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Abstract

Motivation: Alternative splicing contributes to the diversity of RNA found in biological samples. Current tools inves-
tigating patterns of alternative splicing check for coordinated changes in the expression or relative ratio of RNA iso-
forms where specific isoforms are up- or down-regulated in a condition. However, the molecular process of splicing
is stochastic and changes in RNA isoform diversity for a gene might arise between samples or conditions. A specific
condition can be dominated by a single isoform, while multiple isoforms with similar expression levels can be pre-
sent in a different condition. These changes might be the result of mutations, drug treatments or differences in the
cellular or tissue environment. Here, we present a tool for the characterization and analysis of RNA isoform diversity
using isoform level expression measurements.

Results: We developed an R package called SplicingFactory, to calculate various RNA isoform diversity metrics, and
compare them across conditions. Using the package, we tested the effect of RNA-seq quantification tools, quantifica-
tion uncertainty, gene expression levels and isoform numbers on the isoform diversity calculation. We analyzed a
set of CD34þ hematopoietic stem cells and myelodysplastic syndrome samples and found a set of genes whose iso-
form diversity change is associated with SF3B1 mutations.

Availability and implementation: The SplicingFactory package is freely available under the GPL-3.0 license from
Bioconductor for the Windows, MacOS and Linux operating systems (https://www.bioconductor.org/packages/re
lease/bioc/html/SplicingFactory.html).

Contact: sebestyen.endre@med.semmelweis-univ.hu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The mechanism of alternative splicing is well-known and described
in most eukaryotic organisms (Lee and Rio, 2015). Alternative splic-
ing expands the RNA repertoire of most genes, leading to changes in
mRNA coding sequence or untranslated regions. These changes
might affect mRNA stability, localization or translation (Baralle and
Giudice, 2017). Missplicing contributes to disease (Scotti and
Swanson, 2016) and mutated splicing factors might act as oncopro-
teins or tumor suppressors (Dvinge et al., 2016).

RNA-sequencing experiments regularly investigate consistent alter-
native splicing or mRNA isoform changes between conditions (Van
den Berge et al., 2019). Most tools look for changes, where the ratio
of mRNA isoforms or the presence of a specific alternative splicing
event is coordinately increased or decreased. However, experimental
evidence started to accumulate on the biological significance of gene
expression variance (Eling et al., 2019) and more interestingly, splicing

variance (Wan and Larson, 2018). Splicing variance plays a role in
neurogenesis (Hattori et al., 2009) or innate immunity (Dong et al.,
2012). Frequent splicing factor mutations in cancer (Seiler et al., 2018)
might act as amplifiers of splicing variance (Wan and Larson, 2018)
instead of leading to coordinated splicing changes. In turn, this
increased variance might lead to large fluctuations in gene regulatory
networks (GRNs), with an impact on cell fate, pathogenicity or disease
penetrance. The impact of gene expression level variance on GRNs is
already being investigated (Chalancon et al., 2012; Schuh et al., 2020),
but similar studies do not exist for splicing regulatory networks.

A number of methods are already developed to detect changes in
expression variance (Eling et al., 2019), but changes in splicing vari-
ance are not investigated regularly and only a few tools exist. One of
the first papers in this area used Shannon-entropy to characterize
splicing variance, investigating cDNA and cDNA tag libraries in 27
cancer types (Ritchie et al., 2008). In half of the cancers studied,
they described a significant entropy gain compared to normal tissue.
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The RNentropy tool calculates Shannon-entropy for genes across
samples to detect differential expression between any number of
conditions (Zambelli et al., 2018). Whippet uses Shannon-entropy
to detect and quantify complex alternative splicing events (Sterne-
Weiler et al., 2018) and the authors describe that complex, high-
entropy splicing events are conserved, tissue-regulated and more
prevalent in various cancer types. SpliceHetero aims to characterize
spliceomic intratumor heterogeneity (sITH) from bulk tumor RNA-
sequencing (Kim et al., 2019). The authors used the Jensen–Shannon
Divergence to characterize splice site usage differences between sam-
ples and found that increased sITH was correlated with cancer pro-
gression and worse survival. The Splice Expression Variation
Analysis (SEVA) tool aims to model increased heterogeneity of splic-
ing variants in cancer, using a rank-based multivariate statistics,
comparing splice junction expression profiles between conditions
(Afsari et al., 2018). Finally, the sQTLseekeR R package analyzes
associations between genotype information and transcript relative
expression. Even though the main goal of sQTLseekeR is to detect
splicing quantitative trait loci (sQTLs), it can also detect splicing
variance QTLs (svQTLs) (Monlong et al., 2014), where changes in
splicing isoform diversity are associated to a genotype.

