
REVIEW
published: 04 March 2020

doi: 10.3389/fonc.2020.00298

Frontiers in Oncology | www.frontiersin.org 1 March 2020 | Volume 10 | Article 298

Edited by:

Valeria Poli,

University of Turin, Italy

Reviewed by:

Andrea Graziani,

University of Turin, Italy

Clelia Madeddu,

University of Cagliari, Italy

*Correspondence:

Federica Calore

federica.calore@osumc.edu

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 29 October 2019

Accepted: 20 February 2020

Published: 04 March 2020

Citation:

Marceca GP, Londhe P and Calore F

(2020) Management of Cancer

Cachexia: Attempting to Develop New

Pharmacological Agents for New

Effective Therapeutic Options.

Front. Oncol. 10:298.

doi: 10.3389/fonc.2020.00298

Management of Cancer Cachexia:
Attempting to Develop New
Pharmacological Agents for New
Effective Therapeutic Options
Gioacchino P. Marceca 1, Priya Londhe 2 and Federica Calore 2*

1Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy, 2Department of Cancer Biology and

Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States

Cancer cachexia (CC) is a multifactorial syndrome characterized by systemic

inflammation, uncontrolled weight loss and dramatic metabolic alterations. This includes

myofibrillar protein breakdown, increased lipolysis, insulin resistance, elevated energy

expediture, and reduced food intake, hence impairing the patient’s response to

anti-cancer therapies and quality of life. While a decade ago the syndrome was

considered incurable, over the most recent years much efforts have been put into the

study of such disease, leading to the development of potential therapeutic strategies.

Several important improvements have been reached in the management of CC from

both the diagnostic-prognostic and the pharmacological viewpoint. However, given the

heterogeneity of the disease, it is impossible to rely only on single variables to properly

treat patients presenting this metabolic syndrome. Moreover, the cachexia symptoms

are strictly dependent on the type of tumor, stage and the specific patient’s response to

cancer therapy. Thus, the attempt to translate experimentally effective therapies into the

clinical practice results in a great challenge. For this reason, it is of crucial importance to

further improve our understanding on the interplay of molecular mechanisms implicated

in the onset and progression of CC, giving the opportunity to develop new effective, safe

pharmacological treatments. In this review we outline the recent knowledge regarding

cachexia mediators and pathways involved in skeletal muscle (SM) and adipose tissue

(AT) loss, mainly from the experimental cachexia standpoint, then retracing the unimodal

treatment options that have been developed to the present day.

Keywords: cancer cachexia, muscle tissue and adipose tissue loss, cachexia mediators, animal models, clinical

trials, therapeutic strategies

INTRODUCTION

Cancer-associated cachexia (CC) is a paraneoplastic syndrome whose outbreak is governed and
driven by inflammation. It involves various organs and is characterized by changes in body
composition (1–3). Although loss of appetite is frequently associated with cancer cachexia,
tissue wasting under cachectic conditions occurs through different modalities compared to those
triggered by starvation, which primarily affects the adipose tissue (AT). The major feature of
cachexia is, instead, represented by loss of skeletal muscle (SM) mass, not necessarily accompanied
by AT wasting (4).
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Loss of muscle mass in cachectic individuals is due to altered
proteostasis, which results from a combination of enhanced
proteolysis and decreased protein synthesis (5, 6). Here, the high
rate of proteolysis largely depends on upregulation of ubiquitin–
proteasome and autophagy–lysosomes pathways, while calpains
and caspases have been found to contribute to a lesser extent,
though valuably. For instance, the calpains-mediated protein
degradation is thought to act upstream of the ubiquitin–
proteasome pathway, thus allowing the release of myofilaments
from the myofibrils and their subsequent ubiquitylation and
degradation (7).

Patients with CC often manifest generalized hypermetabolism
with lower energy intake and higher energy expenditure. In
particular, anomalous increases in resting energy expenditure
(REE) are nowadays considered the major contributor to
energy consumption. In this context, systemic inflammation
and changes in the immune system both represent important
determinants of this condition, albeit the precise mechanisms
remained elusive (8, 9). Increases in energy expenditure are also
explained by enhanced thermogenesis and “browning” of white
adipose tissue (WAT), which consists of a rapid increase of beige
adipocytes (10, 11). Moreover, WAT of cachectic individuals can
undergo to consistent dissolution of fatty acids and glycerol. Such
an event seems to occur in consequence to increased lipolytic
activity of adipose triglyceride lipase (ATGL) and hormone-
sensitive lipase (HSL), two key enzymes involved in catabolism
of triglycerides. On the contrary, some studies suggest that no
significant downregulation in lipogenesis or expression/activity
of lipoprotein lipase (LPL) occur in patients with CC (12, 13).

