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Abstract

We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-
performance-centred and task-specific rather than measure the match between simulation and physical reality. We show
how principled experimental paradigms and behavioural models to quantify human performance in simulated
environments that have emerged from research in multisensory perception provide a framework for the objective
evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in
a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic
motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of
auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated
for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are
optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation
without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant,
transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-
specific analysis of the contribution of individual cues.
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Introduction

Synthetic multisensory environments, such as virtual reality

systems or flight simulators are increasingly used for training in

a variety of specialisations [1,2] and there is evidence that

sufficient realism is necessary for learning and transfer of new skills

from simulator to reality [3,4,5,6,7]. There is therefore consider-

able pressure to implement high-fidelity simulations. Physical,

computational and financial constraints, however, limit the fidelity

that can be achieved and the sensory modalities that can be

represented. The aim of this work is to propose a framework to

evaluate the contribution of individual cues to overall human

behavioural performance as a measure of fidelity.

Measuring Fidelity
Fidelity is a term that is very commonly used and relatively easy

to define as a measure of the degree to which a simulation system represents

a real-world system. It is, however, much more difficult to

operationalise the concept for objective evaluation. Schricker

and co-workers ([8] p. 109), make no bones about their view that

the ‘[…] main problems with how fidelity has been addressed […]

are: 1.) No detailed definition; 2.) Rampant subjectivity; 3.) No

method of quantifying the assessing of fidelity, and 4.) No detailed

example of a referent […]’. They propose a fidelity evaluation

framework that has three main features: An explicit definition of

the relationship between the simulation and real-world system via

a referent; a set of targeted comparisons between referent and

simulation; and an explicit consideration of the application of the

system.

The major contribution, in our view, is the acknowledgement

that objective fidelity evaluation requires a ‘referent’, an abstract

description of the real world that provides a definition of reality in

a level of detail and format that makes a meaningful evaluation

possible. The emphasis on application-specific and targeted

comparisons between the simulation and referent reflects the view

that the factors contributing to fidelity depend on the task, and

that fidelity analysis aims to identify simulation components and

behaviours that contribute to the overall performance of

a simulation. In the context of visual fidelity Ferwerda [9] makes

a distinction between physical (veridical stimulation of the sensory

system), photo-realism (veridical representation) and functional

fidelity (veridical representation of the ‘information’) in a visual

scene and make the point that it is the functional specification of

a scene that is particularly task relevant.

Jones et al. [10] in a review of simulation technologies highlight

that physical correspondence is overemphasized as a fidelity

measure for training purposes and argue that concern with fidelity

should focus on achieving greater effectiveness and efficiency in

terms of behavioural objectives. The view is mirrored more

recently by Dahlstrom et al. [11] who showed there is no direct

link between competence development and the realism of

rendered scenes in simulation. They argue that lower-fidelity

simulation, when appropriately designed, can provide competence

development with pedagogical and economic advantages.
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Standards do exist for the qualification of flight simulator

training devices [12]. These standards typically detail the criteria

for the cueing environment and the flight models and the training

credits attainable for different levels of synthetic training devices.

However, research undertaken by the GARTEUR (Group for

Aeronautical Research and Technology in Europe) HC-AG 12

Action Group has questioned the validity of these general

tolerances and has shown that the assessment of the fidelity of

the device is sensitive to the type and duration of the task flown

[13], which is consistent with Schricker’s argument. This led to

work that actively seeks to include human behavioural data into

simulator fidelity assessment methodologies [14] and metric based

frameworks for the assessment of the fitness-for-purpose of a flight

simulator [15,16].

Within the fidelity evaluation framework proposed by Schricker

et al. [8] we argue that the purpose of flight simulation is to

provide human observers with signals that can be detected and

discriminated, that either contribute directly to task performance,

or that are the basis for transferrable learning. A key argument

that we make, consistent with Jones et al. [10] and Dahlstrom et al.

[11], is that the referent for fidelity evaluation is human perception and

performance rather than descriptors of the physical environment. If

greater realism, additional cues or simulation behaviours improve

human performance, then this improves our operational definition

of fidelity.

We argue that basic methodology from multisensory research

can provide a robust and principled framework for evaluation of

the contribution of individual cues or behaviours to fidelity.

The main advantage of using human behaviour as a referent is

that quantifiable measures that show the relative contribution of

specific cues to performance and training outcomes can be defined

and experimentally obtained. These measures can directly

contribute to design decisions, such as what cues to present or

which behaviours to implement.

Objective Evaluation of Multisensory Perception
Much of the information in real environments is represented in

multiple modalities. Pilots, for instance, use aircraft motion to

follow their predetermined flightpath [17]. This cue is directly

represented in the visual domain and in kinematic cues that drive

vestibular and tactile representations [18]. In addition to visual

and kinematic motion cues, signals such as engine sound or wind

noise provide important indirect information that pilots use

[19,20]. The relative contributions of different cues will vary from

task to task and are dynamically re-weighted [21]: Visual cues, for

instance, will provide strong vertical motion cues at and near

ground level, but very limited information once an aircraft is at

high altitudes.

Recent work on the psychology of multisensory perception has

greatly advanced our understanding of how humans integrate cues

from multiple modalities (for a review see [22]). With this

development came efficient methods to evaluate human perfor-

mance in multisensory environments and formal models that

describe how cues are integrated and how individual cues

contribute to overall behavioural performance. These methods

and models have been applied in areas such as automotive

interface design [23] and flight simulation [24,25,26].

