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Long non-coding RNAs (lncRNAs) have been recognized as
critical components of a broad genomic regulatory network
and play pivotal roles in physiological and pathological pro-
cesses. Identification of disease-associated lncRNAs is
becoming increasingly crucial for fundamentally improving
our understanding of molecular mechanisms of disease and
developing novel biomarkers and therapeutic targets. Consid-
ering lower efficiency and higher time and labor cost of biolog-
ical experiments, computer-aided inference of disease-associ-
ated RNAs has become a promising avenue for facilitating
the study of lncRNA functions and provides complementary
value for experimental studies. In this study, we first summa-
rize data and knowledge resources publicly available for the
study of lncRNA-disease associations. Then, we present an up-
dated systematic overview of dozens of computational methods
and models for inferring lncRNA-disease associations pro-
posed in recent years. Finally, we explore the perspectives and
challenges for further studies. Our study provides a guide for
biologists andmedical scientists to look for dedicated resources
and more competent tools for accelerating the unraveling of
disease-associated lncRNAs.

INTRODUCTION
Advances in genomic and transcriptional analyses have markedly
expanded our knowledge of the genomic dark matter and revealed
that only about 2% of the human genome encodes protein-coding
genes, and the vast majority are transcribed into non-coding RNAs
(ncRNAs).1,2 Long ncRNAs (lncRNAs), constituting the biggest class
of ncRNAs, were arbitrarily defined as ncRNAs withmore than 200 nt
in length.3,4 There is increasing evidence that lncRNAs are hidden
critical components of a broad genomic regulatory network involved
in gene transcription, epigenetic regulation, and post-transcriptional
regulation, and they thus play pivotal roles in a wide variety of biolog-
ical processes.5,6 A large number of lncRNAs with oncogenic or tu-
mor-suppressor function have been found, highlighting the emerging
role of lncRNAs in complex diseases.7–9

Identification of disease genes is a significant and challenging task in
biomedical research. Systematic identification of disease-associated
lncRNAs not only contributes to our understanding of the underlying
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molecular mechanisms of complex diseases, but it also has been
shown to have the intrinsic advantage over protein-coding genes in
disease diagnosis, prognosis, and treatment.10–17 Despite increasing
efforts that have been taken to explore the function of lncRNAs
and their implications in diseases, the vast majority of lncRNAs are
not functionally well characterized, and their associations with dis-
eases remain unknown. Low-throughput biological experiments
in vivo or in vitro have been extensively used to dissect disease-related
lncRNAs. Although the exact association between disease and
lncRNAs, as well as the pathogenic mechanism of lncRNAs, could
be elucidated through in vivo or in vitro experiments, these low-
throughput biological experiments tend to be time-consuming,
expensive, and inefficient when faced with tens of thousands of
lncRNAs with unknown function. With the application of high-
throughput technologies (e.g., microarray and next-generation
sequencing) to disease transcriptomes, a large number of dysregu-
lated lncRNAs were identified to be associated with disease. However,
results of high-throughput technologies contained much noise, and
most of the dysregulated lncRNAs tend to be unrelated rather than
causal lncRNAs because the aberrant expression in disease is not suf-
ficient evidence to confirm the causal association between lncRNAs
and diseases. With large-scale available heterogeneous data resources
of lncRNAs and diseases, great efforts have been devoted to system-
level inference of lncRNA-disease association through computational
or bioinformatics approaches, which constitute a complement to wet-
lab experiments.18,19

In this study, we present an overview of the computer-aided infer-
ence of the lncRNA-disease association. First, data sources acces-
sible to the lncRNA-disease association study are introduced
in detail. Second, novel computational methods and software
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Figure 1. Schematic Workflow of Matrix

Completion-Based Methods
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tools, as well as their application in lncRNA-disease association
prediction, are summarized and reviewed. Finally, we explore the
future perspectives and challenges in this field.

RESULTS
In this section, we reviewed dozens of novel computational methods
in inferring the lncRNA-disease association proposed in recent
years. Based on the core idea of the algorithm, these computational
methods could be divided into four categories: (1) matrix comple-
tion-based methods, (2) recommendation algorithm-based methods,
(3) resource allocation-based methods, and (4) integration-based
methods.
Molecular Therap
Matrix Completion-Based Methods

The universal characteristic of the matrix
completion-based methods is to complete the
data set with missing values in the form of a
matrix. As shown in Figure 1, three matrices,
including the lncRNA-disease association ma-
trix, lncRNA-lncRNA matrix, and disease-dis-
ease matrix, were obtained. Then feature
extraction was accomplished based on the
above three matrices to obtain lncRNA feature
vectors and disease feature vectors. Finally, ma-
trix completion methods were conducted on
the lncRNA-disease association matrix to ac-
quire the lncRNA-disease scoring matrix based
on lncRNA feature vectors and disease feature
vectors (Table 1).

Li et al.19 developed a computational model of
faster randomized matrix completion for latent
disease lncRNA association (named
FRMCLDA) that used the faster singular value
threshold (fSVT) algorithm to predict lncRNA-
disease associations based on the idea of matrix
completion. FRMCLDA uses the disease simi-
larity matrix, lncRNA similarity matrix,
lncRNA-disease association matrix, and trans-
pose matrix of the association matrix to
construct the adjacency matrix, which im-
proves the prediction performance by fitting
the adjacency matrix. LDAPM and SIMCLDA
also use a matrix completion approach, but the difference is that
LDAPM denotes the approximated matrix as the multiplication of
the two matrices.20,21 TSSR exploits learned representation matrices
as feature matrices to reconstruct the original matrix.22

Resource-Allocation-Based Methods

Resource allocation is the allocation of available resources to each
node. To predict the lncRNA-disease association, resource allocation
is based on the initial value of the multi-data source matrices as a
possible value for the relationship between nodes. The process is
demonstrated in Figure 2. Resource allocation-basedmethods are built
on data from multiple sources, such as lncRNA-disease association,
y: Nucleic Acids Vol. 21 September 2020 157
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Table 1. Overview of Categories and Corresponding Method/Tool for Acquiring lncRNA-lncRNA Association

Categories Method/Tool Data Types Data Resources References

Sequence similarity EMBOSS Needle tool lncRNA sequence LncRNADisease, UCSC, LNCipedia
Needleman and
Wunsch34

Functional
similarity

LNCSIM lncRNA-disease association, MeSH descriptors
LncRNADisease, Lnc2Cancer, MNDR,
MeSH

Chen et al.35

Functional
similarity

ILNCSIM lncRNA-disease association, MeSH descriptors MNDR, Lnc2Cancer, MeSH Huang et al.36

Functional
similarity

NA
lncRNA-gene association, protein-protein
interaction

LncRNA2Target, StarBase, HPRD Paik et al.37

Functional
similarity

NA lncRNA-miRNA association StarBase Zhao et al.40

Expression
similarity

Spearman/Pearson
correlation

lncRNA expression profiles
Array Express, UCSC Genome
Bioinformatics

Chen and Yan41

Cosine similarity cosine similarity lncRNA-disease association MNDR, Lnc2Cancer, LncRNADisease Cheng et al.42

NA, not applicable.
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miRNA-disease association, miRNA-lncRNA association, and so on.
The heterogeneous multilayer network is constructed, and the edges
are weighted according to the corresponding values of the matrix.
The lncRNA-disease scoring matrix was produced by post-processing
resource allocation on the heterogeneous network (Table 2).