Incidence and prevalence of CC are not homogenous across
cancer patients, but they rather vary depending on the tumor
type and stage. CC has been mainly associated with incurable
cancers and is highly prevalent at the end of life (14, 15); however,
it can also occur in curable cancers and may be reversed by
properly treating the underlying tumor (16). Meanwhile, this
syndrome is notoriously influenced by additional endogenous
and environmental factors, such as comorbidities, genetic risk
factors, sex, age, and anti-cancer treatment (17–19). A report
based on information provided by two independent studies
showed a prevalence of ∼70% for pancreatic cancer, ∼60%
for gastro-esophageal and head-neck cancers, and 50–40%
for non-small-cell lung cancer, colorectal cancer, and certain
hematological malignancies (20). Similarly, a recent systematic
review (15) reported very high risk (80–90%) of developing
cachexia for patients with liver, pancreatic and lung cancers,
followed by head-neck, gastric and colorectal cancers (60–70%).
On the contrary, patients with thyroid, breast and prostate
cancers and melanoma of the skin represented the groups at
lowest risk (∼20%). In the same study, cachexia was defined for
the first time an orphan disease (15).

Approximately 20–30% of mortalities in cachectic tumor
patients are thought to derive from cachexia rather than from the
tumor burden itself (6, 21). In addition, cachexia can lead to lower
responsiveness to anticancer therapies, worsening of life quality
and poor prognosis in advanced tumor patients (14, 22, 23). In
this regard, it has been reported that treating cachectic patients
with conventional chemotherapeutic regimens further enhances

hypercatabolism of SMs and could cause changes in fat and bone
mass. This would exacerbate the pathological condition, thus
requiring dosage limitation or therapy interruption (3).

Clinically, combinations of metastatic tumor, muscle wasting,
debilitation, and refractoriness to chemotherapy seriously limit
benefits from treatments of cachexia, even when multimodal
options are adopted. Thus, the identification of reliable diagnostic
markers, predictive of CC, is of fundamental importance to
prevent the patient’s physiological decline. According to the most
recent consensus report, published by Fearon et al., the current
standard diagnostic criterion for cachexia is represented by a
weight loss >5% over the past 6 months, or any degree of weight
loss >2% in individuals showing a Body Mass Index (BMI) < 20
or sarcopenia (14). In the same report, a classification criterion
was proposed to clinically subdivide CC into three stages, aiming
to properly treating cachectic tumor patients. In line with the
diagnostic criterion, such classification would be based on three
established parameters of cachexia, i.e., percentage of weight loss,
BMI values and metabolic changes (14). Specifically, patients
manifesting anorexia, impaired glucose tolerance and weight loss
≤5% over the past 6 months would be classified as pre-cachectic.
Patients with systemic inflammation, BMI < 20, weight loss >

5% over the past 6 months and ongoing weight loss of more than
2% would be classified as cachectic. Absence of responsiveness to
anticancer treatments or preterminal cancer stage would instead
determine refractory cachexia (14). However, this classification
cannot currently be given as officially accepted by clinicians,
but is rather to be considered as a proposal under evaluation.
Indeed, additional diagnostic parameters such as hemoglobin
(Hb) and albumin levels were previously proposed (4). The same
parameters were then re-evaluated by two more recent studies,
with the addition of C reactive protein levels (24, 25). However,
none of these were included in the diagnostic definition of CC
neither in its classification by the last consensus, although it was
stated that several other components of cachexia (thus including
the aforementioned ones) should be further evaluated (14).

Interestingly, some research groups investigated on possible
causative genetic variants underlying CC or cachexia-related
appetite loss in cancer patients [e.g., (26, 27)]. Although
these studies put into evidence dozens of single nucleotide
polymorphisms as potentially involved in such processes,
no significant findings were brought out. Moreover, some
discrepancies emerged when results from some of these studies
were compared to one another (26). Nonetheless, a role for
genetics in the pathophysiology of CC cannot be excluded,
since it should be considered that this type of analysis is in its
early stage. Thus, further genome-wide approaches are needed,
considering the complexity and the variability of the syndrome.