Our aim is to show how multisensory perception measures can

form the basis for a fidelity evaluation framework that uses human

performance as a referent and is designed to evaluate the relative

contribution that individual cues or behaviours make to simulated

environments.

We present data from three experiments to show how the

contribution of cues in multisensory environments can be

objectively measured. All experiments use the same flight

simulation environment but explore different tasks and perfor-

mance metrics (see methods section for details). We concentrate on

the contribution of auditory cues to a helicopter flight simulation

but the fidelity evaluation methodologies can be applied much

more generally.

The first requirement for any cue in a simulated environment is

for it to be sufficiently salient to be reliably detected. Where a cue

carries semantic information it must be correctly categorised. In

experiment 1 we measure thresholds for the detection and

categorisation of auditory and kinematic signals that cue helicopter

motion in the simulated environment. We show that both cues are

detectable in the flight simulator and that the simultaneous

presentation of the two redundant cues increases detection

performance significantly beyond the level seen for single cues.

This is a hallmark of multisensory integration and a useful fidelity

measure because the effect is typically only seen if the two signals

are well matched [27,28,29].

In many situations multiple, non-redundant, cues contribute to

our performance. Visual motion cues, for instance, are normally

disambiguated by somatosensory and vestibular information that

enables us to discount self motion from the visual signal (e.g.[30]).

In a second experiment we measure target-tracking performance

while systematically manipulating the auditory and kinematic cues

available to the participants. This experiment shows that our

participants make effective use of kinematic, but not auditory cues

to improve their behavioural performance. We hypothesize that

this is not due to a lack of salience - we demonstrated that the

audio cues are correctly perceived in experiment one - but because

participants have to learn the complex mapping from the turbine

noise to aircraft movement to carry out the tracking task.

In the third experiment we investigate whether participants can

learn to use this auditory cue during normal operation in

a simulated environment. We employ an implicit learning strategy

where participants are exposed to informative audio signals but

not explicitly instructed to attend or use the signals. In analogy to

the transition between real aircraft and flight simulators, which

offer a much reduced fidelity, our participants are tested in a flight

simulator with high fidelity graphics and a motion platform but

trained in a reduced fidelity environment without motion cues and

with limited visuals. We show that target-tracking performance of

our participants rapidly improves during training and that

implicitly learned audio cues improve performance in a final test

in the full simulator.

Experiment 1: Evaluating Cue Fidelity by Detection and
Categorisation Performance
Our sensory systems do not work independently, but integrate

information from many modalities to ‘make sense’ of our

environment. Signals that represent temporally, spatially, and

semantically congruent information are detected or discriminated

faster or more accurately than incongruent bimodal stimuli (for

reviews, see [28,29,31]). The facilitatory effect of spatial and

temporal congruence can be explained by early neural integration

stages that have, for instance, been demonstrated in the superior

colliculus of cat (e.g. [32,33]). Semantic congruency effects are

more likely to be mediated by high-level cortical mechanisms

because of the required categorization of the underlying stimuli

into meaningful signals (e.g. [34]).

A basic requirement for any simulation is that typical signal

changes are detectable and that signals representing different

semantic categories, up and down motion in our example, can be

categorised correctly. Signal detection tasks provide an efficient

and robust method to evaluate the relative contribution of the cues
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that drive our perception and performance in simulated environ-

ments. Formal models of multisensory integration make strong

predictions about human performance in situations where in-

formation is represented in multiple modalities: Congruent

information should have a facilitatory effect which is an important

fidelity indicator [28,35].

We report data on the detection and integration of auditory and

kinematic motion signals in a flight simulation setting. Participants

were required to report upward or downward changes that were

cued either via the motion platform, changes to the sound of the

simulated helicopter turbine, or both. Changes were reported by

pushing the top-hat button on the cyclic control stick in the flight

simulator either up or down. We employed a forced choice

paradigm, which required participants to answer after each

visually cued trial. If no signal changes are perceived, or if they

cannot be categorised, participants will perform at chance level

(50% correct identification).

We tested at five levels of control input changes (Xc= +2 0.1,

0.2, 0.3, 0.4, and 0.5), which corresponds to collective [footnote

reference 1] movements between 0.1 and 0.5 inches in conditions

where pilots control the aircraft, see methods section, below, for

more details. We measured a mean absolute displacement of 0.91

inches (s.d. = 0.81) with equivalent flight dynamics in experiment 2

where our participants controlled the flight. Detailed descriptions

of the participants, the flight simulator and stimuli used are given

in the methods section at the end of this paper.

[Footnote 1: The collective pitch control, or collective, is a lever

on the left of the pilot seat that controls the pitch angle of the main

rotor blades and therefore the lift. Increasing the pitch angle for

more lift requires more engine power, which causes the turbine

sound to increase in pitch and amplitude. The main rotor speed is

kept approximately constant in normal flight conditions.].

The data for 10 participants, unfamiliar with the flight

simulator, shows that in each of the three conditions correct

categorisation rates increase with cue magnitude, fig 1.

Paired t-tests comparing the correct detection rates across the

three conditions show that all three conditions result in signifi-

cantly different performance rates (audio vs motion: t(109) =23.76,

p = 0.00027; audio vs both: t(109) = 6.17, p,0.0001; motion vs

both: t(109) =23.43, p = 0.00084).