Resource allocation has been implemented in more than a dozen
methods for predicting the lncRNA-disease association. Fan et al.23

proposed a computational model of IDHI-MIRW by integrating
diverse heterogeneous information sources with positive pointwise
mutual information and random walk with restart algorithm. Xiao
et al.24 developed BPLLDA to predict lncRNA-disease associations
based on simple paths with limited lengths in a heterogeneous
network. Zhang et al.25 proposed a rule-based inference method on
the linked tripartite network, which was constructed by integrating
heterogeneous data with deep learning algorithms. Some other infor-
mation had also been introduced to allocate resources for improving
prediction performance. For example, LION and DislncRF introduced
protein information and genome-wide tissue expression profiles,
which are aided by protein-coding genes.26,27 NBLDA and LLCLPLDA
both constructed four matrices and used the label propagation algo-
rithm for resource allocation.28,29 By constructing a disease weight ma-
trix based on the similarity between the lncRNA disease set and the
specified disease, IIRWR introduced the concept of disease clique
and added the weight of disease linkages to the traveling network.30

Lap-BiRWRHLDA and BiWalkLDA both used laplacian normaliza-
tion and bi-random walk algorithm on similarity networks.31,32 The
other two methods, TPGLDA and ncPred, allocated resources from
the disease to lncRNAs and other nodes, respectively, but the difference
is that the resources were returned to the initial nodes.33,34

Recommendation Algorithm-Based Methods

The common characteristic of the recommendation algorithm-based
methods is to recommend a node that may be related to another node.
It mainly includes content-based recommendation, collaborative
filtering, and matrix factorization. The process is depicted in Figure 3.
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After applying a recommendation system algorithm to multi-data
matrices, recommendation matrices at multiple levels (such as
lncRNA, miRNA, etc.) were obtained. Finally, the possibility of the
potential relationship between lncRNA and disease was measured
through the combination of the recommendation matrices (Table 3).

The first category of recommendation algorithm-based methods is
the content-based recommendation. Content-based recommenda-
tion refers to the recommendation of similar nodes of previous related
nodes for this node. For example, NCPLDA, proposed by Li et al.,35

measured the lncRNA-disease association score based on network
consistency projection. The second category of recommendation al-
gorithm-based methods is based on collaborative filtering. Collabora-
tive filtering refers to adding other nodes similar to the nodes and us-
ing the information of these nodes to make inferences. CFNBC,
developed by Yu et al.,36 and NBCLDA, proposed by Yu et al.,37

both used collaborative filtering on multi-data matrices to uncover
a new relationship between lncRNA and disease and then took advan-
tage of a naive Bayesian classifier to determine whether there is an as-
sociation between lncRNA and disease in the set of the lncRNA-asso-
ciated node and disease-associated node. A similarity correlation
fusion method introduced neighbor information and then was used
to predict the association by making the original matrix fit as well
as possible in ILDMSF and SKF-LDA.38,39 BLM-NPAI, developed
by Cui et al.,40 introduced the nearest profile to get the final prediction
results after constructing the local model of lncRNA and disease.
Another method, proposed by Ping et al.,41 measured the one-step
neighbor of a node based on simrank measure when there was no
common neighbor. DCSLDA, proposed by Zhao et al.,42 calculated
the shortest path between lncRNA and disease and the distance cor-
relation coefficient to construct the final matrix. The third category of
recommendation algorithm-basedmethods is based onmatrix factor-
ization, including MFLDA, WMFLDA, and PMFILDA. The three
methods above are based on matrix factorization, and the difference
is that the latter two add weight and probability separately.43–45 Li
et al.46 developed a computational method, DNILMF-LDA, that is
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anchored in the neighborhood regularized logistic matrix factoriza-
tion and optimizes the above parameters to predict interaction prob-
abilities. NNLDA, determined by Hu et al.,47 solved some of the dis-
advantages of traditional matrix factorization by changing the
training method and the loss function and adding a fully connected
layer. DSCMF combines matrix factorization and collaborative
filtering to predict associations efficiently by introducing neighbor
information.48

Multi-model Integration-Based Methods

Multi-model integration methods have also been proposed to over-
come the shortcomings of the single model and improve prediction
performance (Table 4). A combination of matrix completion ideas
Molecular Therap
and recommendation system ideas was applied
in three models to predict potential lncRNA-
disease associations, including LDASR,
ECLDA, and weighted bagging LightGBM
model.49–51 Three methods (CNNLDA,
CNNDLP, and GCNLDA) were developed by
Xuan et al.52–54 to construct the final module
through the integration of the convolutional
module and attention module. LDAPred, pro-
posed by Xuan et al.,55 introduced the convolu-
tional neural network based on the integration
of resource allocation and matrix completion.

DISCUSSION
During the past decade, it has been well docu-
mented that lncRNAs play a critical role in
nearly all biological processes and have
become an emerging paradigm of human dis-
ease research.56,57 Identification of disease-
associated lncRNAs is becoming increasingly
important for fundamentally improving our
understanding of molecular mechanisms and
developing novel therapeutic targets, and
thus has attracted more and more attention
in the scientific community and is becoming
one of the hotspots in medical research.
Although current experimental studies
in vitro and in vivo could directly link identi-
fied lncRNAs with disease phenotypes, they
are affected by the limitation of lower effi-
ciency and higher time and labor cost. Taking
into account the limitations of experimental studies, high-
throughput technologies were then implemented, leading to expo-
nential growth in the number of dysregulated lncRNAs in diseases.
However, the aberrant expression of lncRNAs is not sufficient evi-
dence for ascribing to them a functional role in disease.7 Therefore,
efficient and accurate identification and functional elucidation of
disease-associated lncRNAs are in their infancy and remain a major
challenge. With the rapidly increasing quantity and quality of bioin-
formatics databases and resources in lncRNAs and diseases, com-
puter-aided inference of disease-associated RNAs has become a
promising avenue for facilitating the unraveling of the functional
role of lncRNAs in diseases and provides complementary value
for experimental studies. A large number of computational models,
y: Nucleic Acids Vol. 21 September 2020 159
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Table 2. Overview of Categories and Corresponding Method/Tool for Acquiring Disease-Disease Association

