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Abstract

Drug-resistant cells and anti-inflammatory immune cells within tumor masses con-

tribute to tumor aggression, invasion, and worse patient outcomes. These cells can

be a small proportion (<10%) of the total cell population of the tumor. Due to their

small quantity, the identification of rare cells is challenging with traditional assays.

Single cell analysis of autofluorescence images provides a live-cell assay to quantify

cellular heterogeneity. Fluorescence intensities and lifetimes of the metabolic coen-

zymes reduced nicotinamide adenine dinucleotide and oxidized flavin adenine dinu-

cleotide allow quantification of cellular metabolism and provide features for

classification of cells with different metabolic phenotypes. In this study, Gaussian dis-

tribution modeling and machine learning classification algorithms are used for the

identification of rare cells within simulated autofluorescence lifetime image data of a

large tumor comprised of tumor cells and T cells. A Random Forest machine learning

algorithm achieved an overall accuracy of 95% for the identification of cell type from

the simulated optical metabolic imaging data of a heterogeneous tumor of 20,000

cells consisting of 70% drug responsive breast cancer cells, 5% drug resistant breast

cancer cells, 20% quiescent T cells and 5% activated T cells. High resolution imaging

methods combined with single-cell quantitative analyses allows identification and

quantification of rare populations of cells within heterogeneous cultures
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1 | INTRODUCTION

Tumors are a diverse microsystem that includes immune cells, stromal

cells, and the extracellular matrix (ECM). Targeted anti-cancer thera-

pies use drugs to target specific genes and proteins that are involved

in the proliferation and survival pathways of cancer cells [1]. While

these interventions have improved clinical outcomes for many cancer

patients, innate and acquired drug resistance due to intra-tumor

heterogeneity remain clinical challenges. Pro-tumorigenic and anti-

tumorigenic immune cells also contribute to tumor heterogeneity. T

cells, identified by the expression of CD3, have diverse cytotoxic and

immune modulating activities upon activation [2, 3]. Currently, tumor

heterogeneity is quantified and studied by methods such as flow cyto-

metry, single cell sequencing, and single-cell mapping of epigenetic

markers [4]. However, these methods require a large number of cells,

use cell-destructive protocols, and typically depend on antibody or
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exogenous labelling which prevents temporal analysis of the same

cells, analysis of dynamic events, evaluation of spatial relationships,

and in vivo measurements. Therefore, new methods that can identify

distinct subpopulations of rare cells within complex 3D tissues and

tumors with non-destructive protocols are needed for studies of

tumor heterogeneity and drug response.

Optical metabolic imaging (OMI) detects the fluorescence intensity

and lifetime of the endogenous fluorophores reduced nicotinamide ade-

nine (phosphate) dinucleotide (NAD[P]H) and flavin adenine dinucleo-

tide (FAD). The metabolic coenzymes NADH and FAD are primary

electron carriers that participate in metabolic reactions including glycol-

ysis and oxidative phosphorylation. The fluorescence lifetime is the time

a fluorophore remains in the excited state and is on the order of hun-

dreds of picoseconds to nanoseconds in duration. NAD(P)H and FAD

have two-component fluorescence decays, due to the difference in life-

time between free and protein-bound configurations [5, 6]. NAD(P)H τ1
(short lifetime) corresponds to the NAD(P)H free in solution, while

NAD(P)H τ2 (long lifetime) corresponds to the NAD(P)H that is protein-

bound [5]. On the other hand, FAD τ1 corresponds to the protein-

bound FAD, while FAD τ2 corresponds to the free FAD [6]. The short

fluorescence lifetimes of both protein-bound FAD and free NADH are

a result of dynamic quenching by the adenine moiety [5, 7]. The mean

fluorescence lifetime (τm) can be calculated from the weighted average

of the short and long lifetime components through the equation

τm = α1τ1 + α2τ2, where α1 and α2 are the fractional contributions of

the short and long lifetimes, respectively. These OMI features are useful

biomarkers for the identification of cancer from non-cancerous tissue

and anti-cancer drug response due to metabolic adaptations of cancer

cells [8–13]. Additionally, due to the increased metabolic demands of

activated T cells compared with quiescent T cells, OMI features allow

classification of T cell activation with high accuracy [14, 15].