Paired t-tests comparing each of the equivalent motion

conditions in the up/down direction revealed no significant

differences (audio t(54) =20.55, p = 0.60; motion t(54) = 0.39,

p = 0.71; both t(54) =20.23, p = 0.82) so that for further analysis

equivalent up and down motion conditions are pooled.

One of the key contributions from behavioural studies of

multisensory integration is that congruent, redundant signals, such

as auditory and visual motion cues facilitate detection (e.g.

[28,31]). Formal models enable us to differentiate whether two

signals are integrated at very early processing stages in the brain

(linear summation, e.g [36]), whether they are integrated in

a statistical (optimal) sense [35,37], or whether they are processed

independently. A key measure is the detection threshold. This is

established from the psychometric function (fig. 2) which relates

detection or correct classification probability against signal

strength.

A well established method (e.g. [38] [36] [39]) is to fit

a sigmoidal function and to define the inflection point as the

threshold. We fitted a Weibull function [37]:

y~A{ A{Bð Þe
{ x

x0

� �m

:

Parameters A and B define the lower and upper asymptote of

the function and were fixed at chance performance (p= 0.5) and

Figure 1. Raw cue detection performance at control input levels ranging from 20.5 (down) to +0.5 (up). Subjects were required to
respond at all trials so that chance performance is 0.5 (50% correct). Error bars are standard error of the mean (SEM). The data points are slightly offset
to enhance visibility.
doi:10.1371/journal.pone.0044381.g001
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maximal performance (p = 1.0) respectively. The parameter x0
describes the level at which 81% of signals are correctly detected,

while the slope of the curve, an indication of the decision

reliability, is described by parameter m. Figure 2 shows an

example fit to the experimental data for one participant. Each data

point represents the mean probability that a control signal (Xc, see

methods section) of a given absolute strength is correctly identified.

The threshold estimates for all subjects together with overall

mean thresholds are shown in figure 3 (left panel).

The data shows that changes to motion and auditory cues are

perceived and correctly categorised by our participants, and that

simultaneous changes to both cues lead to a reduction of the

overall detection threshold (and response variance) compared to

unimodal signal changes. This is evidence for effective integration

of both stimuli.

Quick (1974) proposed a relatively simple metric to evaluate

how cues are combined when more than one cue is present relative

to situations where single cues are presented. The bimodal

thresholds are replotted in a space defined by unimodal thresholds

(threshold units, 1) for each observer. The distance of the threshold

from the origin, when multiple rather than single cues are

presented can be evaluated using the Minkowski distance metric:

T~
Pn

i~1 T
k
i

� �1
k where T is the threshold that is the result of

presenting n cues, each with individual thresholds Ti. A pooling

factor, k, defines the distance of all individual thresholds from the

origin. A pooling factor k = 1 is seen when the signals representing

both underlying cues are linearly combined before decisions are

made, diagonal line in figure 3 (right panel). This is usually

referred to as a linear summation model. Pooling factors of around

k = 4 are typical of probability summation models where individual

cues are evaluated and local decisions combined [36]. Optimal

Bayesian integration, where cues are processed and decisions are

made individually, but where the relative contribution of each cue

is weighted by its reliability results in a Euclidean distance metric

(k = 2, [40]). In cases where individual cues are not combined at

Figure 2. Sample experimental data (top) and curve fits for one subject (S4). A sigmoidal Weibull function was fitted to each individual data
set. The threshold is defined as the point where participants correctly identify motion in 81% of trials. In this case the motion thresholds are (Audio:
TA = 0.27; Motion TM= 0.21; Simultaneous presentation for both cues TAM=0.16).
doi:10.1371/journal.pone.0044381.g002
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all, but where the joint threshold is crossed whenever one

underlying cue is detected, k tends to infinity.

In our example with two cues (audio a and kinematic motion m)

the combined threshold is given by Tam~ Tk
azTk

m

� �1
k.

Fitting the model to our observed threshold data results in

a pooling factor of k=2.1, (dashed line in fig. 3, right panel) which

suggests that the two cues are optimally statistically integrated.

Our experimental results clearly show that the auditory and the

kinematic motion cues can be detected and are correctly

associated with up/down motion. Presenting both cues simulta-

neously has a facilitatory effect by reducing the threshold

consistent with a model that assumes optimal integration of both

cues.

For a task where cue detection or categorisation are key

requirements, or where transferrable learning depends on the

correct processing of these cues, we demonstrate that auditory and

kinematic motion cues make a clear contribution to fidelity. Signal

detection provides an efficient and robust method to evaluate

whether individual cues contribute to human perception and

therefore provide a key first stage in a human-centred, cue and

task specific fidelity evaluation framework.

Experiment 2: Evaluating Cue Fidelity by Performance
Measures
Dynamic systems, whether they are our own bodies or flight

simulators, can be modelled by transfer functions that translate

a control input into complex behaviour. These models form the

basis for the prediction of the consequences of a control input to

behaviour which is an essential aspect that enables us to operate in

novel or changing environments.

In motor behaviour, the transformation from motor commands

to their sensory consequences is governed by a complex interplay

of the environmental factors, the musculoskeletal system and

sensory receptors (review [41]). Cues from multiple modalities,

such as vision, haptics and vestibular information are combined to

build predictive models of behaviour where each modality

provides different, complementary signals to build novel repre-

sentations (review [42]).