We developed the SplicingFactory R package, to facilitate the ana-
lysis of splicing isoform diversity in RNA-sequencing experiments,
and investigate changes in diversity between experimental conditions
with a tool that integrates into the Bioconductor package ecosystem.
Our tool implements a wide range of diversity metrics, uses standar-
dized input and output data structures and is able to process full tran-
scriptome level expression measurements across multiple samples in a
matter of minutes. Additionally, it provides individual diversity values
for each gene in each sample. In contrast, the above-mentioned tools
generally provide summary statistics at the sample level or between
conditions. Finally, it is still largely unknown, which diversity metric
might be the optimal choice for characterizing splicing variance, and
we hope our tool will facilitate further research into this area.

2 Materials and methods

2.1 Myelodysplastic syndrome dataset processing
RNA-seq datasets from two papers (Im et al., 2018; Pellagatti et al.,
2018) were uniformly reprocessed. We downloaded the data from
SRA (SRP133442, SRP149374) using SRA-tools (version 2.9.6). For
sample ids and sample status see Supplementary Table S1. We
checked sample quality using FastQC (version 0.11.9) and MultiQC
(version 1.9). In the case of the SRP149374 data, we merged the
downloaded fastq files into a single file, dropping an outlier run
from each sample with different read length from the rest. We
aligned RNA-seq reads to the GRCh38 reference genome without
alternative contigs, using STAR (version 2.7.2b) in 2-pass mapping
mode. We quantified transcript-level expression using Kallisto (ver-
sion 0.46.2) and Salmon (version 1.2.1) and the full GENCODE
v34 transcriptome annotation. Kallisto was run with 100 boot-
straps, the -bias parameter, and the output format was set to plain
text. We generated the Kallisto index based on the full GENCODE
v34 transcript fasta file. Salmon was run both in alignment-based
using the STAR alignments and mapping-based mode (referred to as
Salmon-SAF in the text) using a decoy-aware transcriptome index. We
generated the Salmon transcriptome index using the GENCODE v34
transcript fasta file, combined with the full GRCh38 reference genome
without alternative contigs as the decoy sequence. In both cases, we
run the tool with 100 bootstraps, the unstranded paired-end library
option and the additional -seqBias and -gcBias parameters. The muta-
tion status of samples was defined based on the original papers’
Supplementary Material. We calculated the various diversity metrics
across samples and genes using the Kallisto, Salmon or Salmon-SAF
Transcript Per Million (TPM) expression estimates.

2.2 Comparison of Kallisto, Salmon and Salmon-SAF

results
In order to compare the consistency of the diversity metrics calcu-
lated from the three different sources (Kallisto, Salmon, Salmon-

SAF) we selected the 17 control samples from the SRP133442 data-
set and calculated the normalized naive-entropy and Gini-index for
all genes. For the three pairwise comparison (Kallisto–Salmon,
Kallisto–Salmon-SAF, Salmon–Salmon-SAF) and each sample we
selected all genes with non-NA diversity values and calculated their
Spearman correlation.

2.3 Analyzing uncertainty of estimated isoform

abundances
To analyze the effect of expression estimation uncertainty on diver-
sity metrics, we processed the Kallisto, Salmon and Salmon-SAF
bootstrap data of the 17 control samples from the SRP133442 data-
set. In the case of Salmon and Salmon-SAF, we first converted the
binary bootstrap data to text format using the script
ConvertBootstrapsToTSV.py from the GitHub page of Salmon
(https://github.com/COMBINE-lab/salmon), and converted the esti-
mated read counts to TPM values. Using the bootstrap data, we cal-
culated all available diversity metrics for all genes from all samples
and bootstraps. Finally, we selected the (Hay et al., 2018) CD34þ
hematopoietic stem marker genes and checked the consistency of the
bootstrapped expression values and the calculated diversity metrics
of these genes in one specific good quality control sample
(SRR6781226).