Single-cell segmentation and analysis of fluorescence microscopy

images provide a unique method to detect and quantify cellular het-

erogeneity. Prior work has demonstrated that Gaussian mixed models

and machine learning classification can be used to identify cell

populations within datasets of OMI data that is segmented and ana-

lyzed at a single-cell level [8, 10, 14, 16–19]. A Gaussian mixture

model (GMM) is a composite density model that is the sum of individ-

ual Gaussian density functions. Subpopulation analysis (SPA) by GMM

identifies the best fitting population density representation of the

data. Previously, SPA of cell OMI data has been used to identify and

quantify subpopulations of triple negative breast cancer cells from

HER2+ breast cancer cells and non-responding cancer cells from

drug-responsive cells within drug-treated breast and pancreas

organoids [8, 17]. Logistic regression and random forest classification

of T cells from OMI features achieved identification of activated T

cells from quiescent T cells with 97–99% accuracy and CD4+ from

CD8+ T cells with 97% accuracy [14]. While the SPA method and

machine learning classification are robust for analysis and identifica-

tion of subpopulations within OMI datasets, these subpopulation anal-

ysis methods have not been evaluated for the identification of rare

cells that comprise <10% of the total cell population.

In this study, we used simulated OMI datasets to evaluate SPA

and machine learning classification methods to identify rare cells

(<10% of the total population) within autofluorescence images. Simu-

lated datasets were comprised of mixtures of drug responsive cancer

cells, drug resistant cancer cells, quiescent T cells, and activated T

cells. SPA successfully identified two populations for varying combina-

tions and proportions of cells but is limited to the analysis of a single

OMI feature. Machine learning classification uses the full set of OMI

features and can be used to evaluate complex, multi-population

datasets consisting of drug-responsive breast cancer cells, drug-

resistant breast cancer cells, quiescent T cells, and activated T cells.

OMI combined with these computational analyses provides a label-

free, non-destructive method to identify rare subpopulations of cells

within complex tissues.

2 | METHODS

2.1 | Simulated OMI datasets

OMI data for cell populations of trastuzumab-responsive breast can-

cer cells (BT474), trastuzumab-resistant breast cancer cells (HR6),

quiescent T cells, and activated T cells were generated in MATLAB

from published mean and standard deviation values (Table S1) of

OMI data [14, 17]. The cancer data came from NAD(P)H and FAD

fluorescence lifetime images of control group BT474 and HR6

organoids imaged 48 h after organoid generation [17]. The T cell data

is from NAD(P)H and FAD fluorescence lifetime images of bulk

CD3+ T cells that were extracted from peripheral human whole

blood using negative selection methods and cultured in the presence

or absence of the activating antibodies anti-CD2/CD3/CD28 [14]. To

simulate OMI single cell datasets, arrays of random-floating-point

numbers were drawn from normal distributions with the specific

means and standard deviations of T cells and cancer cells (Table S1).

Histograms were used to visually represent the different population

groups: drug responsive and drug resistant cancer cells, activated and

quiescent T cells and mixtures of the four different populations, with

proportions ranging from 1% to 10% for drug-resistant cancer cells

and T cells.

2.2 | Subpopulation analysis

Subpopulation analysis (SPA) was performed by fitting the histograms

of the simulated datasets to a Gaussian mixture distribution model

(GMModel) with 1, 2, 3, and 4 components through the fitgmdist func-

tion in MATLAB. The fitgmdist() function returns a Gaussian mixture

distribution model with k components (input variable) fitted to the

input dataset. Model fit parameters including the Akaike Information

Criteria (AIC), population means, population standard deviations, and

proportions were recorded. The lowest AIC signified the most repre-

sentative model [20].

498 CARDONA AND WALSH



2.2.1 | Unnormalized simulations

SPA was used to identify the number of populations and population

proportions of simulated datasets of 10,000 cells. The combinations

of cells included the following pairs with the main population listed

first, followed by the smaller population: Drug Responsive Cells & T

Cells, Drug Resistant Cells & T cells, Quiescent & Activated T cells,

Drug Responsive Cells & Drug Resistant Cells, Drug Responsive

Cells & Quiescent T cells, and Drug Responsive Cells & Activated T

cells. The analysis was performed for both cases in which the subpop-

ulation is 5% and 1% of the total population.