This is not unlike situations where humans operate machinery,

where control inputs are also mapped into complex behaviours,

which can be predicted from a range of complementary cues. The

heave (vertical motion) model, used to model flying height in flight

simulation, is used as an example in the following experiment. The

simulation provides a rich set of sensory signals that represent

different stages of the transfer function: Haptic (collective position)

and auditory signals (turbine noise) provide a direct representation

of the control input to the heave model. Acceleration is cued via

the motion platform, providing somatosensory and vestibular

signals, while, at the end of the control model, flying height is

represented visually. The simulation also includes an explicit

auditory error signal that represents the difference between the

visual target and actual position.

Participants were asked to follow the height of a visually

presented target, a refuelling basket, for relatively short (2 min)

periods in a helicopter refuelling simulation. The heave model

damping parameter (Zw, see methods), and with it the flight

characteristics of the aircraft, changed in a pseudorandom

sequence. Our 10 participants consequently had to rapidly

discover and use the system transfer function to minimise the

error between the target and real flying height.

The vertical target motion seen by the ‘pilot’ is a compound of

target and self-motion, so that cues representing self-motion, such

as the turbine noise and kinematic cues can make a major

contribution in disambiguating the visual signal.

To evaluate the relative contribution of auditory and kinematic

cues, the experiment was run as a factorial design where four

factors were systematically explored: The motion platform could

be on or off (labelled m in fig 4), the auditory turbine simulation

could signal the control input (t, fig. 4) or produce a static sound

and the distance to the target (error, e) could be signalled by an

Figure 3. Threshold data for individual subjects andmeans thresholds (left). The Quick pooling model quantifies integration by fitting a line
to the normalised threshold for each subject (right). For our data the best fit is achieved with a pooling factor of k = 2.1. A linear summation model,
consistent with early sensory integration would predict a pooling factor of 1 (black line).
doi:10.1371/journal.pone.0044381.g003

Objective Fidelity Evaluation in Flight Simulation

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e44381



auditory beep or not. Subjects were tested using two flight

dynamics models, difficult (d, fig. 4) or easy. Each of the subjects

was tested in a pseudorandom sequence of all 16 test conditions

that resulted from 2626262 possible cue combinations. The

order of testing was balanced to exclude learning effects.

Human performance was measured as the median absolute

distance (error) between the refuelling basket and the aircraft

altitude. The mean error over all subjects is shown in figure 4.

Visual inspection shows that the error is consistently larger in the

difficult flight dynamics conditions compared with the easy

conditions (difficult: d, fig. 4 - even vs odd numbered conditions).

On average, errors are also smaller in conditions where the motion

platform is on (labelled m, fig. 4 - conditions 3&4 vs 1&2, 7&8 vs

5&6 etc) compared to conditions where no platform motion is

present.

The main advantage of the factorial design is that an analysis of

variance (ANOVA) can be used for inferential statistics to evaluate

the contribution that each of the factors (cues) makes to tracking

performance. The main effect is the effect of a specific factor

averaged over all other experimental conditions, fig. 5. This data

pooling provides robust estimates of the contribution of each cue

to overall performance and fidelity.

An ANOVA with subjects as a random factor shows significant

main effects for the difficulty level (F(1,159) = 12.48, p = 0.006) and

motion cues (F(1,159) = 11.44, p= 0.0009). Neither the turbine

audio cue (F(1,159) = 0.054, p = 0.46), nor the error signal

(F(1,159) = 0.03; p = 0.86) affect tracking performance, fig. 5.

There were no significant interactions.

Our participants were untrained and we deliberately limited

their ‘flying’ experience to 32 minutes in total to minimise learning

effects. The results show that the heave model behaviour (easy/

hard) makes a difference to overall performance, which was

expected. Acceleration cues from the motion platform (motion on/

off) made a highly significant difference to tracking performance,

while neither of the two audio conditions had a significant main

effect.

In experiment one, we showed that participants were able to

detect and categorise the turbine signal and that the presence of

the signal significantly enhanced performance in the bimodal

condition compared to the motion condition alone. This

experiment shows that successful detection and categorisation of

our auditory signals is not sufficient for the tracking task, which

requires a forward model of the aircraft behaviour. To predict the

response of the heave model, it is not only the presence of a pitch/

amplitude change that has to be detected, but this change has to

be quantified and incorporated into a model of flight dynamics.

We deliberately limited exposure to the flight model to prevent

learning.

In this context the most striking result is not the failure to exploit

auditory cues, but the finding that physical motion cues are

immediately useful for the disambiguation of the visual signal.

Physical motion cues are an integral part of our everyday, visual,

experience and essential to estimate veridical motion from visual

signals, in other words we are very well adapted to use kinematic

cues to disambiguate visual motion signals (e.g. [42]).

The immediate accessibility of kinematic cues for our partici-

pants shows that the motion platform behaviour and signals match

that seen in everyday environments and therefore is a useful

diagnostic for objective fidelity evaluation.

The two audio cues, representing motion in our experiment, are

not part of our everyday environment; therefore require learning

to be useful.

Experiment 3: Evaluating Cue Fidelity in Terms of
Transferrable Learning Performance
The principal reason for using flight simulators is to provide

transferrable and persistent training, objective measures of the

contribution that specific subsystems make to fidelity and training

Figure 4. Average median error over 10 subjects for each of the 16 test conditions. A factorial design that combined each of the four
factors: Audio error signal off (-)/on(e), turbine sound static (2)/variable (t), motion platform off(2)/on(m) and flight dynamics difficult (d) or easy (2)
were used.
doi:10.1371/journal.pone.0044381.g004
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outcome are important issues for the design and qualification of

flight simulators.