2.4 Filtering low abundance transcripts
To analyze the effect of filtering low abundance transcripts on the
calculated diversity metrics, we used the 17 control samples from
the SRP133442 dataset. First, we filtered the Kallisto, Salmon and
Salmon-SAF transcript-level expression data using the following cri-
teria. For each filtering step, we kept only those transcripts that had
a relative TPM abundance level compared to their gene’s total ex-
pression over a predefined threshold across all 17 samples. The
applied relative abundance thresholds were 1, 2, 5, 7, 10, 15 and 20
percentages. This way, we created 3�7 abundance tables with dif-
ferent transcript compositions. We then calculated all seven diversity
metrics available in the package. Finally, we calculated the mean
Spearman correlation of the diversity values of the filtered and non-
filtered data of the 17 samples and calculated 95% confidence inter-
vals, using R (version 4.0.2) and the bootstrap package (version 1.3-
25) using 500 bootstrap replicates.

2.5 Performance benchmarks
The performance benchmark was done using a single core on a ser-
ver with IntelV

R

XeonVR Gold 4118 2.30 GHz CPU type, a total of
157 GB memory and Ubuntu 18.04.5 LTS operating system. We
used the Salmon-based quantification for the benchmarks and tested
both the diversity and difference calculation steps using the samples
from the two MDS datasets. We calculated elapsed time in seconds
and maximum memory used in megabytes for the diversity calcula-
tion step as follows. Using a fixed number of 60 669 starting genes,
we increased the sample number from 10 to 130 using steps of 10,
20, 40, 60, 80, 100 and 130 for the same calculations. To test the
difference calculation step, we used the same increasing sample
numbers as in the diversity calculation performance benchmarks
and tracked resource usage with the same bash shell command.

2.6 Comparison to other tools
We used SpliceHetero (version 1.0), SEVA (available in the GSReg
R library version 1.24.0) and Whippet (version 1.6.1) for compari-
son, analyzing the Salmon-based quantification results of the 17
control and 17 MDS samples from the SRP133442 dataset.

We ran SpliceHetero with parameters -slb True and -prn 17. To
prepare the input data, we first filtered the STAR splice junction
files, keeping only those splice junctions that appear in the STAR
index sjdbList.fromGTF.out.tab file and had at least one uniquely
mapping read. Then, we converted the filtered STAR junction files
to BED6 format, and sorted the output file. Finally, we ran
SpliceHetero on these sorted BED files and we annotated the output
splice junction level entropy values with the GENCODE v34
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transcriptome annotation. Finally, we averaged these entropy values
across genes and used these values for further comparison.

We ran SEVA in RStudio Server (R version 4.0.2) using the
GSReg SEVA function from the GSReg library with the parameter
single.strand.genes.only set to FALSE and used the Bioconductor an-
notation database TxDb.Hsapiens.UCSC.hg38.knownGene (version
3.10.0) for gene annotation. To prepare the input data, we first per-
formed RPM (Reads Per Million) normalization on the STAR splice
junction files considering uniquely mapping reads only. We used the
SEVA gene-level E1 and E2 variance estimates for further
comparison.

We ran Whippet with default parameters. To prepare the input
data, we converted the raw fastq files to have only a single ‘þ’ char-
acter on every third line. Then, using Whippet’s whippet-index.jl
script, we created an index file based on the GENCODE v34 tran-
scriptome annotation gtf file, and ran Whippet’s quantification algo-
rithm with the whippet-quant.jl script on the modified fastq files
with the additional -biascorrect parameter. Finally, we compared
the MDS and control samples using Whippet’s whippet-delta.jl
script. Finally, we averaged Whippet’s splicing event level entropy
estimates across genes and used these values for further comparison.

