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OBJECTIVE—Generating functional �-cells by inducing their
proliferation may provide new perspectives for cell therapy in
diabetes. Transcription factor E2F1 controls G1- to S-phase
transition during the cycling of many cell types and is required
for pancreatic �-cell growth and function. However, the conse-
quences of overexpression of E2F1 in �-cells are unknown.

RESEARCH DESIGN AND METHODS—The effects of E2F1
overexpression on �-cell proliferation and function were ana-
lyzed in isolated rat �-cells and in transgenic mice.

RESULTS—Adenovirus AdE2F1-mediated overexpression of
E2F1 increased the proliferation of isolated primary rat �-cells
20-fold but also enhanced �-cell death. Coinfection with adeno-
virus AdAkt expressing a constitutively active form of Akt
(protein kinase B) suppressed �-cell death to control levels. At
48 h after infection, the total �-cell number and insulin content
were, respectively, 46 and 79% higher in AdE2F1�AdAkt-infected
cultures compared with untreated. Conditional overexpression
of E2F1 in mice resulted in a twofold increase of �-cell prolifer-
ation and a 70% increase of pancreatic insulin content, but did
not increase �-cell mass. Glucose-challenged insulin release was
increased, and the mice showed protection against toxin-induced
diabetes.

CONCLUSIONS—Overexpression of E2F1, either in vitro or in
vivo, can stimulate �-cell proliferation activity. In vivo E2F1
expression significantly increases the insulin content and func-
tion of adult �-cells, making it a strategic target for therapeutic
manipulation of �-cell function. Diabetes 59:1435–1444, 2010

T
he majority of adult �-cells is arrested in G0/1 cell
cycle phases (1–5) and rarely replicates more
than once even when stimulated to proliferate
(6). Nevertheless, �-cell replication appears a

major mechanism for postnatal formation of rodent �-cells
(7,8). Increasing the number of �-cells that enter replica-
tion may provide new perspectives for cell therapy in

diabetes. The key factors controlling entry and progres-
sion through the cell cycle are not yet defined. The
retinoblastoma (pRb) family proteins (termed “pocket
protein” family) act as “ultimate brakes” of the G1- to
S-phase transition (for review see [9]). E2F1–3 transcrip-
tion factors induce the expression of genes involved in
DNA synthesis, cell cycle progression, and apoptosis but
are inactivated by association with unphosphorylated pRb
(10–13). The role of E2F transcription factors and pocket
proteins in �-cells is not entirely clear (14–16).

E2F1�/� mice have a reduced overall pancreatic size
due to diminished growth of several pancreatic cell types.
These mice are glucose intolerant because �-cell prolifer-
ation and function are impaired postnatally (14). E2F1�/�

E2F2�/� mice show that individual E2F transcription
factors have important nonoverlapping roles in regulating
both �-cell proliferation and apoptosis (17,18), although it
remains unclear whether the function of E2F1/2 is �-cell
autonomous (17). Conflicting signals of E2F1 and cell
cycle inhibitors such as p53 result in apoptosis (19,20).
Accordingly, adenoviral delivery of E2F1 in primary car-
diomyocytes increases apoptosis rather than proliferation.
However, IGF-I efficiently rescues the cells and allows for
E2F1-driven proliferation (21,22). In �-cells, environmen-
tal growth signals (insulin, IGF-1, epidermal growth fac-
tor) often inhibit apoptosis and downregulate cell cycle
inhibitors by signaling through protein kinase B/Akt (for
review see [23]).

In the current study, we overexpressed E2F1 specifi-
cally in �-cells to study its effect on �-cell replication and
function in vitro as well as in vivo.