Categories Method/Tool Data Types Data Resources References

Semantic similarity R package DOSE MeSH descriptor Disease Ontology, MeSH Yu and Wang43

Semantic similarity NA MeSH descriptor, Disease Ontology terms MeSH, DincRNA Chen et al.35

Functional similarity Jaccard coefficient
disease-gene association, gene-Gene
Ontology terms association

Ensembl, DisGeNET
Mathur and
Dinakarpandian44

Functional similarity NA disease-miRNA association HMDD Zhao et al.40

Gaussian interaction
profile kernel similarity

Gaussian interaction profile kernel
similarity/radial basis function
(RBF) kernel similarity

disease-miRNA association, disease-gene
association, lncRNA-disease association,
sequence, expression

DisGeNet, HMDD, MNDR,
Lnc2Cancer, LncRNADisease

Chen and Yan41

Cosine similarity Cosine similarity lncRNA-disease association
MNDR, Lnc2Cancer,
LncRNADisease

Hamaneh and Yu45

NA, not applicable.
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algorithms, and tools have been developed and proposed, compen-
sating for this dearth.

In this work, we first summarize data and knowledge sources available
for the lncRNA-disease association study, which contains databases
of lncRNAs, diseases, and known lncRNA-disease associations. We
then present a detailed overview of previously proposed computa-
tional methods for inferring lncRNA-disease associations. Based on
the core idea implemented, these computational methods can be
divided into four categories: (1) matrix completion-based methods,
(2) recommendation algorithm-based methods, (3) resource alloca-
tion-based methods, and (4) multi-model integration-based methods.
Despite that the performance of each computational method is very
great according to the reports in their own studies, one emerging crit-
ical issue is that most of these methods used different data sources as
their training dataset and carried out cross-validation on their dataset,
lacking benchmark performance evaluation. These computational
methods have distinct limitations and weaknesses, which are noted
at follows. First, matrix completion-based methods considered the
feature vectors of lncRNA and disease to improve the accuracy of
the prediction. However, these algorithms hold the disadvantage of
poor robustness. The ranks of diverse datasets are likely to vary
widely. Second, because experimentally verified lncRNA-disease asso-
ciations are still too incomplete, resource allocation-based methods
need to consider the prediction of separate nodes or integrate addi-
tional biological information. However, although this can improve
prediction accuracy, some interactions from other databases may
contain some noise to interfere with prediction results. In addition,
recommendation algorithm-based methods are stated separately.
Content-based recommendation models only need node prior knowl-
edge, but new levels of disease-lncRNA associations cannot be recog-
nized. Although collaborative filtering-based recommendation
methods complement this shortcoming, the spare lncRNA-disease as-
sociation matrix is harmful to the recommendation, and the
complexity and time cost of the algorithm will sharply increase
when the amount of data is too large. Additionally, matrix factoriza-
tion-based recommendation methods reduce space complexity by
mapping a matrix to a product of low-dimensional matrices. These
160 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
methods also make it easy to add additional data from different sour-
ces and use the intrinsic structure. Matrix factorization-based
methods also have the same weaknesses as collaborative filtering-
based recommendation methods. The above computational ap-
proaches can thus complement each other. Therefore, multi-model
integration-based methods were proposed to achieve better perfor-
mance when investigating the association between lncRNAs and dis-
eases. Finally, only several computational approaches have been
developed as online web tools, and most are still theoretical studies
that hampered their use for biologists and medical scientists.

With the rapidly increasing knowledge for the functional mechanism
of lncRNAs, several challenges that would be helpful to improve the
accuracy and practicality of the predictors could be highlighted. It is
well known that themajority of lncRNAs exhibited precise subcellular
localization, thus performing regulatory roles in a spatiotemporal
manner.5,6 Therefore, some interactions between lncRNAs and other
biological molecules (DNA, RNA, and proteins) used in previous pre-
dictors are derived from prediction and do not exist in the real biolog-
ical world. Therefore, co-localization information of lncRNAs and
other biological molecules should be considered. Additionally, it
has also been observed that lncRNAs were expressed in highly cell
type-specific, tissue-specific, and disease-specific manners. Therefore,
more molecular information in the appropriate biological contexts
should be introduced into predictors that are more suitable for the
specific disease. Finally, the prediction results of these computational
approaches are only descriptive associations, and the specific associ-
ation type (e.g., casual or non-causal association of lncRNA with the
disease) is still a challenging task and needs to be answered. The im-
plementation of efficient and reliable computational predictions,
together with systematic biological experiments, will greatly accel-
erate the study of lncRNA functions andmechanisms in physiological
and pathological conditions.

MATERIALS AND METHODS
Databases and Knowledge Bases

NONCODE (http://www.noncode.org/) collects and integrates data
from PubMed and other resources via text mining.20 Users can use

http://www.noncode.org/
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CNCI to predict their protein-encoding potential and display the re-
sults of functional annotation and enrichment through the ncFANs
online website. The current version covers expression, function,
sequence, structure, disease relevance of lncRNA, and other factors.
Compared with other lncRNA databases, NONCODE stores more in-
formation about lncRNA transcripts and unique annotations.

LncRBase (http://bicresources.jcbose.ac.in/zhumur/lncrbase) is an
annotation database resource for analyzing lncRNA functions based
on feature sequences.21 It has recorded transcript information about
133,361 human lncRNA entries and 83,201 mouse lncRNA entries.
Information about the lncRNA subtypes and small ncRNA-lncRNA
associations is included. The database also provides microarray
probes mapped to specific lncRNAs and expression in tissues.
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 161
,

LncBook (http://bigd.big.ac.cn/lncbook) col-
lects information on 268,848 experimentally
verified and predicted lncRNAs (including
1,867 functional lncRNAs) and includes infor-
mation on related functions, diseases, expres-
sions, methylation, mutations, and miRNA in-
teractions (via software prediction).22 The team
developed a database called LncRNAWiki,
which is an integrated database.23 LncRNA-
Wiki has set up a model of collaborative anno-
tation. Then LncBook has been established to
organize large-scale annotations systematically
as a complement to LncRNAWiki.