2.2.2 | Normalized simulations

SPA was used to identify the number of populations and population

proportions of datasets of 100,000 cells, with a normalized mean

(large population mean = 1). Experimental replicates were evaluated

for large population standard deviations of 0.1, 0.2, 0.3, and 1. The

mean and standard deviation of the smaller population were varied

and 3D plots allow visualization of the number of components identi-

fied by the model as a function of the smaller population's statistical

metrics. Normalized simulations were repeated for subpopulations of

5% and 1% of the total population.

2.3 | UMAP

The Uniform Manifold Approximation and Projection (UMAP) algo-

rithm was used as a data-dimension reduction technique to visualize

the multivariate separation of cell populations [21]. Similar analyses

can be performed with principal component analysis (PCA) or t-

Distributed Stochastic Neighbor Embedding (tSNE), but UMAP was

chosen for its fast and efficient performance as well as the preserva-

tion of the global structure of the data. Within the simulated OMI

datasets, each row represented a single cell and each column the sim-

ulated OMI feature value for that cell. The OMI features vary across

different scales (0–1 for optical redox ratio, 100–3000 ps for fluores-

cence lifetimes, and 0–100% for lifetime component weights), so each

feature was converted into z-scores (number of standard deviations

from the mean) for comparability and all seven features (redox ratio,

NAD(P)H τ1, FAD τ1, NAD(P)H τ2, FAD τ2, NAD(P)H α1, and FAD α1)

were used. The UMAP dimensions were obtained using the UMAP

library in Python. UMAP was performed on simulated OMI datasets

of a random population of cells consisting of drug resistant and

responsive cancer cells and quiescent and activated T cells and for

two blind populations as shown in Table S2.

2.4 | Machine learning

Machine learning was used to identify small subpopulations of cells

within simulated OMI multivariate datasets of multiple cell groups.

WEKA is a free software that provides a collection of machine learn-

ing algorithms. The same random simulated cell population (15,877

cells: 37.8% drug responsive BC, 31.4% drug resistant BC, 20.4% qui-

escent T cells, and 10.3% activated T cells) that was visualized with

UMAP was analyzed via various machine learning algorithms to deter-

mine which model provides the highest classification accuracy. Classi-

fication was performed using the seven OMI fluorescence features

simulated for each cell: redox ratio, NAD(P)H τ1, FAD τ1, NAD(P)H τ2,

FAD τ2, NAD(P)H α1, and FAD α1. The data was split into train and

test groups using 10-fold cross validation and a 66% percentage split.

Random Forest, Logistic Classifier, and Multilayer Perceptron models

were tested. The Random Forest algorithm had the highest accuracy

and was used for the additional multivariant classification

experiments.

In order to robustly train a classification model without bias to a

single larger population, a dataset with 5000 cells of each of the

4 populations was created. Each dataset included 7 OMI fluorescence

features simulated for each cell: redox ratio, NAD(P)H τ1, FAD τ1,

NAD(P)H τ2, FAD τ2, NAD(P)H α1, and FAD α1. All seven features

were used for the classification models. All datasets were created

manually in Python. The simulated dataset with 20,000 cells was sep-

arated into train and test groups with either a 90%/10% or 70%/30%

split between the train and test data. A random forest classification

algorithm was trained on the training dataset using 10-fold cross-vali-

dation. The number of iterations, or trees in the random forest, was

set to 100 (WEKA). Then, the model was evaluated against the test

dataset, which was unseen during the model training. The trained

model was not exposed to the test dataset during training and any

predictions made on the test dataset are indicative of the perfor-

mance of the model in general. We created two models, one that was

trained with 70% of the full data and tested on 30% of the data, and

the other was trained with 90% of the full data and tested on 10% of

full data. The 70% Train/30% Test model was applied on completely

unseen simulated OMI datasets with T cell subpopulations that com-

prise 10%, 5%, and 1% of the full dataset, as well as a mixed popula-

tion of 70% drug responsive cancer cells, 5% drug resistant cancer

cells, 20% quiescent T cells, and 5% activated T cells. In addition, since

all previous experiments used simulated data, the model was evalu-

ated on a published dataset [14] of fluorescence lifetime images of

quiescent and activated T cells. This dataset consists of 47.5% quies-

cent T cells (n = 331) and 52.4% (n = 365) activated T cells and was

used to test the Random Forest classification model (Table S2). Data

was provided by AJ Walsh and MC Skala. The methods for T cell isola-

tion, activation, fluorescence lifetime imaging, and analysis are pro-

vided in full detail in Walsh et al. [14].