RESEARCH DESIGN AND METHODS

Transgenic strains. Rat insulin promoter (RIP)CreERT mice were provided
by Yuval Dor (Hebrew University, Jerusalem, Israel) (8). R26E2F1 mice
harboring the Rosa26-loxP-LacZ-loxP-E2F1 conditional expression cassette
(24) were from Ulrike Ziebold (Max Delbrueck Center for Molecular Medicine,
Berlin, Germany). Hemizygous RIPCreERT and R26E2F1 mice were crossed
to double transgenic RIPCreERT � R26E2F1. Single transgenic R26E2F1
control mice and double transgenic experimental mice were littermates.
Eight-week-old male double transgenic and single transgenic mice received
subcutaneous tamoxifen injections (four injections of 4 mg, every other day).
All procedures were performed in accordance with the Free University of
Brussels Animal Studies Committee.
Cell isolation and culture. Rat pancreatic �-cells were isolated from
6-week-old male Wistar rats and cultured as described (25,26). Purity was
always more than 90%. Mouse islets were isolated from 8-week-old BALB/c
mice or transgenic mice as described before (27). BALB/c islets produced
more than 75% �-cells after partial dissociation. See supplementary Methods
(available in an online appendix at http://diabetes.diabetesjournals.org/
content/early/2010/03/25/db09-1295/suppl/DC1) for culture. Viral transduction
was as in (28). RNA and protein were extracted from freshly isolated
transgenic islets.
Adenoviral transduction. AdE2F1, expressing human E2F1 under control of
a cytomegalovirus promoter (21), and AdAkt, expressing myristoylated hem-
agglutinin-tagged constitutively active Akt1 (29), were gifts of, respectively,
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Rudiger von Harsdorf (University of Toronto, Toronto, Canada) and Mario
Pende (Inserm, Université Paris 5, Paris, France). The control virus AdNull
contained no transgene. All viruses were propagated and purified as described
(30). Infection of �- or islet cells was as in (28).
Western blotting. Mouse endocrine cells or transgenic islets were used.
Immunoblotting was performed as previously described (31). Antibodies were
anti-E2F1 (rabbit; Santa Cruz Biotechnology Inc., Santa Cruz, CA), anti-actin
(goat; Santa Cruz Biotechnology Inc.), and anti-hemagglutinin (rabbit; Clon-
tech, Mountain View, CA).
Real-Time PCR analysis. Real-Time PCR analysis was performed using
predeveloped TaqMan assay reagents (Applied Biosystems) for mouse E2f1,
Ccne1 (cyclin E1), and Casp7 (caspase 7), and for human E2f1. Expression
levels were normalized to the expression of the housekeeping genes Ppia

(peptidylprolyl isomerase A � cyclophilin A), Gapdh, and Actb using an
adaptation of the ��Ct method (32). Real-time PCR was further performed as
described (33).
Immunohistochemistry and cytochemistry. For detection of bromode-
oxyuridine (BrdU) incorporation in cells, see supplementary Methods. For
immunocytochemistry, primary antibodies anti-Ki67 (rabbit; Novocastra Lab-
oratories Ltd., Newcastle Upon Tyne, U.K.), anti-E2F1 (rabbit; Santa Cruz
Biotechnology Inc.), anti-hemagglutinin for detection of recombinant Akt

(mouse; Cell Signaling Technology, Beverly, MA), anti–phospho-histone H3
(rabbit; Upstate Biotechnology, Waltham, MA), and anti-insulin (guinea pig;
gift of Chris Van Schravendijk, Diabetes Research Center, Vrije Universiteit
Brussel) underwent incubation either for 1 h at room temperature or
overnight at 4°C.

Pancreatic tissue was fixed overnight in 4% formalin solution and embed-
ded in paraffin using standard techniques. Staining for insulin, BrdU (mouse;
Cappel, Cochranville, PA), Ki67, and activated caspase-3 (rabbit; Cell Signal-
ing Technology) was performed on 5-�m sections. Proliferation was assessed
in cells costaining for insulin and BrdU or Ki67 on sections from transgenic
mice intraperitoneally injected with BrdU (50 mg/kg) 16 h before killing. At
least 3,000 insulin-positive cells were analyzed for each animal. Visualization
and imaging are described in supplementary Methods.
Assaying �-cell number, death, and cycle. Total �-cell numbers in 96-well
plates were determined using the CyQuant NF Cell Proliferation Assay Kit
(Invitrogen), based on measurement of cellular DNA content via fluorescent
dye binding, according to the manufacturer’s instructions.