The relative contribution to fidelity and training outcome of

kinematic motion cues is a particularly hotly contested topic:

There is no question that kinematic cues improve pilot accept-

ability and improve pilot performance, particularly for disturbance

tasks, such as in turbulence [1] or in the tracking task described in

experiment 2. Neither subjective acceptability of the simulation,

nor performance in the simulator, however, provide evidence for

transfer of training from the simulator to a real aircraft, in

particular since the motion cues generated by many simulators fall

short of those experienced in real planes. Bürki-Cohen and Sparko

[17], for instance, argue that the success in training pilots in

simulators with inadequate kinematic cues suggests that platform

motion is not needed for a successful training outcome in fixed

wing aircraft.

We are not going to resolve this debate but argue that it

highlights two issues raised by Schricker et al. [8] for objective

evaluation: One issue is that fidelity (and training outcome as an

operational definition of fidelity) is highly task-specific, therefore

any evaluation should take this into account. The second issue is

that meaningful evaluation requires a referent, which real aircraft

in most situations cannot provide. To evaluate the specific

contribution that cues, such as platform motion or engine sound,

make to the learning outcome, specific and targeted tests, such as

those described in experiment two are necessary. We propose

a framework that evaluates whether transferrable training for

a specific task is aided by specific cues. This incremental approach

enables us to use behavioural measures as reference data: We

expect to see cue-specific performance improvements during

training that are robust to changes in the environment and to

changes to cues that are not task relevant.

In experiment 2 we showed that participants can use kinematic

motion cues, but not auditory cues to disambiguate self-motion

and target-motion and speculate that the indirect relationship

between the simulated turbine noise and helicopter motion

requires training to be useful. To show transferrable training we

evaluate target-tracking performance with 10 participants that

have not been exposed to a flight simulator using the same task

and equipment.

In analogy to transferrable pilot training in a flight simulator

that will be applied in real aircraft, we test our participants in a full

flight simulator with a motion platform, a high quality collimated

visual display and realistic control inceptors before and after

training. The training, however, takes place in a much lower

fidelity environment, our simulator-simulator (simsim). The visual

representation is reduced to a schematic and there is no motion

platform (see methods section), but the flight dynamics model and

auditory signals are identical to those used in the Heliflight

simulator [43]. Our participants were asked to use the collective

lever to keep an ‘x’ on the screen within a larger circle,

representing the refuelling basket used in the full simulator

experiments. We used an implicit training paradigm: The turbine

sound simulation was played throughout each training run, but

instructions to the participants contained no reference to the

sound.

Figure 6 gives an overview of the results. Since training was

carried out without a motion platform only results that are directly

comparable are reported. The leftmost bar (A+M2) shows the

average median error for the 10 participants in a two minute target-

tracking experiment in the easy and difficult flying conditions

preceding the training. The next four data points, underlaid in grey,

show themean error during four successive 15 min training sessions

in the low fidelity environment (simsim). On the right of the data

reporting training performance are three test conditions, which, like

the initial test, were conducted in the HELIFLIGHT simulator.

Condition (A+M2) is the same as during the initial test. A pairwise t-

test comparing tracking performance for each subject in matching

conditions before and after training shows a reduction in average

tracking error from 0.74 ft (se = 0.19) to 0.39 ft (se = 0.091) ft

Figure 5. Main effects for the target-tracking experiment. The average median error is plotted for the eight principal experimental conditions.
Neither an explicit error signal (error on/off), nor turbine sound modulation (variable vs. constant turbine sound), affects target-tracking performance.
Kinematic cues from the motion platform, however, significantly improve performance. Subjects also perform significantly better in the ‘easy’ flying
condition overall.
doi:10.1371/journal.pone.0044381.g005

Objective Fidelity Evaluation in Flight Simulation

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e44381



(t = 6.76, df = 79, p,0.0001). This shows that training in the

reduced fidelity simulator leads to significant transferrable target

tracking performance improvements.

To test whether the participants learnt to use the audio cues and to

what extent training depends on the precise nature of the audio

signal we tested our participants with three different audio signals:

The exact audio configuration that was used during training, a static

turbine sound that did not providemeaningful audio cues (condition

A2M2, fig. 6) and a substitute sound (condition AsM2, fig. 7),

chosen to be obviously different from the turbine sound used during

the training, but exhibiting exactly the same behaviour. We used

a saxophone tuning note, which was amplitude and frequency

modulated proportional to the control input Xc in exactly the same

way as the turbine sound. If training depends on the physical

characteristics of the acoustic carrier signal, then performance for

the substitute sound should be no better than for the static sound. If

participants use the cuemodulation as a functional cue to fidelity [9]

then the turbine sound and saxophone sound should both provide

useful information.

After training we see much larger differences between the

hard and easy flying conditions compared to the training

conditions. One reason for this is that, during training, 15

minute blocks with constant flying conditions were used, so that

participants had an opportunity to adjust fully. During initial

and final testing, each block only lasted for 2 minutes. The full

simulation also contained additional visual cues, the tanker

plane at a fixed height, which may explain why participants

performed better during the easy final tests than during

equivalent easy training sessions.