MONOCLdb (https://www.monocldb.org/)
contains 20,728 lncRNAs from the sequencing
of virus-infected lungs of eight respiratory-in-
fected mice, of which 5,329 were differentially
expressed.24 These differentially expressed
lncRNAs are annotated by different methods
(enrichment methods, as well as module-based
and rank-based methods). The correlation
score of lncRNA expression profiles and six
phenotypic data were determined as pathogenic
associations.

lncRNome (http://genome.igib.res.in/lncRNome)
is a comprehensive database of human lncRNAs,
which collects information on annotation,
sequence, structure, interacting proteins, genomic variations, conserva-
tion, and epigenetic modifications for more than 18,000 lncRNAs.25

Annotation is manually curated from literature and databases, including
associated diseases, related literature, and the mapping of disease-associ-
ated variation in lncRNA gene loci.

LncRNASNP (http://bioinfo.life.hust.edu.cn/lncRNASNP/) mainly
sorts information on the single nucleotide polymorphism (SNP)
loci located on the lncRNA gene in humans and mice.26 The cancer
mutations in lncRNA transcripts and lncRNA expression in cancer
the predicted interactions of miRNAs and associated diseases, and
the impact of variations on lncRNA structures were integrated into
LncRNASNP. This database also collects experimentally verified
and predicted disease-lncRNA associations in humans.

http://bicresources.jcbose.ac.in/zhumur/lncrbase
http://bigd.big.ac.cn/lncbook
https://www.monocldb.org/
http://genome.igib.res.in/lncRNome
http://bioinfo.life.hust.edu.cn/lncRNASNP/
http://www.moleculartherapy.org


Table 3. Overview of Matrix Completion-Based Computational Methods for Inferring lncRNA-Disease Association

Method Name Computational Principle Data Types Available Tool (Package or Code) References

SIMCLDA
inductive matrix completion,
singular value decomposition

lncRNA-disease association,
lncRNA-lncRNA association,
disease-disease association

code (https://github.com//bioinfomaticsCSU/
SIMCLDA)

Lu et al.47

LDAPM
inductive matrix completion,
singular value decomposition

lncRNA-disease association,
lncRNA-lncRNA association,
disease-disease association

NA Fraidouni and Zaruba48

FRMCLDA
faster randomized matrix
completion, faster singular
value threshold

lncRNA-disease association,
lncRNA-lncRNA association,
disease-disease association

code (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6749816/bin/Table_7.docx)

Li et al.46

TSSR sparse self-representation
lncRNA-disease association,
lncRNA-lncRNA association,
disease-disease association

code (https://github.com/Oyl-CityU/TSSR) Ou-Yang et al.49

NA, not applicable.
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LncRNADisease (http://www.rnanut.net/lncrnadisease/) is an open-
access database that has been updated to version 2.0.27 As one of
the more commonly used databases, LncRNADisease 2.0 provides
10,564 experimental lncRNA-disease associations and 195,395
computational lncRNA-disease associations in four species. Addi-
tionally, a confidence score was obtained for each pair of lncRNA-dis-
ease associations based on known experimental information.
LncRNADisease also collets lncRNA regulatory networks.

Lnc2Cancer (http://www.bio-bigdata.net/lnc2cancer) collected 4,989
comprehensive experimentally supported associations between 1,614
lncRNAs and 165 human cancers.28,29 These records were built
through text mining on the PubMed database. The database consists
of three classifications of relationships between lncRNAs and cancers:
circulating, drug-resistant, and prognostic-related lncRNAs. Addi-
tionally, it collects transcription factor (TF), mircroRNA (miRNA),
variant, and methylation molecular information on the regulation
of lncRNAs.

MNDR (http://www.rna-society.org/mndr/) is built through manual
curation of scientific literature.30 The current release (MNDR v2.0)
has recorded 261,042 entries including six species and 1,416 diseases
from 26,600 studies. Detailed and comprehensive annotations for
lncRNA-disease associations are presented at the bottom of each re-
cord, including the data from articles and evidence support.

EVLncRNAs (http://biophy.dzu.edu.cn/EVLncRNAs) is a database
that intends to include all lncRNA-disease associations that are vali-
dated by low-throughput experiments.31 The database includes 1,543
lncRNAs from 77 species, 886 of which are associated with 338 dis-
eases, along with experimental information. For other lncRNAs
that are not associated with diseases, their functional information is
collected.

NSDNA (http://www.bio-bigdata.net/nsdna/) is an online knowledge
base of ncRNA-nervous system disease (NSD) associations.32 It con-
tains 24,713 entries of associations covering 142 NSDs and 8,593
162 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
ncRNAs from more than 1,300 articles, of which 4,608 lncRNAs-
NSDs are included. Users can browse by ncRNAs, diseases, species,
or tissue name. Also, if searching for data, users can select low-
throughput or high-throughput experimental data or both.

Nc2Eye (http://nc2eye.bio-data.cn/) is the first high-quality manually
curated ncRNAomics knowledge base associated with eye disease and
includes 1,147 lncRNA-associated entries.33

Computational Methods for Acquiring lncRNA-lncRNA

Associations

Most of the computational methods for inferring lncRNA-disease as-
sociation are based on lncRNA-lncRNA association data. Therefore,
acquiring a high-quality lncRNA-lncRNA association is critical for
improving performance in predicting the lncRNA-disease associa-
tion. We have summarized the currently available computational
methods for acquiring the lncRNA-lncRNA association. In general,
these methods could be basically divided into four categories (Table
1): sequence similarity-based methods, functional similarity-based
methods, cosine similarity-based methods, and expression-based
methods.