Finally, in order to see which features were most significant to

the classification accuracy of the model, feature selection was

performed in WEKA by both correlation and information gain tech-

niques. The attribute evaluator in WEKA is a technique by which

each attribute in the dataset is evaluated in the context of the out-

put variable (e.g., the class). The correlation attribute evaluator eval-

uates the worth of an attribute by measuring the correlation

(Pearson's) between it and the class. It calculates the correlation
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between each attribute and the output variable and selects only the

attributes that have a positive correlation or negative correlation

(close to �1 or 1). The information gain-based feature selection pro-

cess calculates the information gain or entropy for each attribute

and the output variable. Values vary from 0 (no information) to

1 (maximum information).

2.5 | Code availability

The custom Matlab and Python scripts for the generation and analysis

of simulated OMI data is available in this GitHub repository.

3 | RESULTS

3.1 | Histogram analysis

First, simulated datasets of 100,000 drug responsive cancer cells with

a 10% subpopulation of either drug resistant cancer cells or T cells

were visualized with histograms of the OMI features (Figure 1). A

dataset size of 100,000 cells was selected to be comparable with tra-

ditional flow cytometry assays. The subpopulation of T cells is sepa-

rated from the drug responsive cancer cells for NAD(P)H α1, the

fraction of free NAD(P)H (Figure 1A). However, there is overlap of the

NAD(P)H α1 histograms of drug responsive cancer cells and drug resis-

tant cancer cells (Figure 1B). Neither the T cells nor drug resistant can-

cer cells were distinguishable from the main population of drug

responsive cancer cells within the optical redox ratio (intensity of

NAD(P)H/intensity of FAD) histograms (Figure 1C–D).

3.2 | Subpopulation analysis by mixed Gaussian
models

SPA via mixed Gaussian models was performed on simulated OMI

datasets of 100,000 cells to evaluate the performance of this method

to identify a smaller subset of a population within a larger population

of cells (Figure 2). T cell populations were simulated for CD3+ (all T

cells), quiescent CD3+, and activated CD3+. When the subpopulation

of cells is 5% of the total population, subpopulation analysis of OMI

data by GMM correctly identifies 2 populations for all of the simu-

lated datasets for a subset of the OMI features. All OMI features

except for the optical redox ratio and NAD(P)H τ1 allow identification

of T cells and T cell subsets from drug responsive and resistant cancer

cell populations (Figure 2A Rows 1–4).While SPA analysis of a rare

drug resistant population within a drug responsive tumor correctly

yielded two populations for three of the variables, NAD(P)H τ2, FAD

τ2, and FAD τ1, the proportion or mean error exceeded 5%, and SPA

by the additional OMI features failed to identify 2 populations

(Figure 2A, Row 5). Likewise, SPA with four of the features, FAD a1,

the optical redox ratio, NAD(P)H τ1, and NAD(P)H τ2, yielded two

populations for the comparison of activated T cells from quiescent T

cells. However, of these OMI features, only the FAD α1, fraction of

bound FAD, analysis identified the correct population proportions.

When the subpopulation of cells is 1% of the total population, the

SPA method is less successful at correctly identifying two populations

of cells (Figure 2B). Analysis with FAD τ1, the lifetime of bound FAD,

was the most successful for identifying two populations for the four

datasets consisting of T cells, quiescent T cells, or activated T cells

and drug-responsive or drug-resistant cancer cells. SPA by GMM of

each OMI feature identified a single population within the dataset of

F IGURE 1 Representative histograms of OMI features to identify subpopulations within simulated OMI datasets of tumors. NAD(P)H α1 (A–
B) and optical redox ratio (C–D) data of a main population of drug responsive cancer cells (blue) and a subpopulation of either T cells (black) or
drug resistant cancer cells (red). The main population consists of 100,000 cells and the subpopulation is 10,000 cells, 10% of the total population
[Color figure can be viewed at wileyonlinelibrary.com]
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quiescent and activated T cells. SPA analysis of NAD(P)H τ1, the life-

time of free NAD(P)H, identified two populations for the combination

of drug resistant cells and drug responsive cancer cells. However, the

proportion and mean of the identified subpopulation were 20%

instead of 1%, and 500 ns versus 460 ns, respectively.