A 26262 ANOVA with the factors turbine (variable/static),

motion (platform on/off) and difficulty (hard/easy) shows the

expected significant main effects of difficulty: the mean tracking

error reduces from 0.41 ft (se 0.10) in the hard conftion to 0.33 ft

(se 0.08) in the easy condition (F(1,119) = 9.09, p = 0.0092), motion

cues significantly reduce the error from 0.41 ft (se.11) to 0.34 ft (se

0.066) (F(1,119) = 5.98, p= 0.0015) while the mean error measures

for the three audio conditions were 0.41 (se 0.11) for static audio,

0.37 (se 0.10) for variable audio cues and even lower at 0.33 (se

0.05) when the substitute sound was played (F(1,119) = 3.34,

p = 0.034). No significant interactions were found. Subjects were

coded as a random factor.Detailed performance data for all post-

training test conditions are shown in figure 7. Post-hoc tests (one-

sided paired t-tests to test the hypothesis that additional cues would

reduce the error) over both flight dynamics conditions (p values are

shown in figure 7) show that the mean error in the ‘no-motion,

static-turbine’ condition is significantly larger than in any of the

other conditions. The results show that audio and motion cues

significantly contribute to performance after training. We see

performance improvements if either the kinematic or auditory

motion cues are present, presenting both cues together (condition

A+M+) does not lead to significant performance increases

compared to conditions where one cue is present (A2M+,
A+M2). This finding contrasts with the results of experiment 1,

which showed a significant detection performance enhancement

when two cues rather than one are present. The performance

measure in experiments 2 and 3 is more variable than the

threshold estimates used in experiment 1, which may explain this

finding. The result also highlights the need to use sensitive

performance measures and robust statistical analysis techniques,

Figure 6. Target-tracking performance as mean error (ft) and SEM for ten participants before (left of grey box), during (grey box,
T1–T4) and after training (right of grey box). The data shown represents easy (black) and hard (red) flying conditions. Test conditions are
labelled as follows: T1–T4, 15 min training blocks, A+ : turbine signal amplitude and pitch modulated to represent the control input (xc), A- : turbine
signal static, As : substitute sound in test conditions. The motion platform was off in all test conditions reported in the graph (M2). We see
a significant reduction in tracking error during training (grey box) and between the initial (A+M2, left) and final test (A+M2, right) in the full
simulator. After training performance in the condition without audio cues (A2M2) is significantly worse than when cues are present (A+M2).
Substituting the turbine noise used during training for a different sound that exhibits the same behaviour (AsM2) does not significantly affect
performance.
doi:10.1371/journal.pone.0044381.g006
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such as within subject comparisons and factorial designs to

maximise the sensitivity of the tests. Longer test runs or more

subjects would also have reduced the variability inherent in

behavioural tests, but an important consideration in the design of

our experiments was to ensure that relatively sensitive measures of

performance and fidelity are viable with limited testing.

Discussion

Objective fidelity evaluation requires carefully defined metrics

that enable a systematic comparison between the simulation and

the system to be modelled. In many cases, such as flight

simulation, objective descriptors of reality are not readily

available, cannot be replicated in a simulation or do not

contribute to the learning outcomes. It is, for example, not

realistically feasible to obtain measurements and models of all

aircraft behaviours under all flying conditions, such as the

engine noises that we simulated in our experiments. Physical

limitations of the simulator mean that many original cues

cannot be represented faithfully. The most obvious example in

flight simulation is aircraft motion which is constrained by the

physical limitations of the motion platform so that washout

filters are used to provide the pilots with the illusion that real

motion takes place. Even if certain aspects of reality can be

faithfully modelled, they may not be task-relevant and therefore

do not contribute to learning outcomes: It is arguable that the

fidelity of a simulated approach to a runway is not enhanced by

modelling the behaviour of cows in an adjacent field.

A key argument we make is that the referent for any objective

evaluation of fidelity should be human perception and performance

rather than physical reality. Recent advances in multisensory

perception show that human observers actively integrate sensory

signals frommultiple modalities to enhance their performance. This

research provides us with experimental paradigms that enable us to

obtain robust performance measures, and with formal models

against which experimental data can be tested.

In experiment 1, we show that kinematic and auditory motion

cues are not only detected independently but effectively integrated

so that when both cues are present simultaneously human

detection thresholds are consistent with predictions made by an

optimal statistical integration model. Experiments that measure

detection thresholds provide a robust framework to evaluate

whether individual cues contribute to a simulation.

Temporal synchrony is one of the main determinants for effective

audio-visual integration (e.g [44]) and an important determinant of

simulator fidelity [45]. Simultaneity judgements show that the

perception of galvanic vestibular stimulation lags behind vision by

120–160 ms [46]. When the timing of active and passive head

movements relative to visual, auditory and tactile stimuli is

manipulated, delays between 45 ms (passive head movements) and

80ms (active head movements) are necessary for the comparison

stimuli to be perceived as simultaneous with head movements [47].

The kinematic signals in our flight simulator are delayed by

approximately 80 ms relative to control input. The evaluative

framework we propose would be very well suited to test whether

a reduction in kinematic delays would lead to improved detection

performance (experiment 1) or a reduction in tracking error

(experiments 2/3). Reaction time measurements and formal models

that predict response times for multimodal signals from single cues

(e.g. [44]) would be an appropriate methodology.

We argue that fidelity evaluation should be task-specific: Our

experiments show that the contribution of auditory and kinematic

cues signalling aircraft motion depends on the specific task.

Auditory cues can be detected and identified as signalling up or

down motion without prior training. For auditory cues to

contribute to performance in the refuelling basket tracking task,

however, our participants required training (experiments 2 and 3).