From the molecular standpoint, numerous in vitro and in
vivo studies have demonstrated that several pro-inflammatory
cytokines, toll-like receptors (TLRs) and growth/differentiation
factors (GDFs) act as mediators of CC. In general, most of
these molecules are purposely used as signaling molecules in
cell-to-cell communication and mechanisms involved in innate
immunity, and exert pleiotropic effects. For instance, cytokines
are primarily produced by immune cells, although several other
cells of the organism as well as tumor cells are capable to express
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them (28). In the pathogenesis of cancer, the tumor-induced
inflammatory response leads to expression and secretion of a
number of immune-suppressive and pro-inflammatory cytokines
by immune cells, aiming to eradicate tumor cells from the
host (29). However, inappropriate accumulation/regulation of
leukocytes in the tumor site can cause an imbalance between
pro- and anti-inflammatory mechanisms, eventually leading to
chronic inflammation and subsequent immunosuppression (30),
as occurs in advanced cancer patients. As a result, the chronic
presence of such mediators of inflammation in both the tumor
microenvironment and circulation causes systemic deregulations
and metabolic dysfunctions in the host, including CC (2, 29).

MEDIATORS OF CC: WHAT HAVE WE
LEARNED FROM IN VITRO AND IN VIVO

STUDIES

Experimental research on CC has experienced an exponential
increase in terms of gained knowledge during the last three
decades. In particular, the identification of several endogenous
factors functioning as mediators of CC and the uncovering of
their relative mechanisms of action has led to the achievement
of important frontiers in this field of oncology. This has allowed
the development of potential effective pharmacological agents
for the clinical management of this metabolic syndrome (31).
Intriguingly, we now know that several of these effectors share
the same or similar metabolic effects, and that most often they
exhibit synergic effects when administered together. Moreover,
most of them are simultaneously involved in both SM and AT
depletion, though exerting a distinct role depending on the target
tissue (see next section).

Tumor Necrosis Factors
Tumor necrosis factor alpha (TNFα, also known as cachectin) has
long been shown to play a role in murine models of CC (32, 33).
Albeit normally involved in acute phase reaction triggering and
apoptosis, TNFα can also promote tumorigenesis and metastasis,
and has been shown to act as an autocrine growth factor for
various tumor types (34). Early studies showed that TNFα had
the ability to inhibit differentiation of both skeletal myocytes
and adipocytes (35, 36), while it caused reduced protein content
and higher degradation of myofibrillar proteins in differentiated
skeletal myocytes, in a time- and dose-dependent manner (37,
38). However, later experiments demonstrated that TNFα alone
was not sufficient to cause a significant dysfunction of skeletal
myofibers in differentiated myocytes, but a synergic action
with other cytokines, such as interferon gamma (INFγ), was
required to produce valuable effects [e.g., (35, 39)]. More recent
studies have reported similar results for a structural homolog
of TNFα, i.e., TNF-related weak inducer of apoptosis (TWEAK,
also known as TNFSF12), which presents overlapping signaling
functions with the former (40, 41).

Interleukins
Some of the cytokines belonging to the class of interleukins (ILs)
have been shown to significantly contribute to tumor growth
and CC. First and foremost, circulating interleukin-6 (IL-6) is

recognized as one of the main factors leading to the outbreak
of cachexia. For instance, significant concentrations of IL-6
were detected in the serum of cachectic mice transplanted with
a cachexia-inducing colon-26 adenocarcinoma (C26) subtype,
where serum level of IL-6—but not that of TNFα–correlated with
severity of the pathological status (42). Yet, high constitutive
levels of circulating IL-6 caused suppression of muscle protein
synthesis at the initial stage of cachexia in a different murine
model (43). On the contrary, attenuation of the IL-6 signaling
was shown to abolish key features of CC (42, 44), although such
inhibition was not sufficient to reverse the process (43). In a
similar manner, it has been evidenced a role for IL-6 in induction
of energy expenditure and loss of fat mass by promotion of
WAT browning. In fact, the knock-out of IL-6R in cachectic mice
transplanted with B16 melanoma cells showed partial though
significant reduction of WAT browning when compared with
control mice (11). At the same extent, the genetic blockade of IL-
6 was found to be critical in a syngeneic graft model with C26
cancer cells, as it prevented WAT browning and cachexia (11).