Sequence Similarity-Based Methods

Due to plentiful information about the lncRNA sequence, the similar-
ity between two lncRNAs was measured by comparing the sequence
features of lncRNAs. Needleman and Wunsch34 first proposed the
Needleman-Wunsch global alignment algorithm in 1970. Then, re-
searchers developed it as a web tool, which calculates the optimum
alignment and best score of two sequences in the order of sequence
steps along their entire length. The alignment score SW(li,lj) was ob-
tained from EMBOSS Needle, and the sequence similarity is defined
as follows:

LS
�
li; lj
�
=

SW
�
li; lj
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWðli; liÞ � SW

�
lj; lj
�q (1)

http://www.rnanut.net/lncrnadisease/
http://www.bio-bigdata.net/lnc2cancer
http://www.rna-society.org/mndr/
http://biophy.dzu.edu.cn/EVLncRNAs
http://www.bio-bigdata.net/nsdna/
http://nc2eye.bio-data.cn/
https://github.com//bioinfomaticsCSU/SIMCLDA
https://github.com//bioinfomaticsCSU/SIMCLDA
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749816/bin/Table_7.docx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6749816/bin/Table_7.docx
https://github.com/Oyl-CityU/TSSR


Table 4. Overview of Resource Allocation-Based Computational Methods for Inferring lncRNA-Disease Association

Method Name Computational Principle Data Types Available Tool (Package or Code) References

BPLLDA
paths together with a
decay function

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Xiao et al.51

TPGLDA resource allocation
disease-gene association, lncRNA-disease
association, lncRNA-lncRNA association,
disease-disease association

code (https://github.com/USTC-
HIlab/TPGLDA)

Ding et al.62

IDHI-MIRW
positive pointwise mutual
information, random walk
with restart algorithm

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

IDHI-MIRW (https://github.com/
NWPU-903PR/IDHI-MIRW)

Fan et al.50

Lap-BiRWRHLDA
Laplacian normalization,
random walks

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Wen et al.60

IIRWR
random walk with restart
algorithm

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

code (https://github.com/
xiaoyubin123/code)

Wang et al.59

LLCLPLDA
label propagation algorithm,
locality-constrained linear
coding

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Xie et al.55

LION network diffusion approach
lncRNA-protein interaction, protein-protein
interaction, protein-disease interaction

NA Sumathipala et al.53

NBLDA label propagation algorithm
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Liu et al.58

DislncRF random forest
RNA sequencing data, disease-protein coding gene
association, lncRNA-disease association

code (https://github.com/xypan1232/
DislncRF)

Pan et al.54

NA
DeepWalk and a rule-based
inference method

lncRNA-disease association, lncRNA-miRNA
association, miRNA-disease association

code (https://github.com/Pengeace/
lncRNA-disease-link)

Zhang et al.52

NA ncPred
disease-target association, target-ncRNA
association, ncRNA-ncRNA association,
target-target association

NA Mori et al.63

BiWalkLDA
Laplacian normalization,
random walks

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

code (https://github.com/screamer/
BiwalkLDA)

Gao et al.61

NA, not applicable.
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Functional Similarity-Based Methods

Based on the assumption that if lncRNA-related molecules have a
similar function, lncRNA functions are identical, several functional
similarity-based computational methods were developed. Chen
et al.35 proposed a method, named LNCSIM, to measure the se-
mantic similarity of lncRNAs’ associated two groups of diseases.
They integrated two semantic similarity models to achieve better
performance. Two models both collected diseases’ MeSH descrip-
tors and constructed a directed acyclic graph (DAG). Then, the
contribution of disease term t to disease A was calculated, which
is also the difference between these two models. In the first model,
it was calculated as Equation 2. Since the contribution of other
diseases to the semantic value of the disease decreases with the
increase of the distance between this disease and disease A, the
decay factor is added. For the second model, diseases that
appear in DAG(A) and are less common in other diseases,
DAGs have a more significant contribution that can be calculated
in Equation 3:

�
C1A Að Þ= 1

C1A tð Þ=max D � C1A t0ð Þjt0˛childen of t
� �

if tsA
and (2)
C2AðtÞ = � log

�
the number of DAGs including t

the number of diseases

	
(3)

Therefore, the semantic value of disease A is defined as the sum of
contributions from ancestral diseases and disease A itself:

C1ðAÞ =
X
t˛DðAÞ

C1AðtÞ (4)

Thus, the semantic similarity between two diseases A and B
is calculated based on the common nodes of DAG(A) and
DAG(B):

SSðA;BÞ =
P

t˛DðAÞXDðBÞðCAðtÞ+CBðtÞÞ
CðAÞ+CðBÞ (5)

Finally, lncRNA functional similarity was obtained by calculating the
average of the similarities between the two groups of diseases.

Huang et al.36 proposed an improved model called ILNCSIM,
which introduced information content (IC) and focused on the
hierarchical structure of disease DAGs. First, the information
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content value was calculated. Information content of disease term
a is defined as the negative log-likelihood of each term:

ICðiÞ = � logpðiÞ (6)

Second, IC-based distances were used to calculate the most informa-
tive common ancestors (MICAs) and the most informative leaf
(MIL):

DISTICði; jÞ = jICðiÞ� ICðjÞj (7)

Third, components a, to measure the specificity of MICA, b, to mea-
sure the generality of two disease terms, and g, to estimate the total
IC-based distances between two terms and their MICA, are
computed:

a = DISTICðROOT; MICAÞ; (8)

b =
DISTICðnodei;MILiÞ+DISTIC

�
nodej;MILj

�
2

and (9)

g = DISTðMICA; nodeiÞ+DIST
�
MICA; nodej

�
(10)

Fourth, based on the above three equations, to compute the semantic
similarity of two diseases:

SSdisease
�
termi; termj

�
=

a

a+ b
� 1
1+g

(11)

Finally, lncRNA functional similarity wasmeasured by calculating the
average of the similarities between the two groups of diseases.

ICod measures disease similarity by scoring disease-related gene sim-
ilarity, and researchers applied this idea to lncRNAs.37–39 The similar-
ity between lncRNAs i and j was calculated based on the shortest path
between each pair of lncRNA-related genes in the integrated human
protein-protein interaction (PPI) network. The shortest distance be-
tween two proteins in the PPI network is indicated as d(pm,pn).
D(pm,pn) denotes the transformed distance between the networks. t
is the threshold of d(pm,pn). NETi and NETj represent the networks
related to two lncRNAs, respectively. E and H are freely adjustable
parameters:

LSði; jÞ =
P

dðpm ;pnÞ%tD
�
pm; pn

�
P

pm˛NETi ;pn˛NETj
D
�
pm; pn

� and (12)

D
�
pm; pn

�
= E � exp��H � d�pm; pn�� (13)

Zhao et al.40 proposed a computational model to infer
lncRNA-lncRNA association, which introduced lncRNA-miRNA
associations and was defined as for Equation 14 and 15. The
process is the sum of contributions of commonly associated
miRNA divided by the number of miRNAs associated with
two lncRNAs. The contribution value of each miRNA for
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lncRNA is computed by Equation 14. D(i) and D(j) are the num-
ber of lncRNAi-related edges and lncRNAj-related edges,
respectively:

CLðmiÞ =

� log2



the number of mi � relate lncRNAs

the number of lncRNA�miRNA associations

�
(14)

LSði; jÞ =
exp
�P

mk˛DðiÞXDðjÞCLðmkÞ



jDðiÞj+ jDðjÞj � jDðiÞXDðjÞj (15)