2.7 SF3B1 differential diversity and enrichment analysis
To demonstrate diversity changes between sample groups, we ana-
lyzed the SRP149374 dataset. We compared the MDS samples with-
out any known mutation to MDS samples with known SF3B1
somatic mutations based on the original paper describing the dataset
(Pellagatti et al., 2018). We calculated the normalized naive-
entropy, normalized Laplace-entropy and Gini-index using the
Salmon-based quantification, then compared the SF3B1 mutated
and SF3B1 wild-type samples using Wilcoxon-test and performed P-
value adjustment with the Benjamini–Hochberg method.

We also performed enrichment analysis using the significant
genes (jmean differencej>0.1 and adjusted P-value <0.05) separate-
ly with either a mean diversity increase or decrease between the
SF3B1 mutant and SF3B1 wild-type groups. We used the bone mar-
row marker gene sets originating from (Hay et al., 2018) and down-
loaded from MSigDB (Liberzon et al., 2015). We performed a
Fisher’s exact test using R (version 4.0.2) with the alternative¼
‘greater’ option. Moreover, we performed P-value adjustment with
the Benjamini–Hochberg method.

3 Implementation

The splicing isoform diversity analysis works as a two-step process:
(i) the package calculates a diversity value for each gene in each sam-
ple, using splicing isoform expression values and (ii) calculates dif-
ferential diversity results between conditions. Diversity values from
(i) can be used independently from step (ii) for custom downstream
analyses or visualizations.

3.1 Input data structure
The package can process R matrices and data frames with expres-
sion values, assay data from the SummarizedExperiment
Bioconductor object, data from the DGEList object of edgeR
(Robinson et al., 2010), or the output of tximport (Soneson et al.,
2016). The package requires that samples are specified as columns
and transcript-level expression values are specified as rows.
Additionally, it needs a vector of genes used to aggregate and ana-
lyze the splicing isoform level data, and a vector of sample categories
used to calculate differential diversity. All of the data structures
might contain RNA-sequencing read counts, RPKM, FPKM or TPM
values.

While the package can process any kind of numeric value, used
to measure expression levels, we recommend TPM or a similar
length normalized value. Read count values not normalized for tran-
script isoform length, and diversity values based on them might be
misleading. For example, a gene with three transcript isoforms, and
lengths of 100, 100 and 1000, and read counts of 20, 20 and 200
for each of them is detected in an experiment. Simply using the read

counts to calculate proportions will lead to the values of 0.083,
0.083 and 0.83, and to the conclusion that we have a single domin-
ant isoform based on the diversity value. However, the third isoform
is 10 times longer than the other two, leading to a larger number of
reads originating from it just by chance. Normalizing for isoform
length will lead to the same 0.33 proportion for all isoforms, there-
fore no dominant isoform and a very different diversity value.

3.2 Diversity calculation
As a first step, the package calculates diversity values using the cal-
culate_diversity() function for each gene and each sample. Multiple
diversity measures are implemented, including the Shannon-entropy,
Laplace-entropy, Gini-index, Simpson-index and the inverse
Simpson-index.

Shannon-entropy is a classic measure of uncertainty in informa-
tion theory, in our case, ranging from 0 to log2(isoform number) for
a gene. As the maximum value of Shannon-entropy depends on the
number of splicing isoforms for a gene, we implemented a normal-
ized Shannon-entropy, that ranges between 0 and 1. This makes it
possible to compare entropy values of genes with different number
of isoforms. A 0 Shannon-entropy means a single splicing isoform is
expressed from a gene, while 1 means all isoforms are evenly
expressed, with no dominant isoform. The package can also calcu-
late Laplace-entropy, a Bayesian estimate of the Shannon-entropy,
where a pseudocount of 1 is added to the isoform categories for
each sample.

The Gini-index is originally intended to represent income in-
equality in economics. It ranges between 0 and 1, where 0 means
complete equality, i.e. all isoforms have the same expression, while
1 means complete inequality, with only a single isoform being
expressed. The Simpson-index is a measure of diversity originally
used in ecology to quantify species diversity. A 0 Simpson-index
means low diversity, i.e. one dominant isoform, while 1 means high
diversity, where all isoforms have the same expression. Similar to
the nonnormalized Shannon- and Laplace-entropy, the maximal
value of the Simpson-index depends on the isoform number. The in-
verse Simpson-index starts at value 1, and higher values mean
greater isoform diversity, the maximal value also depending on iso-
form number.