To assay cell death, Hoechst 33342 (10 �g/ml) and propidium iodide (10
�g/ml) were added to the cultures. Dead, apoptotic, or living cells were
identified as described (34). Three separate wells were examined (at least 400
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FIG. 1. Ectopic expression of active E2F1 in murine �-cells. Dispersed mouse islet cells were cultured in suspension and infected (MOI 20) with
adenovirus AdE2F expressing human E2F1 or with AdNull without transgene. A: Immunoblot detection of E2F1 protein (�55 kDa) 24 h after viral
transduction. Actin signals indicate gel-loading efficiency. B: mRNA expression of endogenous E2F1 target genes E2F1, cyclin E1 (cycE1), and
caspase-7 (casp-7) was assessed by quantitative RT-PCR, normalized to housekeeping gene cyclophilin A (cycloA) as described in the “Research
Design and Methods” section, and expressed relative to the data obtained with AdNull. C: Immunocytochemical detection of E2F1 protein in rat
�-cells (>90% purity) 48 h after viral infection. The percentage of E2F1� cells in uninfected cultures, and in cultures infected with AdNull or
AdE2F, was quantified. Data are presented as means � SEM (n � 3–4, *P < 0.05, **P < 0.01, ***P < 0.001 vs. AdNull). (A high-quality digital
color representation of this figure is available in the online issue.)
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cells per well) for each experimental condition, and the percentage of dead
and living �-cells was calculated.

For cell cycle analysis and sorting of live G0/G1- and S/G2/M-phase �-cells,
see supplementary Methods.
Insulin content measurement. Insulin content of �-cells cultured in 96-well
plates, fluorescence-activated cell sorter (FACS)–sorted �-cells, or isolated
pancreas of transgenic mice was determined by radioimmunoassay (33).
�-cell mass analysis. �-cell mass was determined on the basis of relative
insulin-positive area, as measured in sections, and by pancreas weight (33).
4.7 � 0.1% of the total pancreas volume was analyzed for each mouse.
Insulin release measurement. Insulin release by AdE2F1- and AdNull-
transduced rat �-cells or by islets from transgenic mice (20 freshly isolated
islets per condition) was measured in static incubations. Insulin biosynthesis
was measured in adenovirus-transduced rat �-cells cultured in Ham F10
medium containing 10 mmol/l glucose. For more detail, see supplementary
Methods.
Statistics. All data were expressed as means � SEM. Student t test, ANOVA
(Bonferroni correction), or rank test (survival analysis) was used for compar-
ison of data. Differences were considered statistically significant when P 	
0.05.

RESULTS

Adenovirus-mediated expression of human E2F1 in
murine �-cells. Islets from mouse pancreas containing
�70% �-cells were dissociated, reaggregated to small cell
clusters, and cultured for 24 or 48 h after infection with

adenovirus AdE2F1 (multiplicity of infection [MOI] 20)
expressing human E2F1. E2F1 transcript was undetect-
able by quantitative RT-PCR (cycle threshold [Ct] 
 40,
n � 3) in AdNull-infected islet cells but clearly expressed
24 h after AdE2F1 infection (Ct 21.1 � 0.4, n � 3). E2F1
protein could be detected among immunoblotted proteins
extracted from AdE2F1-infected islet cells after 24 h of
culture (Fig. 1A). When cultured for 24 and 48 h, E2F1-
transduced islet cells showed a significant increase in the
abundance of endogenous transcripts encoding E2F1, cy-
clin E1, and caspase-7, all known E2F1 targets (Fig. 1B).