The performance of SPA with Gaussian models depends on the

statistical metrics of the OMI features of the two populations. To

understand this relationship and identify for what mean and standard

deviation values a rare cell population must have to be identified by

SPA, OMI datasets were generated with a main population of mean of

1 and standard deviation of 0.1 and a subpopulation with a mean var-

ied from 0 to 3 and a standard deviation varied from 0 to 0.5. 3D plots

of the mean and standard deviation values versus the number of com-

ponents identified by SPA in which the subpopulation is 5% or 1% of

the total population (n = 100,000 cells, mean = 1, sd = 0.1) allow

visualization of the means and standard deviations that will yield mul-

tivariate populations via SPA. For the normalized analysis in which the

subpopulation is 5% of the total population, two populations are iden-

tified for all mean values except those in the range of 0.63 to 1.33

and standard deviation values less than 0.27 (Figure 3A). Additionally,

there is a very small portion in which the population overlaps, and the

model only identifies one population. This occurs in the range of mean

values from 0.89 to 1.11 and when the standard deviation of the sub-

population is 0.9–0.99.

For the population in which the subpopulation is 1% of the total

population, similar patterns are observed. However, two populations

are identified for all mean values except those with a mean value in

the range of 0.5–1.49 and standard deviation values less than 0.5

(Figure 3B). For this case, the values in which the population overlaps,

and the model only identifies one population is for mean values from

0.81 to 1.10 and all standard deviation values, 0–0.17. Similar results

were obtained for simulations with a main population with increased

standard deviations (0.2, 0.3, and 1; Figure S1). Increasing the stan-

dard deviation of the main population reduces the range of mean and

F IGURE 2 Number of distinct cell populations identified using Gaussian mixed models within simulated OMI datasets of varying
combinations of drug resistant cancer cells, drug responsive cancer cells, and T cells. [A] (top) the smaller population is 5% of the total population,

100,000 total simulated cells. [B] (bottom) the smaller population is 1% of the total population, 100,000 total simulated cells. The red Xs identify
models where the proportion error exceeds 5% (false positive). These population and features cannot be counted as successful. The green check
indicates the proportion, mean, and standard deviation of each population is identified correctly (less than 5% error. BC = breast cancer [Color
figure can be viewed at wileyonlinelibrary.com]
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standard derivation values of the subpopulation for which SPA cor-

rectly identifies two populations.

3.3 | Identification of multiple subpopulations
within OMI data using multiple variables

UMAP was used as a data dimension reduction technique to visualize

clustering of the different cell populations from differences in

autofluorescence lifetime features (Figure S2 and S3). UMAP visuali-

zation of a simulated OMI dataset consisting of 6000 drug responsive

cancer cells, 5000 drug resistant cancer cells, 3234 quiescent T cells,

and 1643 activated T cells shows the greatest separation between

cancer cells and T cells (Figure S2). A 20,000 cells were selected as a

representative OMI dataset because this is a reasonable number of

cells to extract from a single experiment with 5–10 images per group

for a 2–4 group experiment with 500–1000 cells/image (20� or 40�
objective). Pair plots of the OMI data show clustering of the different

features for the four cell populations (Figure S2). While pair-wise anal-

ysis of some OMI features including provide separation of the four

groups (Figure S2), the greatest separations are achieved with the

UMAP visualization that uses all OMI features.

Machine learning was performed to identify cell populations

within simulated OMI datasets of drug responsive cancer cells, drug

resistant cancer cells, quiescent T cells, and activated T cells. A dataset

(Original, Table S2) with 20,000 cells with equal portions of each pop-

ulation was randomized, and two different train/test datasets were

created from the data, 90% train/10% test and 70% Train/30%Test.