The calculate_diversity() function returns a
SummarizedExperiment object, that contains the gene-level splicing
diversity values, together with gene names, sample ids and metadata
information, including the method used, and if normalization was
applied. The function removes genes with a single isoform and adds
an NA value for genes where the expression of all isoforms is 0 in a
specific sample, and a meaningful diversity value is impossible to
calculate.

3.3 Differential diversity calculation
Users can calculate splicing diversity changes between two condi-
tions using the calculate_difference() function. Accepted input for-
mats are R data frames or a SummarizedExperiment object. In the
case of a data frame, gene names must be present in the first column,
and splicing diversity values in all additional columns. Differences
and log2 fold changes in diversity can be calculated using the mean
or median values across conditions. The function returns the mean
or median for both conditions, the difference of means or medians,
and their log2 fold change.

Caution must be taken when choosing and interpreting a differ-
ence metric for a specific diversity type. The normalized Shannon-
entropy, the normalized Laplace-entropy and the Simpson-index are
all bounded in [0, 1] and as transcriptomic diversity increases their
value also increases. In contrast, while the Gini-index is also
bounded in [0, 1], its value decreases as the transcriptomic diversity
increases. Finally, the inverse Simpson-index and the nonnormalized
Shannon and Laplace-entropy are not bounded in [0, 1]. The inverse
Simpson-index starts at 1, while the nonnormalized entropies start
at 0, and their maximal value depends on the isoform number.
Therefore, we recommend using the mean or median difference for
values bounded in [0, 1] not to over-emphasize relatively small
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changes magnified by the log2 scale ratio. However, in the case of
values not bounded in [0, 1] we suggest using the log2 fold change.

Statistical significance of the changes can be assessed using a
Wilcoxon-test or sample label shuffling and the function returns the
P-values, together with the false discovery rate (FDR) corrected
ones. It automatically excludes genes from the significance analysis,
where some of the sample diversity values are missing and the total
number of samples is insufficient for significance calculation.

4 Results

4.1 Association of diversity metrics with gene

expression and isoform number
Using the reprocessed RNA-seq datasets, we investigated the effect
of gene expression and isoform number on the various diversity met-
rics. Figure 1 shows all seven implemented diversity metrics. As
expected, the Gini-index shows an opposing pattern compared to all
others. The nonnormalized naive- and Laplace-entropy, besides the
Simpson-index and the inverse Simpson-index shows a clear associ-
ation with isoform number, as the maximum value of the metric is
determined by the number of isoforms. This association is not seen
for the other three metrics. The horizontal patterns present on the
nonnormalized Laplace-entropy panel are the result of the þ1 pseu-
docount of Laplace-entropy, that exaggerates the maximum values
for different isoform numbers. Finally, the strongly biased pattern
for the normalized Laplace-entropy is again the result of the þ1
pseudocount, as all genes with only zero or very low isoform expres-
sion levels are given an expression of �1, leading to the maximum
possible entropy of 1.

4.2 Influence of different quantification tools on

diversity metrics
Using the same datasets, we assessed the effect of different transcript
quantification tools on diversity metrics. We calculated the naive normal-
ized entropy and the Gini-index for all genes across all samples and calcu-
lated the Spearman-correlation of these values between methods for all
samples. Figure 2A shows the distribution of the correlations. The
Salmon-SAF–Kallisto comparison shows the highest correlation, while
Salmon in alignment-based mode, using the STAR alignment output leads
to significantly different diversity metrics as can be seen on the Salmon–
Kallisto comparisons. As Salmon in alignment-based mode uses

information from reads aligned to the full genome, it is not surprising that
results are different from the other two methods, not using read alignment
information. Based on these results, transcript-level expression quantifica-
tion tools might have a significant effect on diversity calculations.

