Tarnopolsky, M.A. and Tai, P. (2014) Mitochondrial encephalopathy with lactic acidosis and stroke-like

episodes (MELAS) may respond to adjunctive ketogenic diet. Pediatr. Neurol. 50, 498–502 https://doi.org/10.1016/j.pediatrneurol.2014.01.009

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).4034

Biochemical Journal (2017) 474 4019–4034
https://doi.org/10.1042/BCJ20170651

https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1038/nmeth1030
https://doi.org/10.1038/90116
https://doi.org/10.1083/jcb.135.4.883
https://doi.org/10.1073/pnas.0904764106
https://doi.org/10.1073/pnas.0904764106
https://doi.org/10.1038/sj.emboj.7601963
https://doi.org/10.1002/bies.201400188
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1091/mbc.02-02-0030
https://doi.org/10.1042/BJ20081386
https://doi.org/10.1016/0003-9861(90)90028-W
https://doi.org/10.1016/0003-9861(90)90028-W
https://doi.org/10.1016/0003-9861(90)90028-W
https://doi.org/10.1016/S0008-6363(96)00137-X
https://doi.org/10.1016/S0008-6363(96)00137-X
https://doi.org/10.1016/S0008-6363(96)00137-X
https://doi.org/10.1093/brain/awh447
https://doi.org/10.1093/hmg/8.6.1117
https://doi.org/10.1016/j.redox.2014.03.006
https://doi.org/10.1016/j.celrep.2016.06.023
https://doi.org/10.1038/348651a0
https://doi.org/10.1016/j.cmet.2011.04.011
https://doi.org/10.1126/science.aad9642
https://doi.org/10.1002/ana.20899
https://doi.org/10.1093/hmg/ddq076
https://doi.org/10.1016/j.pediatrneurol.2014.01.009
https://creativecommons.org/licenses/by/4.0

	Mitochondrial DNA density homeostasis accounts for a threshold effect in a cybrid model of a human mitochondrial disease
	Abstract
	Introduction
	Materials and methods
	Data normalization
	Data transformation to per-cell dimensions
	Error propagation
	Growth rate determination
	Model inference

	Results
	Per-cell interpretation of omics data highlights multiphasic dynamics in response to heteroplasmic load
	Integrated omics data motivate a model of the causal relationships between bioenergetic variables
	Interactions between bioenergetic variables can be cast as a bottom-up quantitative model
	Wild-type mtDNA scaling
	ETC mRNA
	ETC protein
	Glycolysis mRNA
	Cell volume
	Growth rate
	Maximum respiratory capacity
	Model summary

	Parameterizations of a simple biophysical model account for complex observations across range of heteroplasmic load
	Key claims and predictions of biophysical model of heteroplasmy
	Wild-type mtDNA density homeostasis is maintained until a minimum volume is reached near the critical heteroplasmy
	ETC mRNA degradation diminishes at the critical heteroplasmy contributing to power demand/supply toggle
	Mitochondrial tRNAs are enriched in the vicinity of their corresponding parental mtDNA
	Mutant mtDNAs have a transcriptional defect
	Cell volume is not explained by cell cycle variations
	OXPHOS contributions to power supply are stabilized at the critical heteroplasmy
	Cells proliferate inversely with their size
	Maximum respiratory capacity linearly tracks ETC protein content
	Reactive oxygen species may explain the transition to homoplasmy, but the corresponding mode of energy production remains unclear


	Discussion
	Author Contribution
	Funding
	Competing Interests
	References