Random forest, logistic classifier, and multilayer perceptron algorithms

were compared for performance to classify cells into the four cell

populations. Of these models, the random-forest algorithm achieved

the best classification accuracy (Figure S4), 92.4% for the 30% test

F IGURE 3 Normalized mean and standard deviation values in which the model identifies two separate populations. [A] (top) shows the case
where the subpopulation is 5% of the total population. [B] (bottom) shows the case where the subpopulation is 1% of the total population [Color
figure can be viewed at wileyonlinelibrary.com]
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data (Figure 4[II]) and 92.1% accuracy for the 10% test data

(Figure S5[II]).

The random forest model trained with 70% of the Original dataset

was then used to determine the classification performance for four

unseen datasets of unequal cell populations (Table S2). The pretrained

random forest model classified cell type for three datasets with equal

proportions of drug resistant and drug responsive cancer cells and

equal proportions of quiescent and activated T cells for a combined

total of 10%, 5%, and 1% of the total population, with overall classifi-

cation accuracies of 95.67% (III), 92.73% (IV), and 96.06% (V), respec-

tively (Figure 4). Additionally, the cell type was predicted for a model

tumor dataset with 70% drug responsive cancer cells, 5% drug resis-

tant cancer cells, 25% quiescent T cells, and 5% activated T cells. An

overall classification accuracy of 94.59% (VI) was determined for the

pre-trained random forest model evaluated on the unseen simulated

tumor data set (Figure 4). The pre-trained random forest model had an

overall accuracy of 93.82% (VII) for the real T cell imaging data.

For each dataset, the random forest model identified the drug

responsive cancer cells with an accuracy above 96%. The most mis-

classified cells are activated T cells which are misclassified as quies-

cent T cells with a 13% misclassification in the blind 4 cell population

with 95% Responsive and Resistant Cancer cells and 5% Quiescent

and Activated T cells (IV). Table 1 shows how accurate the technique

was in identifying the percent of cells in every population. At the pop-

ulation level, the random forest classifier identified the population

proportions within 3% of the true value and was within 1% for

populations smaller than 5%.

Feature analysis was used to determine which features are con-

tributing to the classification results. The redox ratio had the lowest

ranking in three different training and testing datasets for both the

Correlation Attribute and Information Gain Evaluators methods

(Table 2). For the correlation attribute evaluator, FAD τ1, the lifetime

of bound FAD, shows the best correlation followed closely by FAD

α1, the fraction of bound FAD. Similar results were found for the

information gain evaluator, but FAD α1 had superior performance with

NAD(P)H τ1, the lifetime of free NAD(P)H, and FAD τ1 also showing

high contributions.

Since the redox ratio achieved the lowest ranking for both evalua-

tors, it was removed from all datasets and the random forest algo-

rithm was rerun to generate classification models. The models

achieved an overall accuracy of 91.4% and 91.5% for the 30% and

10% test data, respectively. While these percentages were very close

to those gathered from the data with all features included, they were

slightly lower which indicates that removing the redox ratio from the

datasets does not improve the classification accuracy of the model.

4 | DISCUSSION

Tumor heterogeneity remains challenging to detect and quantify with

existing biomolecular tools. Fluorescence microscopy of the endoge-

nous fluorophores NAD(P)H and FAD provides a label-free method to

evaluate cell metabolism and quantify multiple imaging features. Cell

segmentation of NAD(P)H and FAD images allows single cell analysis

F IGURE 4 Confusion matrices show the number of correctly and incorrectly identified cells and tables show the percent accuracy (left, blue)
and error (right, orange) for each cell population (cell population details provided in Table S2). The top graph (I) shows the random Forest Model's
performance for the train data, (II) shows the test data, (III) shows a blind 4 cell population with 45% responsive cancer cells, 45% resistant cancer
cells, 5% quiescent T cells, and 5% activated T cells, (IV) shows a blind 4 cell population with 47.5% responsive cancer cells, 47.5% resistant
cancer cells, 2.5% quiescent T cells, and 2.5% activated T cells, (V) shows a blind 4 cell population with 49.5% responsive cancer cells, 49.5%
resistant cancer cells, 0.5% quiescent T cells and 0.5% activated T cells, (VI) shows a blind 4 cell population with 70% responsive cancer cells, 5%
resistant cancer cells, 20% quiescent T cells, and 5% activated T cells, and (VII) shows the experimental T cell dataset with 47.5% quiescent T
cells, and 52.4% activated T cells. BC = breast cancer, Q = quiescent, and a = activated [Color figure can be viewed at wileyonlinelibrary.com]
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of populations of cells. The functions of many different cells including