Expression Similarity-Based Methods

lncRNAs are expressed in highly cell type-specific, tissue-specific, and
disease-specific manners. Consequently, the expression similarity be-
tween two lncRNAs is an important point. The co-expression rela-
tionship between lncRNAs measured by a Pearson or Spearman cor-
relation coefficient was commonly used to infer the lncRNA-lncRNA
association.41

Cosine Similarity-Based Methods

The concept of cosine is the origin of mathematics. Cheng et al.42 pro-
posed a computational method called IntNetLncSim, which linked
cosine similarity with lncRNA similarity. The similarity between
two lncRNAs, lnc1 and lnc2, was calculated as follows:

LSðlnc1; lnc2Þ =
Pd

i= 1w1;i � w2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i= 1

w1;i
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
i= 1

w2;i
2

s ; (18)

where w1,i represents the vector values of lnc1 on the ith dimension.
Computational Methods for Acquiring Disease-Disease

Associations

Disease-disease association data are critical data used in most of the
computational methods for inferring lncRNA-disease association.
In general, these methods for obtaining disease-disease association
can be divided into four categories (Table 2): semantic similarity-
based methods, functional similarity-based methods, Gaussian inter-
action profile kernel similarity-based methods, and cosine similarity-
based methods.

Semantic Similarity-Based Methods

Semantic similarity between diseases is one of the commonly used
methods that use mesh descriptors or disease ontology terms and
determine the similarity of two disease terms based on the informa-
tion content of common ancestral terms. A package named DOSE
developed by Yu and Wang43 can calculate disease semantic similar-
ity. Other methods also obtained the same results by mathematical
formulas. The detailed algorithm is described in LNCSIM of lncRNA
functional similarity.
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Functional Similarity-Based Methods

Functional similarity-based methods were achieved by using the
Jaccard coefficient to measure the similarity and difference of
disease-related gene ontology.44 Disease-gene interaction and
gene-gene ontology interaction were used and calculated
as Equation 19. GOi represents the gene ontology terms related to
disease i:

DSði; jÞ =
��GOiXGOj

����GOiWGOj

�� (19)

Zhao et al.40 proposed a model to infer the disease-disease association
in their computational method, which introduced disease-miRNA as-
sociations and was defined as Equation 20 and 21. The process is the
sum of contributions of commonly associated miRNA divided by the
number of miRNAs associated with two diseases. The contribution
value of each miRNA for a disease is computed by Equation 20.
D(i) and D(j) are the number of diseasei-related edges and diseasej-
related edges, respectively:

CDðmiÞ = � lg



the number of mi � relate diseases

the number of disease�miRNA associations

�
(20)

DSði; jÞ =
exp
�P

mk˛DðiÞXDðjÞCDðmkÞ



jDðiÞj+ jDðjÞj � jDðiÞXDðjÞj (21)

Gaussian Interaction Profile Kernel Similarity-Based Methods

Based on the assumption that genes with similar functions tend to be
associated with a similar disease, Chen and Yan41 applied the
Gaussian interaction profile kernel (also called the radial basis func-
tion kernel) similarity to measure disease-disease association as in
Equation 22. IP(i) indicates the row of diseasei in the disease-lncRNA
association matrix:

KDði; jÞ = exp
�� gdjjIPðiÞ � IPðjÞjj2� (22)

The parameter gd controls the kernel bandwidth, which is defined as
follows:

gd = g
0
d

, 
1
nd

Xnd
i= 1

jjIPðiÞjj2
!
; (23)

where nd denotes the number of the contained diseases. gd0 is a novel
bandwidth parameter by the average number of associations with
lncRNAs per disease.
Cosine Similarity-Based Methods

In a previous study, Hamaneh and Yu45 linked cosine similarity with
disease similarity. We used the lncRNA-disease association matrix to
replace the original matrix for display. The similarity between the two
diseases, dis1 and dis2, was calculated as follows:
LSðdis1; dis2Þ =
Pl
i= 1

w1;i � w2;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i= 1

w1;i
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPl
i= 1

w2;i
2

s ; (24)

where wl,i represents the vector values of dis1 on the ith dimension.
Computational Methods for Inferring lncRNA-Disease

Associations

In this section, we review dozens of novel computational methods in
inferring the lncRNA-disease associations proposed in recent years.
Based on the core idea of the algorithm, these computational methods
can be divided into four categories: matrix completion-based
methods, recommendation algorithm-based methods, resource allo-
cation-based methods, and multi-model integration-based methods.

Matrix Completion-Based Methods

The universal characteristic of the matrix completion-based methods
is to complete the dataset with missing values in the form of a matrix.
As shown in Figure 1, three matrices, including the lncRNA-disease
association matrix, lncRNA-lncRNA matrix, and disease-disease ma-
trix, were obtained. Then, feature extraction is accomplished based on
the above three matrices to obtain lncRNA feature vectors and disease
feature vectors. Finally, matrix completion methods were conducted
on the lncRNA-disease association matrix to acquire the lncRNA-dis-
ease scoring matrix based on lncRNA feature vectors and disease
feature vectors (Table 3).

Li et al.46 developed a computational model of faster randomized
matrix completion for latent disease-lncRNA association (named
FRMCLDA) that used the fSVT algorithm to predict lncRNA-dis-
ease associations based on the idea of matrix completion.
FRMCLDA uses the disease similarity matrix, lncRNA similarity
matrix, lncRNA-disease association matrix, and transpose matrix
of the association matrix to construct the adjacency matrix, which
improves the prediction performance by fitting the adjacency ma-
trix. LDAPM and SIMCLDA also use a matrix completion
approach, but the difference is that LDAPM denotes the approxi-
mated matrix as the multiplication of the two matrices.47,48 Also,
TSSR exploits learned representation matrices as feature matrices
to reconstruct the original matrix.49

Resource Allocation-Based Methods

Resource allocation is used to allocate available resources to each
node. To predict the lncRNA-disease association, resource allocation
is based on the initial value of the multi-data source matrices as a
possible value for the relationship between nodes. The process is
demonstrated in Figure 2. Resource allocation-based methods are
built on data from multiple sources, such as lncRNA-disease associa-
tion, miRNA-disease association, miRNA-lncRNA association, and
so forth. The heterogeneous multilayer network is constructed, and
the edges are weighted according to the corresponding values of the
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 165
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matrix. The lncRNA-disease scoring matrix was produced by
post-processing resource allocation on the heterogeneous network
(Table 4).