4.3 Effect of estimated isoform abundance uncertainty
To further investigate how quantification tools, and transcript ex-
pression levels influence diversity calculation, we selected a set of
CD34þ hematopoietic stem cell marker genes from the (Hay et al.,
2018) dataset and a single sample for analysis (see Section 2). After
calculating 100 bootstrap expression estimates for all three tools, we
calculated the naive normalized entropy for each bootstrap, and cal-
culated their median absolute deviation (MAD). Additionally, we
calculated the MAD for the gene-level TPM expression values. We
show the results in Figure 2B. Additionally, we also calculated the
Spearman-correlation between the diversity MAD and the expres-
sion MAD for all three tools across all genes. As can be seen, a
higher expression MAD leads to higher diversity MAD values. As di-
versity values are based on the transcript-level expression estimates,

Fig. 1. Correlation of various diversity metrics with gene expression and isoform

number. Each dot represents a gene with at least two isoforms and at least one pro-

tein coding isoform. The x axis shows the log10(mean TPM) expression across the

17 control samples from the SRP133442 dataset, while the y axis shows a given

mean diversity metric across the same samples. The color of the dots shows the

log2(isoform number) for the gene. Gene with >20 isoforms were assigned the value

20. The purple line shows the smoothed conditional mean of the data using a gener-

alized additive model. Naive—nonnormalized naive-entropy, Laplace—nonnormal-

ized Laplace-entropy, Gini—Gini-index, Simpson—Simpson-index, Inv. Simpson—

inverse Simpson-index, Naive norm—normalized naive-entropy, Laplace norm: nor-

malized Laplace-entropy

Fig. 2. Various factors influencing diversity metrics. (A) Consistency of diversity

metrics using the Kallisto, Salmon and Salmon-SAF transcript quantification meth-

ods. Each boxplot shows the Spearman correlation values for a specific pairwise

comparison in the 17 control samples from the SRP133442 dataset, showing two

different diversity metrics. K—Kallisto, S—Salmon, SS—Salmon-SAF. (B) Influence

of expression estimation uncertainty on diversity calculation. The x axis shows the

expression MAD, while the y axis shows the naive normalized entropy MAD of

selected marker genes in a single sample. Dot color shows the original nonbootstrap

expression estimates for the gene. The corr. value on the panels is the Spearman-cor-

relation of the expression MAD and the diversity MAD. (C) Influence of filtering

low-expression transcripts before diversity calculation. The x axis shows the % cri-

teria used for filtering transcripts (see Section 2), while the y axis shows the

Spearman correlation of the diversity metrics using filtered results and the original

unfiltered results. Vertical lines at the dots show bootstrap replicate confidence

interval
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uncertainty in transcript expression estimation leads to uncertainty
in diversity calculation. However, genes with a higher overall ex-
pression level, based on the nonbootstrap value, tend to have lower
MAD both for expression and diversity.

4.4 Effect of filtering low-expression isoforms
Finally, we investigated the effect of removing an increasing number
of transcripts with low expression from our analysis. Figure 2C
shows the results, where the nonnormalized Laplace-entropy was
affected the most, regardless of the quantification method used. In
other cases, removing low-expression transcripts from the analysis
changed the diversity values somewhat, and the correlation with the
original dataset decreased, but they were still in the range of 0.75–
0.99 in all cases. Therefore, it might be useful to remove transcripts
with very low or zero expression at the start of the analysis, and this
would not compromise results significantly. This is especially im-
portant for genes with a large number of transcripts, and low ex-
pression, where the number of reads from the sequencing
experiment is insufficient to give a confident expression and there-
fore confident diversity value.

4.5 Performance benchmarks
Using the Salmon expression estimates from the reprocessed data-
sets, we carried out a benchmark, investigating the total runtime
and memory consumption of SplicingFactory using a single CPU
core. Figure 3A shows the maximum memory usage of the package,
when calculating a specific diversity metric or also calculating differ-
ential diversity between conditions. As we increased the sample
number, memory usage also increased linearly, with a maximum of
2500 megabytes for 130 samples. However, even the maximum
memory usage is well within the range of a regular desktop com-
puter and the package is not limited by memory limitations.