drug response in cancer and activation of immune cells are dependent

on cellular metabolism. Cancer cells frequently exhibit increased aero-

bic glycolysis to support growth and proliferation [22], and metabolic

differences have been observed between drug resistant and drug

responsive cancers [10]. Immune cells require high rates of metabo-

lism once activated to support anti-cancer activities [23, 24]. T cells in

particular switch from oxidative metabolism of quiescent cells to gly-

colysis and glutaminolysis when activated [24]. OMI detects metabolic

differences and can evaluate heterogeneity within cell populations

[14, 16–18].

Using simulated fluorescence microscopy datasets of seven fluo-

rescence intensity and lifetime features for four different cell

populations including drug responsive and drug resistant cancer cells,

and quiescent and activated T cells (Table S1), we evaluated two

quantitative methods, SPA and machine learning classification, to

identify small populations of T cells and drug-resistance cancer cells

within a larger tumor mass. Histograms allowed visualization of differ-

ent cell populations by OMI features (Figure 1). While it was possible

to visualize two distinct populations with histogram analysis, this

method is limited because it only allows for combinations of two

populations and only one feature. The subpopulation analysis via

mixed Gaussian models (Figures 2 and 3) allows identification of mul-

tiple modes or populations of data within histograms. The

unnormalized SPA (Figure 2) revealed that FAD τ1, the lifetime of

bound FAD, is the best performing OMI feature for the identification

of rare subpopulations of T cells and drug resistant cancer cells within

larger drug responsive tumors. FAD τ1 was also consistently weighted

high in the classification feature analysis (Table 2). SPA revealed that

the correct number of components may be identified but with high

error for the proportions or means, demonstrating a potential error of

this approach. To evaluate what the typical properties of a subpopula-

tion must look like to be able to be successfully identified by the

model, we simulated datasets with normalized mean and standard

deviation values (Figure 3). As expected, two populations are identi-

fied when the mean population values are sufficiently separated and

the standard deviations are low, relative to the mean values.

To overcome the single variable and two-population limitations of

SPA, we used data dimensionality reduction for data visualization and

machine learning methods for cell classification and subpopulation

identification. Whereas the histogram analysis of the Drug Responsive

Cancer Cells and all CD3+ T cells populations failed to show clear

separation between the cells (Figure 1A), accounting for all the OMI

features via UMAP allowed clear visualization of clustering between

the four populations of cells (Figures S2B and S3A), highlighting the

importance of using multivariant analysis methods for analysis of

OMI data.

Machine learning classification achieved accuracies >96% for the

identification of drug responsive cancer cells and drug resistant cancer

cells in a population of 20,000 cells equally divided into four

populations and using 70% for training and 30% for testing. Consis-

tent results were achieved whether 30% or 10% of the data was used

to test, suggesting the model is not overly fit to the training data since

there is not an increase in misclassification error as the population

sizes are reduced (Figure S5). The responsive cancer cells were the

most accurately classified population in every dataset, with accuracy

above 96%. The T cell populations were the least correctly identified,

with accuracies above 88%. These results of accuracies above 80%

are comparable with other machine learning identification of immune

cell populations from microscopy data [14, 15, 25].

TABLE 1 Actual population percentages and model predictions T = true, P = predicted

I II III IV V VI VII

T (%) P (%) T (%) P (%) T (%) P (%) T (%) P (%) T (%) P (%) T (%) P (%) T (%) P (%)