Resource allocation has been implemented in more than a dozen
methods for predicting the lncRNA-disease association. Fan et al.50

proposed a computational model of IDHI-MIRW by integrating
diverse heterogeneous information sources with positive pointwise
mutual information and random walk with a restart algorithm.
Xiao et al.51 developed BPLLDA to predict lncRNA-disease associa-
tions based on simple paths with limited lengths in a heterogeneous
network. Zhang et al.52 proposed a rule-based inference method on
the linked tripartite network, which was constructed by integrating
heterogeneous data with deep-learning algorithms. Some other infor-
mation had also been introduced to allocate resources for improving
prediction performance. For example, LION and DislncRF intro-
duced protein information and genome-wide tissue expression pro-
files, which are aided by protein-coding genes.53,54 NBLDA and
LLCLPLDA both constructed four matrices and used the label prop-
agation algorithm to resource allocation.55,58 By constructing a dis-
ease weight matrix based on the similarity between the lncRNA dis-
ease set and the specified disease, IIRWR introduced the concept of
disease clique and added the weight of disease linkages to the traveling
network.59 Lap-BiRWRHLDA and BiWalkLDA both used Laplacian
normalization and a bi-random walk algorithm on similarity net-
works.60,61 The other two methods, TPGLDA and ncPred, allocated
resources from the disease to lncRNAs and other nodes, respectively,
but the difference is that the resources are returned to the initial
nodes.62,63

Recommendation Algorithm-Based Methods

The common characteristic of the recommendation algorithm-based
methods is to recommend a node that may be related to another node.
It mainly includes content-based recommendation, collaborative
filtering, and matrix factorization. The process is depicted in Figure 3.
After applying a recommendation system algorithm to multi-data
matrices, recommendation matrices at multiple levels (e.g., such as
lncRNA, miRNA) are obtained. Finally, the possibility of the potential
relationship between lncRNA and disease is measured through the
combination of the recommendation matrices (Table 5).

The first category of recommendation algorithm-based methods is
the content-based recommendation. Content-based recommenda-
tion refers to recommending similar nodes of previous related nodes
for this node. For example, NCPLDA, proposed by Li et al.,64

measured the lncRNA-disease association score based on network
consistency projection. The second category of recommendation al-
gorithm-based methods is based on collaborative filtering. Collabora-
tive filtering refers to adding other nodes similar to the nodes and us-
ing the information of these nodes to make inferences. CFNBC
developed by Yu et al.65 and NBCLDA proposed by Yu et al.66 both
used collaborative filtering on multi-data matrices to uncover a new
relationship between lncRNA and disease and then took advantage
of a naive Bayesian classifier to determine whether there is an associ-
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ation between lncRNA and disease in the set of lncRNA-associated
node and disease-associated node. A similarity correlation fusion
method introduced neighbor information and then was used to pre-
dict the association by making the original matrix fit as good as
possible in ILDMSF and SKF-LDA.38,67 BLM-NPAI, developed by
Cui et al.,68 introduced the nearest profile to get the final prediction
results after constructing the local model of lncRNA and disease.
Another method proposed by Ping et al.69 measured the one-step
neighbor of a node based on SimRankmeasure when there is no com-
mon neighbor. DCSLDA, proposed by Zhao et al.,40 calculated the
shortest path between lncRNA and disease and distance correlation
coefficient to construct the final matrix. The third category of recom-
mendation algorithm-based methods is based on matrix factoriza-
tion, including MFLDA, WMFLDA, and PMFILDA. These three
methods are based on matrix factorization, and the difference is
that the latter two add weight and probability separately.70–72 Li
et al. developed a computational method, DNILMF-LDA, which is
anchored in the neighborhood-regularized logistic matrix factoriza-
tion and optimizes the above parameters to predict interaction prob-
abilities.73 NNLDA, determined by Hu et al.,74 solved some of the dis-
advantages of traditional matrix factorization by changing the
training method and the loss function and adding a fully connected
layer. Additionally, DSCMF combines matrix factorization and
collaborative filtering to predict associations efficiently by intro-
ducing neighbor information.75

Multi-Model Integration-Based Methods

Multi-model integration methods have also been proposed to over-
come the shortcomings of the single model and improve prediction
performance (Table 6). A combination of matrix completion ideas
and recommendation system ideas was applied in three models to
predict potential lncRNA-disease associations, including LDASR,
ECLDA, and the weighted bagging LightGBM model.76–78 Three
methods (CNNLDA, CNNDLP, and GCNLDA) were developed by
Xuan et al.79–81 to construct the final module through the integration
of the convolutional module and attention module. LDAPred, pro-
posed by Xuan et al.,82 introduced the convolutional neural network
based on the integration of resource allocation and matrix
completion.

DISCUSSION
During the past decade, it has been well documented that lncRNAs
play a critical role in nearly all biological processes and have become
an emerging paradigm of human disease research.56,57 Identification
of disease-associated lncRNAs is becoming increasingly important for
fundamentally improving our understanding of molecular mecha-
nisms and developing novel therapeutic targets, and thus has at-
tracted more and more attention in the scientific community and is
becoming one of the hotspots in medical research. Although current
experimental studies in vitro and in vivo could directly link identified
lncRNAs with disease phenotypes, they are affected by the limitation
of lower efficiency and higher time and labor cost. Taking into ac-
count the limitations of experimental studies, high-throughput tech-
nologies were then implemented, leading to exponential growth in the



Table 5. Overview of Recommendation Algorithm-Based Computational Methods for Inferring lncRNA-Disease Association

Method Name Computational Principle Data Types Available Tool (Package or Code) References

ILDMSF similarity network fusion
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Chen et al.38

NBCLDA
naive Bayesian, collaborative
filtering

miRNA-disease association, miRNA-lncRNA
association, lncRNA-disease association, disease-
disease association

NA Yu et al.66

NCPLDA network consistency projection
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

code (https://github.com/ghli16/
NCPLDA)

Li et al.64

MFLDA matrix factorization

lncRNA-miRNA association, lncRNA-gene
association, lncRNA-Gene Ontology (GO)
association, lncRNA-disease association, miRNA-
gene association, miRNA-disease association,
gene-disease association, gene-gene association,
gene-drug association, drug-drug association,
gene-GO association

code (http://mlda.swu.edu.cn/codes.php?
name=MFLDA)

Fu et al.70

WMFLDA matrix factorization

lncRNA-miRNA association, lncRNA-gene
association, lncRNA-GO association, lncRNA-
disease association, miRNA-gene association,
miRNA-disease association, gene-disease
association, gene-gene association, gene-drug
association, drug-drug association, gene-GO
association

code (http://mlda.swu.edu.cn/codes.php?
name=WMFLDA)