We also tested the total running time for the same setup, and
results are shown in Figure 3B. Calculating the Gini-index takes the
most time, when considering only the diversity calculation step, but
even this calculation takes only 3 min. The additional differential di-
versity calculation peaks at almost an hour for 130 samples using
some of the diversity metrics. Even with an increased running time
during differential diversity calculation, our tool is able to process
the expression estimates of a full transcriptome annotation across
more than 100 samples. This requires only a limited amount of
resources and approximately an hour using a single core, making it
feasible to run the analysis on any up-to-date desktop PC or laptop.

4.6 Comparison to other tools
In addition to the performance benchmark, we compared the results
of our tool to three additional tools characterizing splicing diversity.
Using the Salmon expression estimates for the 17 control or 17
MDS samples from the SRP133442 dataset, we focused on compar-
ing the actual gene and sample level diversity metrics of
SpliceHetero, SEVA and Whippet, if available to our tool.

We used the gene-level averaged entropy estimates of
SpliceHetero of the MDS samples and calculated their correlation
with our diversity metrics for the same samples. Results are shown in
Figure 3C. Both the normalized naive-entropy and the Gini-index
show very low correlation, between �0.1 and 0.1. Correlation of the
normalized Laplace-entropy is much higher, between 0.3 and 0.5.
Unfortunately, SpliceHetero does not provide entropy values for sam-
ples defined as a control set. Control samples are only used as a base-
line, against with another set of samples are compared, to see if
entropy changed. Additionally, there is no significance testing of
results, only the change in entropy values is provided. In the case of
SEVA, we compared the E1 and E2 variance metrics calculated for
the control and MDS samples, respectively. As shown in Figure 3D,
correlations for all three diversity metrics range between �0.2 and
0.2, with control sample values being slightly higher. Based on these
results, values calculated by SEVA and our package seem to be signifi-
cantly different, without much overlap or correlation at the gene
level. Finally, we compared Whippet’s splicing event level entropy
values averaged across genes to our diversity metrics. Similar to the
previous comparisons, correlations range between �0.2 and 0.3 for
all three diversity metrics, as shown in Figure 3E.

4.7 Association of splicing factor mutations with

changing diversity
Finally, using the Salmon expression estimate based results, we
investigated differences in diversity between splicing factor mutated
and nonmutated MDS samples. We compared the SF3B1 mutated
and wild-type samples from the SRP149374 dataset and results are
shown in Figure 4A. Using the normalized naive-entropy, normal-
ized Laplace-entropy and Gini-index metrics, we found 97, 154 and
27 genes with significant changes, respectively. Based on the normal-
ized naive-entropy we detected 94 genes where diversity increased,
and 60 where diversity decreased. In the case of normalized Laplace-
entropy and Gini-index, we detected 28þ69 and 15þ12 genes, re-
spectively. Overall, we found 242 unique genes across the three
comparisons. Six genes were detected by all three metrics, 24 by two
of them, and 212 by a single one. The full list of genes can be found
in Supplementary Table S2.

The six genes detected by all three methods as significantly
changing were ABCC5, ACOT13, DCAF16, MPC2, MRPS21 and
TMEM14C. ABCC5 is described as differentially spliced in SF3B1
mutated breast cancer (Maguire et al., 2015), and MRPS21 is
described as a gene, whose upregulation is associated with poor re-
sponse to azacytidine in MDS and related cancers (Belickova et al.,
2016). We did not find a clear association to SF3B1 mutations, can-
cer or hematopoiesis for the other four genes.

4.8 Enrichment analysis of differential diversity genes
Finally, we chose the full list of differential diversity genes detected
by the normalized naive-entropy metric, to investigate them further.

Fig. 3. Performance benchmarks and comparison of SplicingFactory to other tools.