When single rat �-cells (purity �90%) were cultured in
poly-D-lysine–coated wells and infected with AdE2F1
(MOI 20), 38 � 3% of cells immunostained positive for
E2F1 protein compared with 1.3 � 0.5% in uninfected
cultures (Fig. 1C). These results showed that infection of
murine �-cells with adenovirus AdE2F1 increased the
expression of active E2F1 transcription factor.
Adenovirus-mediated expression of human E2F1 in-
duces proliferation and death of isolated rat �-cells.
The effects of active E2F1 on �-cell proliferation were
studied on isolated, single rat �-cells cultured in poly-D-
lysine–coated wells. AdE2F1 (MOI 0–20) dose-depen-
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FIG. 2. E2F1 expression induces �-cell proliferation and death. Proliferation and survival were assessed in cultures of single rat �-cells (>90%
purity) with overexpression of E2F1. �-cells were infected with AdE2F or AdNull and studied 48 h later by (immuno)fluorescent staining and
microscopy. Data are presented as means � SEM. A: BrdU incorporation (16 h labeling, 100 �mol/l) at the indicated viral MOI (n � 3) and
percentage of cell survival assessed by exclusion of propidium iodide (n � 4). B: Ki67 expression induced by adenoviruses at MOI 20 (n � 4,
***P < 0.001 vs. AdNull). C: FACS cell cycle analysis on fixed and propidium iodide–stained cells 24 or 48 h after infection with AdE2F (MOI 20).
D: Detection of the mitotic marker P-HH3 in INS-expressing �-cells. E: Confocal microscopy showing colocalization of P-HH3 and condensed DNA
in INS� �-cells in anaphase. (A high-quality digital color representation of this figure is available in the online issue.)
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dently increased the number of BrdU-incorporating cells
at 48 h after infection (Fig. 2A). Upon infection with
AdE2F1 (MOI 20), 20 � 2% of cells were BrdU� and 42 �
3% expressed the proliferation marker Ki67 (Fig. 2B). E2F1
was detected in 79 � 3% (mean � SEM, n � 9) of BrdU�

cells and 78 � 6% (n � 3) of the Ki67� cells (not shown),
indicating that increased E2F1 expression induced prolif-
eration of primary �-cells. Staining with propidium iodide
(labels nuclei of dead cells) revealed that E2F1 expression
also caused cell death (Fig. 2A) through induction of