Figure 7. Target-tracking error after training. Error bars are SEM. We compare three audio conditions: turbine modulated (A+), turbine static
(A2) and substitute sound (As), and two motion conditions: motion platform on (M+) and off (M2). Pairwise comparisons over both flying conditions
(hard, red; easy, black) show significant differences between the condition where neither audio, nor motion cues (A2M2) help to disambiguate
visual cues in the tracking task and the other conditions.
doi:10.1371/journal.pone.0044381.g007
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The experimental paradigm we propose explicitly evaluates the

contribution of individual cues or cue behaviours to human

performance as an objective fidelity measure. This approach

enables us to evaluate relative performance (and fidelity) changes

that are introduced with additional cues and therefore can directly

aid design decisions.

One of the primary application areas for simulation, in

particular flight simulation, is training. It is essential that task

relevant cues and behaviours that are part of the simulation

contribute to transferrable learning. We used an implicit learning

strategy to train our participants to use audio signals to

disambiguate the visual signal in a reduced fidelity environment.

We show that target-tracking performance of our participants

rapidly improves during learning and that implicitly learned audio

cues improve performance in a final test in the full simulator. Our

data shows that the learning is transferrable across environments

and robust even when the auditory signal is replaced by a very

obviously different signal, which, however, exhibited the same

behaviour. An important parameter of training effectiveness is not

only the final performance for specific tasks, but also the time it

takes to achieve a given target performance. Shams and Seitz [48]

argue that multisensory-training protocols can better approximate

natural settings and are more effective for learning than uni-

sensory training.

Fidelity evaluation forms an important part of the qualification

of flight simulator training devices [12]. Most of this evaluation is

currently based on subjective measures. We make a case for task

specific validation that is based on objective measures of human

performance as part of this qualification process. Objective fidelity

measures do not substitute, but complement, subjective measures

of fidelity.

Our results highlight the need for sensitive and robust

performance measures and test strategies to evaluate whether

individual cues contribute to overall performance. Individual

cues, such as the auditory motion cue, make a statistically

significant contribution to performance only when the same

information is not simultaneously signalled by the motion

platform. We use a sensitive test that measures performance

using a factorial design within individual participants. Subtle

performance differences, such as those induced by the omission

of individual cues, particularly where multiple cues provide

redundant information, are unlikely to be visible in performance

comparisons across groups where intra-individual variability is

likely to mask small effects unless very large group sizes are

used (e.g. [49]). This finding may explain why for many tasks

there are no measurable benefits of the use for motion platforms

to transferable training (review [1]). Methodologies from basic

research in multisensory perception, which provide efficient and

robust paradigms for the evaluation of individual cues to

perception and performance can be adapted to provide

measures of objective fidelity.

Methods

Ethics Statement
The experiments have been approved by the University of

Liverpool ethics committee (reference PSYC09100027). Written

informed consent was acquired from all participants.

Participants
Three distinct groups of 10 participants each, recruited via

opportunity sampling, took part in the experiments.

Experiment 1: age range 19–45 years, mean 26; seven males.

Experiment 2: age range 19–39 years, mean 22; nine males.

Experiment 3: Range= 20–29 years, mean= 22.6, eight males.

All participants reported normal or corrected-to-normal vision

and normal hearing. None had experienced the flight simulator

prior to the experiments.

Apparatus and Materials
The flight simulator. The HELIFLIGHT simulator [43]

based at the University of Liverpool’s School of Engineering was

used for testing in all experiments. The simulation was run using

aircraft-specific modelling software (FLIGHTLAB), running on

PC-based Linux framework.

The flight dynamics model used in all experiments is shown in

figure 8. The model is restricted to up/down movements. The

control input (Xc) could be under computer control (experiment 1)

or controlled via the collective lever by the pilot (experiments 2

and 3). Two parameters govern the flight dynamics: The input

gain was constant in all experiments (Zo = 4.8) while the damping

coefficient (Zw) was set to 20.1 to create difficult to control flight

dynamics or to 20.5 in the ‘easy’ conditions (experiment 2 and 3).

In experiment 1 Zw was set to 20.1.

Visual information was presented via Optivision collimated

displays, with the collimated mirrors approximately 4 feet away

from the participant. The visual display consisted of a simulated

flight path at 1500 ft above ground. In experiment 1 a text

prompting subjects to respond to a stimulus change was displayed

for 500 ms.

In experiments 2 and 3 the display contained a representation of

a tanker plane and refuelling basked (fig. 9).

Auditory stimuli were delivered via loudspeakers in the

simulator capsule at 87.5 dB(A) while the pilots wore sound

attenuating headphones (Flightcom 4DLX (attenuation –24dB).

The audio signal consisted of two components, the rotor sound

and a turbine sound. Both sounds were continuous loops that were

generated under control of a Tucker-Davies-Technologies (www.

tdt.com) TDT RM1 real time processor. The turbine signal pitch

and amplitude was modulated in direct proportion to the control

input (fig. 10 C). The rotor playback speed (and pitch) was always

constant but the rotor signal amplitude co-varied with the control

input Xc (fig. 8). The overall signal level varied by 3dB (86–89

dB(A)) over the full collective range (+2 3dB). The TDT signal

processor was controlled by a separate computer via a network

connection and modulated the auditory signals in real time, delays

due to communication lags were below 20 ms. The auditory signal

was designed such that changes were easily audible: Experiment 1

shows that the detection threshold for the audio signal component

for untrained participants was a control input of 0.42 in, the average

absolute control input during our experiment 2, where novice

pilots were in control of the simulation was 0.91 in.