(A) Memory usage of SplicingFactory with increasing sample number for all diver-

sity metrics while calculating the diversity values or also calculating differential di-

versity between sample groups. The x axis shows the increasing number of samples

used, while the y axis shows the maximum amount of memory used. (B) Total

elapsed time for calculating the diversity values or also calculating differential diver-

sity between sample groups for all diversity metrics. The x axis shows the increasing

number of samples used, while the y axis shows the total elapsed time for the calcu-

lation. (C) Spearman correlation of SpliceHetero entropy values with three different

diversity metrics and Salmon expression estimates for the 17 MDS samples from the

SRP133442 dataset. (D) Spearman-correlation of average modified variance values

(E1 and E2) as calculated by the GSReg.SEVA function and average diversity values

for three different diversity metrics for the 17 control and MDS samples from the

SRP133442 dataset. (E) Spearman correlation of Whippet entropy and average di-

versity values for three different diversity metrics for the 17 control and MDS sam-

ples from the SRP133442 dataset
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We separated the 97 genes into two lists, with increased or
decreased diversity in the SF3B1 mutated samples compared to
wild-type, and checked their overlap with the (Hay et al., 2018)
marker gene sets. Results are plotted in Figure 4B. We found several
marker gene sets that were enriched in our results, with the largest
enrichment in the erythroblast set. These results are consistent with
the literature, as SF3B1 mutations are known to be associated with
impaired erythropoiesis (Conte et al., 2015; Obeng et al., 2016).
Moreover, genes with a changing diversity of splicing isoforms
might be the result of changing splicing regulation upon SF3B1
mutations. Mutations in the yeast ortholog of SF3B1 is known to
alter the fidelity of branch site selection (Carrocci et al., 2017).
Therefore, mutated SF3B1 in human cells might change the splicing
regulation of specific genes, leading to changes in the otherwise
coordinated expression of specific splicing isoforms.

5 Discussion

In this study, we have developed a package called SplicingFactory
that enables the analysis of splicing isoform diversity in biological
samples and between different conditions. Our tool has several ben-
efits. It integrates into the Bioconductor R package ecosystem, and
uses standard data input and output structures, facilitating analysis
and integration into bioinformatics pipelines. SplicingFactory is able
to process expression quantification results from a full transcrip-
tome annotation and a large number of samples using limited hard-
ware resources and completes in a reasonable amount of time. The
tool can process any kind of expression value, although values not
normalized for transcript length are not recommended. It imple-
ments seven different diversity metrics, and methods to test differen-
ces between sample groups. As our tool provides gene and sample
diversity values, it can be the basis of independent downstream anal-
yses, not anticipated by us.

We demonstrate the usefulness of our tool by analyzing a set of
CD34þ control and MDS RNA-seq samples. Most MDS patients
have at least one oncogenic mutation, with splicing factor mutations
occurring in >50% of patients (Papaemmanuil et al., 2013), includ-
ing SF3B1, SRSF2, U2AF1 and ZRSR2. These splicing factor muta-
tions might lead to the aberrant post-transcriptional regulation of
downstream genes and the generation of oncogenic transcript iso-
form variants. As splicing factors are mutated early in MDS and
they can be already found in normal peripheral blood, or in clonal
hematopoiesis of indeterminate potential (CHIP) (Xie et al., 2014),
they are probably responsible for increased cellular growth and clo-
nal expansion from an early stage. However, splicing changes are
generally minor and variable (Ilagan et al., 2015; Kim et al., 2015;
Shirai et al., 2015), and do not frequently affect known MDS onco-
genes or tumor suppressors (Shiozawa et al., 2018). Even using
large-scale transcriptome datasets, complemented by targeted
sequencing of key mutated genes, it seems to be difficult to point to
a specific set of genes, whose transcript isoform changes are respon-
sible for MDS development.

Mutations in spliceosome genes might act as amplifiers of splic-
ing noise, and lead to large fluctuations in complex GRNs, altering
cell fate, pathogenicity or disease penetrance (Chalancon et al.,
2012). Initial results exist, where the authors investigated gene ex-
pression variance, showing that higher expression variability is con-
nected to the more aggressive subtype of chronic lymphocytic
leukemia (Ecker et al., 2015). However, the authors did not investi-
gate splicing variance. In this study, we present a list of genes, whose
splicing variance is changing upon SF3B1 mutations. Some of these
genes are already known to be involved in the pathogenesis of MDS,
and they are enriched for specific marker gene sets, involved in hem-
atopoietic differentiation.

Additional analyses are needed to understand the role splicing di-
versity in cellular differentiation, development and disease, and we
hope our tool will facilitate them.
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