apoptosis (not shown). Cell cycle analysis by FACS using
propidium iodide on cells that were fixed to label all nuclei
showed that infection with AdE2F1 (MOI 20) induced
S-phase in 20 � 4% (n � 3) and G2/M-phase in 3.5 � 0.9%
of the cells at 24 h after infection (Fig. 2C). At 48 h after
infection, S-phase cells still represented 20 � 3% (n � 3) of
all �-cells, and the fraction in G2/M-phase had increased to
9.5 � 1.5% (Fig. 2C). At this time point, phospho-histone
H3 (P-HH3)–positive mitotic �-cells were present (Fig.
2D). P-HH3 labeling colocalized with condensed chroma-
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FIG. 5. Conditional expression of E2F1 in mice stimulates �-cell proliferation and function. A: Transgenic mice. Tamoxifen injection of bigenic
RIPCreERT � E2F1 mice results in nuclear translocation of CreER leading to excision a loxP-flanked lacZ (serving as a stop sequence) and
expression of the human E2F1 gene specifically in �-cells. B: Bigenic RIPCreERT � E2F1 mice (double transgenic [DT]) and monogenic
littermates (single transgenic [ST]) received 4 � 4–mg injections (for 7 days). Two weeks later, the expression of human E2F1 and the
housekeeping gene cyclophilin A (cycloA) was assessed by quantitative (within 7 days) RT-PCR on RNA isolated from their pancreatic islets. Only
bigenic TAM-treated mice expressed the human E2F1 gene. C: �-cell proliferation assessed by Ki67 and insulin staining in the bigenic (DT) and
monogenic (ST) mice (n � 3). D: �-cell proliferation assessed by BrdU (intraperitoneal injection 16 and 2 h before killing) and insulin staining
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tin in �-cells, some of which were in anaphase (Fig. 2E),
indicating that the E2F-activated �-cells were cycling.
Expression of active Akt inhibits E2F1-induced
�-cell death and further increases proliferation. Pu-
rified rat �-cells were transduced with AdAkt to express
constitutively active Akt/protein kinase B (Fig. 3A). In
coinfection experiments with AdE2F1 and AdAkt, the
E2F1-induced �-cell death at 48 h was nearly completely
prevented (Fig. 3B). Infection with AdAkt alone did not
increase �-cell proliferation (Fig. 3B), but its coinfection
with AdE2F1 increased the E2F1-induced BrdU incorpo-
ration (Figs. 2A and 3B). The fraction of P-HH3� �-cells
also enlarged upon combined expression of E2F1 and Akt,
compared with E2F1 alone (Fig. 3C). Expression of active
E2F1 and Akt resulted in a net increase of �-cell numbers
in vitro. The total cell number increased by 38 and 46% at
48 h, and by 39 and 72% at 96 h after infection with AdE2F1
and AdE2F1�AdAkt, respectively (Fig. 3D). Thus, in con-
trast to expression of E2F1 alone, combined expression of
E2F1 and Akt continued to increase the absolute number
of �-cells in vitro for more than 48 h.
�-cell proliferation increases insulin content but is
incompatible with glucose-induced insulin release in
vitro. The effect of proliferation on insulin stores was
measured in isolated rat �-cells infected with AdE2F1 or
AdE2F1�AdAkt. At 48 h after infection, total insulin
content of E2F1- and E2F1�Akt-transduced cells was,
respectively, 44 and 79% higher than untreated cells,
whereas the insulin content per cell was similar in all
conditions (Fig. 4A and B). At 96 h, the total insulin
content of E2F1-transduced cells was equal to that of
untreated cells, and insulin per cell was even 30% lower. In
contrast, relative to untreated �-cells the total insulin
content of E2F1�Akt-transduced cells increased by 113%
and insulin content per cell increased by 26% (Fig. 4A and
B). Thus, ectopic expression of active E2F1 and Akt
increased �-cell numbers in vitro over extended periods of
time, while preserving the cellular insulin stores.

To examine whether �-cells that are engaged in DNA
synthesis also increase their insulin content, 150,000 cells/
well were labeled with a short BrdU pulse (1 h) at 24 h
after infection, detached, and incubated with Hoechst
33342 and propidium iodide. Live propidium iodide–nega-
tive cells were further sorted on the basis of Hoechst
33342 fluorescence reflecting DNA content (Fig. 4C) into
G0/G1-phase and S/G2/M-phase cell populations, the latter
representing 13 � 5% of AdE2F�AdAkt-transduced
�-cells. BrdU was incorporated in the nuclei of 52 � 4%
(n � 4) of the S/G2/M INS� sorted cells versus 12 � 2%
(n � 4) in sorted G0/G1 INS� cells (Fig. 4C). In addition, in
the S/G2/M population, 70 � 6% (n � 3) of INS� cells
stained positive for Ki67 (Fig. 4C). This indicated that
proliferating and nonproliferating �-cells could be sepa-
rated by FACS sorting.

At 24 h after transduction by E2F1 or E2F1�Akt, the
insulin content of sorted S/G2/M cells was increased by,

respectively, 23 and 44%, compared with sorted G0/G1 cells
from the same cultures (Fig. 4D). Thus, in proliferating
�-cells, the progression from G0/G1- to S/G2-phase is
associated with an increase of the cellular insulin content.
During the culture period between 20 and 24 h after
infection, E2F1�Akt-transduced and control cells synthe-
sized equal amounts of insulin (Fig. 4E), but the release of
newly formed insulin during this culture period was sig-
nificantly lower in the E2F1�Akt-transduced cells (Fig.
4E). This suggests that in vitro proliferating cells in
S-phase increased their insulin content by retaining newly
formed insulin, rather than through increasing synthesis.