Kinematic cues were delivered via a Maxcue 600 series motion

platform. Platform motion was restricted to vertical movements,

which were controlled by computer (experiment 1) or under the

control of the participants (experiment 2 and 3). The acceleration

signal (accel in fig. 8) was used to drive the motion platform. A

washout filter was used to deliver realistic motion cues within the

restricted simulator workspace [50]. Figure 10 C, shows measured

acceleration data in response to the control input modulations

used in experiment 1 (fig 10 A). The peak acceleration is well

described by a slope of 0.04 g/Xc (fig 10 D). The kinematic

motion signal is delayed by approximately 80 ms relative to the

onset of the control input.

Other features of the capsule included a realistic helicopter

control set-up, including a collective lever to the left of the pilot’s

seat which was be used for vertical movement of the ‘helicopter’ in

Experiments 2 and 3 and a cyclic control with a top-hat button
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that was used by participants to respond in experiment 1. The

instrumentation panel was off during all experiments.

The simsim. A reduced fidelity ‘simulator simulator’ (simsim)

was used in experiment three to train participants to exploit

auditory cues. The simsim had a flight dynamics model and audio

representation that was identical to the high fidelity simulator, but

did not have a motion platform. Visuals were provided on a single

170 LCD screen and consisted of a vertically moving yellow circle

representing the refuelling basket height and a black cross that had

to be aligned with the circle, fig. 11.

A throttle controller, part of a commercial joystick (Thrust-

master T-Flight Hotas X), was used to control the input to the

heave model. All subjects used their left hand as in the full

simulation.

The target moved at a predetermined path which participants

were required to follow for 15 minute training blocks. The height

variation was defined as a sum of 6 sinusoidal signals, with

frequencies ranging from 0.2 to 0.5 rad/s, each with a different

amplitude and phase shift, giving the path shown in figure 12.

Sound was always played (at around 66 dB(A)) via JBL duet

(www.jbl.com) loudspeakers. All other sound parameters were

identical to those used in the full simulator. Participants were

instructed to follow the target as closely as possible.

Performance evaluation. In experiment 1 participants were

asked to report the direction (up/down) of changes to the auditory

signal, kinematic (motion platform) motion or both. A visual cue in

the centre of the visual display coincided with a signal change and

subjects were required to indicate whether the direction of motion

was up or down by moving a button on the simulator cyclic stick

up or down. Subjects were instructed to respond even if no change

was perceived. Mean correct response rates were computed for

a pseudorandom sequence of control input variations correspond-

ing to collective displacements of 0.1, 0.2, 0.3, 0.4, 0.5 inches,

fig. 10. Each of the 30 conditions (10 levels of auditory, kinematic

and auditory plus kinematic signal modulation) was reported. The

total experiment took less than 30 minutes for each of ten

untrained participants to complete. Trials where no response or

more than one response were given are discounted.

The behavioural task in experiments 2 and 3 was to follow the

path of a refuelling basket attached to the tail of a plane (fig. 9).

The distance between the crosshair on the visual display and the

centre of the target indicated how closely the target was followed.

The vertical trajectory of the basket was predetermined by the

computer (there was no horizontal movement). Flightpaths for

each test point, whilst identical, were designed to be too complex

for participants to learn (fig. 12). A randomised block design was

used for experiments 2 and 3 to control for learning effects.

Figure 8. Schematic diagram of the heave (up/down) model. The control input (XC) directly controls vertical acceleration, velocity and height
via the feedback coefficient Zw. The audio signal modulation is controlled via the control input (XC), the motion platform receives input from the first
feedback loop (accel) while the visual signals directly represent the final model output (height).
doi:10.1371/journal.pone.0044381.g008

Figure 9. The centre visual display seen by participants (Left) in the HELIFLIGHT simulator (right). Participants were instructed to use the
collective lever to control the height of the helicopter, and to keep the W-shaped gull’s wing cross-hair as close as possible to the centre of the
refuelling basket.
doi:10.1371/journal.pone.0044381.g009
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Figure 10. Measured motion and audio parameters in response to the control inputs used in experiment 1. The time course of the
control inputs (Xc) and sample acceleration signals for these five conditions are shown in panels A and B. Straight line fits to measured audio level
and peak acceleration data are shown in panels C and D. The black line in Panel C shows the level of the substitute sound (saxophone tuning note)
while the red line shows amplitude in the simulated turbine condition. The symbol in the centre of the plot shows the sound level that was played
during the static audio condition.
doi:10.1371/journal.pone.0044381.g010

Figure 11. The ‘simulation simulation’ (simsim). The visual display (left) captures only the essentials of the full simulation but both simulations
share an identical flight dynamics model and audio signals. Participants use a throttle lever (right) to position the cross inside the circle. The
simulation did not provide kinematic cues.
doi:10.1371/journal.pone.0044381.g011
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Subject performance was quantified as the median absolute

difference between the target and the actual height. Figure 12

shows a sample flight path (dotted line) and the flown trajectory.

Learning progress in experiment 3 was monitored for all

participants by evaluating linear fits to the mean tracking error

over the four training intervals and the two task difficulty settings.

To ensure that only participants that showed improvements

during the training session are included we defined a minimum

improvement of 0.15 ft mean error to be included in the analysis.
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