Responsive BC 25 25.1 25 25.0 45 45.4 47.5 47.8 49.5 49.8 70 67.7 0 0

Resistant BC 25 25.1 25 24.5 45 44.6 47.5 47.3 49.5 49.2 5 7.36 0 0.1

Quiescent T cell 25 24.8 25 25.6 5 5.01 2.5 2.60 0.5 0.46 20 18.4 47.5 49.1

Activated T cell 25 25.1 25 24.9 5 4.92 2.5 2.41 0.5 0.54 5 6.63 52.4 50.7

TABLE 2 Feature ranking of seven different features

Redox ratio NAD(P)H τ1 NAD(P)H τ2 NAD(P)H α1 FAD τ1 FAD τ2 FAD α1

Correlation attribute evaluator

Full dataset 0.109 0.472 0.462 0.45 0.563 0.466 0.527

70% Test set 0.108 0.472 0.472 0.45 0.564 0.466 0.526

90% Test set 0.109 0.471 0.462 0.451 0.563 0.466 0.527

Information Gain Evaluator

Full dataset 0.6012 1.1393 0.91 0.968 1.0984 0.8809 1.224

70% Test set 0.6033 1.1441 0.9089 0.969 1.0986 0.88 1.221

90% Test set 0.604 1.143 0.908 0.971 1.1 0.882 1.222
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When identifying rare events, it is important to consider the false

positive rate as a high false positive rate coupled with a low incidence

of true positives can lead to a substantial number of false positives

(base rate fallacy). The false positive rates for the groups of the test

dataset are 1.47% for responsive breast cancer cells, 1.3% for resis-

tant breast cancer cells, 3.6% for quiescent T cells, and 3.6% for acti-

vated T cells (Figure 4). Despite these false positive rates exceeding

the 0.5% population percentage of the T cell groups in dataset V, the

number of false positives is not a majority of the identified cells, 5/92

(5.4%) for quiescent T cells and 13/108 (12.2%) for activated T cells.

However, false positives dominate in dataset VI where 35% of resis-

tant cancer cells and 32% of activated T cells are falsely positive.

Models that will be used to identify rare cell populations should be

evaluated for false positive rates and tested to characterize the proba-

bility of false positive events.

Given that FLIM data is highly dependent on the microenviron-

ment and in order to better evaluate the classification methods, the

results were tested on real experimental data. An imaging dataset of

quiescent and activated T cells was evaluated by the simulation data-

trained random forest model, and 93.8% of the cells were accurately

classified (Figure 4VII) demonstrating that the model is applicable to

real experimental data. However, when the same algorithm was

tested with drug responsive and resistant head and neck cancer cells,

the model correctly identified the cells as cancer, but was unable to

label the resistant cells correctly. This shows that the model that was

built for breast cancer cells is not transferable to other experiments

and needs to be remade for the new dataset. Different microscopes,

cell types, and experimental conditions may alter the data sufficiently

to require training of new classification models. The minimum number

of datapoints to generate robust models depends on the statistical

parameters of the data, number of groups to differentiate, and size of

the feature set. As shown here, simulated data can be included for

model training to boost dataset sizes, provided that the simulated data

mimics the parameters of the real data.

The feature analysis results showed more dependence of the clas-

sification models on FAD lifetime features than NAD(P)H lifetime fea-

tures or the redox ratio. The redox ratio was the lowest ranking

feature, but removing it did not improve the results. The reason for

the low ranking of the redox ratio may be due to the dependence of

the fluorescence intensity measurements on laser power, detector

gain and experimental conditions that may not have been the same

between the breast cancer cell study and the T cell study from which

the mean and standard deviation measurements were derived. The

importance of the FAD lifetime parameters for classification, particu-

larly the fraction of bound FAD (FAD α1) and the lifetime of bound

FAD (τ1) suggest differences in mitochondrial metabolism or oxidative

phosphorylation among the four cell groups [26, 27]. Abnormal

metabolism is a hallmark of cancer and differences in glycolysis and

oxidative phosphorylation are well documented between quiescent

and activated T cells [22, 24, 28].

The results demonstrate that SPA and classification algorithms

based on autofluorescence imaging features can be used to identify

rare cell subpopulations within heterogeneous mixtures of cells.

Future work could potentially combine the use of Convolutional Neu-

ral Networks (CNNs), Transfer Learning (TL), and data augmentation

techniques to classify the datasets and the corresponding images from

experimental work. Leveraging these computational methods with

existing technologies to identify and track rare populations of cells will

enable time-course studies of cancer stem cells, immune cells, and

drug-resistant cells to elucidate cell behaviors and allow testing of

novel therapeutics.
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