Next, glucose-regulated insulin secretion by in vitro
proliferating �-cells was examined at 48 h after infection.
Glucose-induced insulin release was blocked in cells trans-
duced with either E2F1 or E2F1�Akt (Fig. 4F), indicating
that E2F1-induced proliferation in vitro does not support
regulated insulin release.
�-cell proliferation in mice with conditional expres-
sion of E2F1 is compatible with glucose-responsive
insulin release. Given the capacity of E2F1 to induce
�-cell proliferation in vitro, we investigated whether in
vivo expression of E2F1 in mature �-cells was sufficient to
induce their proliferation.

Rosa26-loxP-LacZ-loxP-E2F1 (R26E2F1) mice were
crossed with RIPCreERT mice to conditionally express
human E2F1 from the Rosa26 promoter upon excision of
�-galactosidase encoding sequence (24), when given ta-
moxifen (TAM) (8). At 8 weeks of age, double transgenic
RIPCreERT�/� � R26E2F1�/� mice and control single
transgenic R26E2F1�/� littermates (Fig. 5A) were injected
with TAM. This switched on human E2F1 in �-cells of
double transgenic mice and not in �-cells of single trans-
genic mice (Fig. 5B). Two weeks later, the expression level
of total (mouse � human) E2F1 in double transgenic islets
was 2.4-fold that of E2F1 in single transgenic islets (sup-
plementary Fig. 1); recombinant E2F1 protein was de-
tected in double transgenic islets (supplementary Fig. 2).
The percentage of �-cells labeled with BrdU or Ki67 was
increased in double transgenic compared with single
transgenic mice (Fig. 5C and D). �-cells of double trans-
genic mice showed a decreased level of caspase-3 activa-
tion (apoptosis) (Fig. 5E). The �-cell mass in double
transgenic mice was slightly decreased (�12%) compared
with single transgenic mice (Fig. 5F), however, their
pancreas insulin content was increased by �70% (Fig. 5G)
and their fasting blood glucose level was decreased (6 �
0.3 mmol/l vs. 7 � 0.4 mmol/l, n � 8, P � 0.01). In addition,
double transgenic mice displayed an improved glucose
tolerance in intraperitoneal glucose tolerance test (Fig.
5H) and secreted more insulin in response to glucose (Fig.
5I), although no significant difference in mean body weight
was observed between double transgenic and single trans-
genic groups (Fig. 5J). Furthermore, islets isolated from
double transgenic mice secreted more insulin than single
transgenic islets when exposed to 10 mmol/l glucose,

in the same groups of mice (n � 3). E: �-cell apoptosis evaluated by staining for active caspase-3 (Casp-3) and insulin (n � 3). F: Measurement
of total �-cell mass (mg) in pancreas of DT and ST mice (n � 3). G: Measurement of insulin content (nanogram of insulin per milligram of tissue)
in pancreas of DT and ST mice (n � 5). H: Intraperitoneal glucose tolerance test performed in 16-h fasted DT and ST mice by blood glucose
measurements at 0, 15, 30, 60, and 120 min after 2-mg/g glucose injection (n � 8). I: Insulin levels (pg/ml) measured by radioimmunoassay in
serum obtained from 200 �l tail vein blood just before (0�) and 15 min after (15�) intraperitoneal injection of glucose (n � 8). J: Body weight
measurements for the DT and ST mice (n � 8). K: Glucose-induced insulin release (% of content) by freshly isolated mouse islets from DT and
ST mice, during 2-h incubation at the indicated glucose concentrations (n � 4). In G10, insulin release from ST and DT islets differed significantly.
L: Kaplan-Meier analysis of survival of DT (n � 10) and ST (n � 17) mice after one injection of STZ (200 mg/kg) at day 0, and administration of
tamoxifen starting at day 2. The survival curves differ significantly (rank test, P < 0.05). M: Blood glucose concentration in random-fed
STZ�TAM-treated mice (n � 3–16) from (L). Data are presented as means � SEM. *P < 0.05,**P < 0.01. NS, not significant.
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whereas both groups secreted equal amounts of insulin at
2 or 20 mmol/l glucose (Fig. 5K). This suggests a leftward
shift of the glucose response curve in E2F1-expressing
islets. Together, these data show that �-cells from E2F1-
expressing mice have a greater propensity to proliferate
and to secrete insulin. This could yield a competitive
advantage under conditions of hyperglycemia. To test this,
double transgenic and single transgenic littermates were
subjected to a single streptozocin (STZ) dose of 200 mg/kg
to induce selective loss of �-cells, and 2 days later tamox-
ifen injections were given as before. Blood glucose of
these mice was monitored for 1 month. Kaplan-Meier
survival analysis showed that significantly more double
transgenic mice survived the STZ-induced diabetes (Fig.
5L). From day 10 onward, the random-fed blood glucose
levels in double transgenic mice remained significantly
lower than in the single transgenic littermates (Fig. 5M).