Wang et al.83

PMFILDA probabilities matrix factorization
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association, miRNA-
disease association, miRNA-lncRNA association

NA Xuan et al.71

DNILMF-LDA
logistic matrix factorization,
Bayesian optimization

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Li et al.73

DSCMF collaborative matrix factorization
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Gao et al.75

NNLDA matrix factorization lncRNA-disease association
code (https://github.com/gao793583308/
NNLDA)

Hu et al.74

NA
SimRank measure, common
neighbor-based

lncRNA-disease association NA Ping et al.69

CFNBC
naive Bayesian, collaborative
filtering

miRNA-disease association, miRNA-lncRNA
association, lncRNA-disease association,
disease-disease association

code (https://github.com/jingwenyu18/
CFNBC)

Yu et al.65

DCSLDA distance correlation set
disease-disease association, lncRNA-disease
association, miRNA-disease association, miRNA-
LncRNA association, lncRNA-lncRNA association

NA Zhao et al.40

SKF-LDA similarity kernel fusion
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Xie et al.67

BLM-NPAI bipartite local model
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Cui et al.84

NA, not applicable.
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number of dysregulated lncRNAs in diseases. However, the aberrant
expression of lncRNAs is not sufficient evidence for ascribing to them
a functional role in disease.7 Therefore, efficient and accurate identi-
fication and functional elucidation of disease-associated lncRNAs are
in their infancy and remain a major challenge. With the rapidly
increasing quantity and quality of bioinformatics databases and re-
sources in lncRNAs and diseases, computer-aided inference of dis-
ease-associated RNAs has become a promising avenue for facilitating
the unraveling of the functional role of lncRNAs in diseases and pro-
vides complementary value for experimental studies. A large number
of computational models, algorithms, and tools have been developed
and proposed, compensating for this dearth.

In this work, we first summarize data and knowledge sources available
for the lncRNA-disease association study, which contains databases
of lncRNAs, diseases, and known lncRNA-disease associations. We
then present a detailed overview of previously proposed computa-
tional methods for inferring lncRNA-disease associations. Based on
the core idea implemented, these computational methods can be
divided into four categories: (1) matrix completion-based methods,
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Table 6. Overview of Multi-Model Integration-Based Computational Methods for Inferring lncRNA-Disease Association

Method Name Computational Principle Data Types
Available Tool
(Package or Code) References

NA weighted bagging lightGBM model
lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Chen and Liu77

LDASR rotation forest lncRNA-disease association NA Guo et al.76

ECLDA
extreme learning machine,
convolutional neural networks

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association

NA Guo et al.78

CNNLDA
convolutional neural networks,
attention mechanisms

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association, miRNA-
disease association, miRNA-lncRNA association,
miRNA-miRNA association

NA Xuan et al.79

CNNDLP
convolutional neural networks,
attention mechanisms

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association, miRNA-
disease association, miRNA-lncRNA association,
miRNA-miRNA association

NA Xuan et al.80

GCNLDA
convolutional neural networks,
graph convolutional network

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association, miRNA-
disease association, miRNA-lncRNA association,
miRNA-miRNA association

NA Xuan et al.81

LDAPred
convolutional neural networks,
information flow propagation

lncRNA-disease association, lncRNA-lncRNA
association, disease-disease association, miRNA-
disease association, miRNA-lncRNA association,
miRNA-miRNA association

NA Xuan et al.82

NA, not applicable.
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(2) recommendation algorithm-based methods, (3) resource alloca-
tion-based methods, and (4) multi-model integration-based methods.
Despite that the performance of each computational method is very
great according to the reports in their own studies, one emerging crit-
ical issue is that most of these methods used different data sources as
their training dataset and carried out cross-validation on their dataset,
lacking benchmark performance evaluation. These computational
methods have distinct limitations and weaknesses, which are noted
at follows. First, matrix completion-based methods considered the
feature vectors of lncRNA and disease to improve the accuracy of
the prediction. However, these algorithms hold the disadvantage of
poor robustness. The ranks of diverse datasets are likely to vary
widely. Second, because experimentally verified lncRNA-disease asso-
ciations are still too incomplete, resource allocation-based methods
need to consider the prediction of separate nodes or integrate addi-
tional biological information. However, although this can improve
prediction accuracy, some interactions from other databases may
contain some noise to interfere with prediction results. In addition,
recommendation algorithm-based methods are stated separately.
Content-based recommendation models only need node prior knowl-
edge, but new levels of disease-lncRNA associations cannot be recog-
nized. Although collaborative filtering-based recommendation
methods complement this shortcoming, the spare lncRNA-disease as-
sociation matrix is harmful to the recommendation, and the
complexity and time cost of the algorithm will sharply increase
when the amount of data is too large. Additionally, matrix factoriza-
tion-based recommendation methods reduce space complexity by
mapping a matrix to a product of low-dimensional matrices. These
methods also make it easy to add additional data from different sour-
168 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
ces and use the intrinsic structure. Matrix factorization-based
methods also have the same weaknesses as collaborative filtering-
based recommendation methods. The above computational ap-
proaches can thus complement each other. Therefore, multi-model
integration-based methods were proposed to achieve better perfor-
mance when investigating the association between lncRNAs and dis-
eases. Finally, only several computational approaches have been
developed as online web tools, and most are still theoretical studies
that hampered their use for biologists and medical scientists.

With the rapidly increasing knowledge for the functional mechanism
of lncRNAs, several challenges that would be helpful to improve the
accuracy and practicality of the predictors could be highlighted. It is
well known that themajority of lncRNAs exhibited precise subcellular
localization, thus performing regulatory roles in a spatiotemporal
manner.5,6 Therefore, some interactions between lncRNAs and other
biological molecules (DNA, RNA, and proteins) used in previous pre-
dictors are derived from prediction and do not exist in the real biolog-
ical world. Therefore, co-localization information of lncRNAs and
other biological molecules should be considered. Additionally, it
has also been observed that lncRNAs were expressed in highly cell
type-specific, tissue-specific, and disease-specific manners. Therefore,
more molecular information in the appropriate biological contexts
should be introduced into predictors that are more suitable for the
specific disease. Finally, the prediction results of these computational
approaches are only descriptive associations, and the specific associ-
ation type (e.g., casual or non-causal association of lncRNA with the
disease) is still a challenging task and needs to be answered. The im-
plementation of efficient and reliable computational predictions,
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together with systematic biological experiments, will greatly accel-
erate the study of lncRNA functions andmechanisms in physiological
and pathological conditions.
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