DISCUSSION

Adult �-cells are growth arrested in G0/1 and known to
express high levels of cyclin-dependent kinase (CDK)
inhibitors (p21, p27, and p57) as well as several members
of the pocket protein family including pRb, the principal
brakes of the G1- to S-phase transition (15,16). Manipula-
tions that activate (or feed into) the pRb pathway, such as
overexpression of large T antigen or CDK4/6 and/or cyclin
D1 and D2, and downregulation of CDK inhibitors have
been shown to stimulate �-cell proliferation (for review
see [15]). In agreement with these findings, our study
shows that ectopic expression of transcription factor
E2F1, a direct effector of the pRb pathway, increased
�-cell proliferation in vitro and in vivo. However, this
finding is not trivial. First, E2F1 function provokes nega-
tive feedback loops involving ARF/p53 and repressor E2Fs
(10), whereas increased E2F1/pRb dimer formation can
lead to active repression of E2F target genes (35), all of
which can contribute to G1 arrest. Our findings that several
transcriptional targets (36–39) of E2F1, such as E2F1,
cyclin E, and caspase-7, were activated in �-cells and that
transduced �-cells were labeled with BrdU and Ki67
suggest that overexpression of E2F1 resulted in increased
levels of transcriptionally active E2F1 and activation of
S-phase (35). Second, E2F1 overexpression in primary
fibroblasts does not lead to S-phase entry but instead
promotes senescence and apoptosis (40,41), a general
observation in nonimmortal cells (10). Overexpression of
E2F1 cannot enforce S-phase entry in in vitro cultures of
primary cardiomyocytes in the absence of serum. Con-
comitant with E2F activity, expression of an anti-apoptotic
factor (e.g., Bcl-2), or stimulation by the growth factor
IGF-1, is necessary to achieve DNA synthesis (21). In
contrast, our results show that adenoviral delivery of E2F1
ectopically stimulated traversal of S-phase within 24 h in
�-cells cultured in a minimal medium without growth
factors or a feeder layer (26). Moreover, the E2F1-trans-
duced �-cells progressively populated the G2/M-phase
between 24 and 48 h after transduction of the cells, and a
nonnegligible fraction of those cells underwent mitosis as
shown by confocal microscopy of �-cells with phosphor-
ylated histone H3, a marker for initial stages of chromatin
condensation in late G2 interphase until anaphase. This
illustrates that overexpression of the cell cycle effector
E2F1 can overcome inhibition of proliferation of primary
�-cells. It is possible that autocrine stimulation by insulin

helps to render cultured �-cells permissive to proliferation
by ectopic E2F1 (42).

Our in vitro data suggest that the majority of �-cells that
ectopically express E2F1 undergo proliferation and ulti-
mately may undergo cell death. In view of the increased
transcription of the effector caspase-7 gene in the cultured
cells, part of the �-cell death may occur through p53-
independent apoptosis (10). Growth factor signaling via
Akt/protein kinase B has potent antiapoptotic effects in
�-cells (for review see [23,43]). Furthermore, E2F1-medi-
ated proapoptotic functions can be suppressed specifically
by the PI3K/Akt pathway (44). Indeed, adenoviral coex-
pression of constitutively active (myristoylated) Akt re-
duced the E2F1-induced �-cell death to near control
levels, and in addition increased E2F1-induced �-cell pro-
liferation. Under these conditions, the �-cell number and
insulin content were clearly increased compared with
untreated cultures. The increased insulin stores in prolif-
erating cells in S-phase appeared to result from reduced
insulin release rather than increased synthesis; the insulin
release from proliferating �-cells was found to be unre-
sponsive to glucose.

The phenotypes of E2F1�/� mice, and of transgenic
mice overexpressing E2F1 either in the testes or in whole
body, suggested that in vivo functions of E2F1 result in
suppressing proliferation and/or promoting apoptosis
(24,45,46). c-Myc, like E2F1, is a potent inducer of apopto-
sis in vitro (47). Transgenic mice activating c-Myc in
mature �-cells exhibit increased �-cell proliferation ac-
companied by overwhelming �-cell apoptosis, which rap-
idly leads to diabetes (48,49). These observations do not
apply to a �-cell–specific conditional expression of E2F1,
which increased their proliferation activity twofold while
decreasing rather than increasing their death by apoptosis.
Induced double transgenic mice did not develop hypergly-
cemia during a period of 3 months (results not shown),
also suggesting absence of long-term �-cell destruction or
dysfunction. The effects on the percentage of BrdU-posi-
tive and active caspase-positive cells were however not
associated with an increased �-cell mass; on the other
hand, the double transgenic mice exhibited a 70% higher
insulin content, which appeared responsible for a signifi-
cantly higher insulin release after an intraperitoneal glu-
cose bolus. This in vivo responsiveness is compatible with
the leftward shift of the glucose dose-response curve in
isolated transgenic islets. Recent findings in E2F knockout
mice have also suggested that E2F is crucial for normal
glucose tolerance and �-cell insulin secretion (50). Be-
cause the E2F-induced increase in pancreatic insulin re-
serve was not associated with an increased number of
�-cells, it can be attributed to an increased hormone
content per cell. Direct proof for the latter requires direct
measurements at the cellular level. Our data nevertheless
strongly suggest that E2F can increase the insulin content
in normal �-cells, and, more importantly, that this results
in a more potent glucose-induced insulin release in vivo
with a more rapid normalization of hyperglycemia.

Our in vivo data suggest that E2F1-driven cell cycle
activity per se is not disruptive for insulin secretion.
Whereas the mRNA expression level of recombinant hu-
man E2F1 was similar to that of endogenous E2F1 in the
islets of transgenic mice used in this study (supplementary
Fig. 1), the expression level of recombinant human E2F1
in AdE2F1-infected cells was 
1,000-fold the endogenous
murine E2F1 expression of uninfected cells (���Ct �
11.9 � 1.1, n � 3, normalized to cyclophilin A). The in vitro
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death and impaired insulin release seen with AdE2F1
infection may be caused by nonphysiological E2F1 expres-
sion levels highly inducing genes that interfere with �-cell
survival (casp-7, this study) and function (Kir6.2 [50]),
and are not necessarily caused by the high rate of �-cell
proliferation. The importance of E2F1 for �-cell function
as opposed to being secondary to nonphysiological over-
expression is hard to determine. On the other hand, our
data, both the in vitro and in vivo, support the notion that
E2F1 increases cell cycle activity of �-cells.

In summary, previous loss-of-function studies in E2F�/�

mice (14,18,50) pointed out an important role for E2F1 in
controlling postnatal �-cell proliferation and function. We
now report a gain-of-function study and demonstrate that
ectopic expression of E2F1 in adult �-cells can increase
their proliferation activity in vitro as well as in vivo.
Moreover, in vivo E2F1 expression was found to signifi-
cantly increase the insulin content of adult �-cells that was
associated with a more potent glucose-induced insulin
release and subsequent correction of hyperglycemia. We
propose E2F1 as a novel therapeutic target of �-cell
function as it is capable of increasing physiologically
regulated insulin release through elevating the hormone
content of �-cells. Obviously, targeting this cell-cycle
factor to increase �-cell growth/function would need to be
very much controlled, to prevent oncogenesis.
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