Leukemia inhibitory factor (LIF) is another IL-6 family
member, involved in a variety of distinct biological processes
including inflammation, cell growth, differentiation, neural
development, and hematopoiesis (45, 46). As in the case of IL-6,
LIF was previously reported to induce muscle wasting in various
animal models (47, 48). A recent study further demonstrated
the involvement of tumor-secreted LIF in myotube atrophy
in a C26 cancer-induced cachexia model (49). Here, elevated
circulating levels of this interleukin induced expression of
atrophy-related genes. On the contrary, immunological blockage
of circulating LIF prevented the triggering of such phenomenon
(49). LIF has recently been shown to be implicated in cachexia-
associated lipolysis as well (50), whereby interaction between this
interleukin and its cognate membrane receptor LIFR-α caused
enhanced expression of genes involved in lipids catabolism.
Interestingly, the same study revealed a double mechanism of
action for LIF, since it sustained fat mass loss through an equal
combination of peripheral (i.e., directly exerted on adipocytes)
and central (i.e., exerted on the hypothalamus) contributions. In
particular, the latter mechanism of action was counterbalanced
by leptin signaling (50).

Similarly, to IL-6, IL-1 alpha (IL-1α) was initially evidenced
as a factor capable to induce protein breakdown in isolated
SM during systemic inflammation (51). Administration of IL-
1α was found to induce cachexia together with anorexia by
causing accelerated SM protein wasting in a rat model (52).
Accordingly, the pharmacological blockade of IL-1α receptor
reduced tumor growth and slowed down the development of
CC inmethylcholanthrene-induced sarcoma (MCG 101)-bearing
mice (53).

A more recent study demonstrated how IL-1 beta (IL-
1β) increased SM catabolism in a rodent model of CC by
promoting a cachexia-associated gene expression pattern in
the hypothalamic–pituitary–adrenal (HPA) axis, differently from
IL-6 and IL-1α (54). Few other studies on experimental
cachexia have raised the possibility for other interleukins to
be involved in the onset of cachexia, as is the case of IL-
10 and homodimeric IL-12 (55), although with a lesser extent
of evidence.
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Interferon Type II
INFγ, the only member of the type II class of interferons,
has a critical role in innate and adaptive immunity against
viral infections, promotes activation of macrophages and
exerts mild antiproliferative effects on certain cell types (56).
Nonetheless, several studies have reported a role for this cytokine
in enhancement of tumor growth, metastasis (57, 58) and
development of CC (59). Nude mice injected with genetically
engineered ovary tumor cells (CHO) producing murine IFN-γ
developed severe cachexia, contrary to those inoculated with the
parental tumor cell line (60). Accordingly, when mice injected
with CHO/INFγ cells were treated with anti-INFγ monoclonal
antibodies, development of cachexia was prevented (60). In line
with this, early or late treatment of Lewis lung carcinoma (LLC)-
bearing mice with anti-INFγ monoclonal antibodies was shown
to counteract progression of cachexia (61). Importantly, both of
these studies reported that here AT, but not SM, was the main
target of INFγ (60, 61).

MicroRNAs
Over the last decade, several proofs were gained about the
involvement of non-coding RNAs, in particular microRNAs
(miRNAs), in loss of lean and fat mass under cachectic
conditions. In their mature form, miRNAs are ∼21–23
nucleotides in length and exert a well-recognized role in
gene regulation. In particular, miRNAs have been extensively
studied as biomarkers for histological classification, disease
prognosis, clinical response to treatments and diagnosis of
cancer (62, 63). Besides exerting their action within the cell,
miRNAs can be released into extracellular fluids and are
referred to as extracellular or circulating miRNAs. At the
same extent of intracellular miRNAs, circulating miRNAs
are capable to modulate gene expression in recipient cells,
determining, adjusting or deregulating cells’ physiological status
(64). Moreover, secreted miRNAs can have a role in cell-to-cell
communication [e.g., (65, 66)]. As CC mediators, miRNAs
seem to exert their action by favoring cell apoptosis, protein
degradation, or causing downregulation of anabolic processes.
For instance, circulating miR-203a-3p secreted by metastatic
human colorectal cancer contributed to exacerbation of
myopenia in pre-operative cancer patients by targeting survivin
(BIRC5), a negative regulator of caspase-dependent apoptosis
(67). MiR-21-5p and−206, instead, played an important role
in the onset of muscle atrophy in mice under distinct muscle-
debilitating conditions, including CC. This was due to the
miRNA-mediated inhibition of the translational initiator factor
eIF4E3 and transcription factor Yin Yang 1 (YY1), involved
in mitochondrial biogenesis (68). Yet, mir-155-5p secreted
by human breast cancer cells was proven to promote WAT
browning and increased BAT thermogenesis but not lean mass
loss. This was due to the targeting of peroxisome proliferator-
activated receptor gamma (PPARγ), a well-known regulator of
glucose metabolism and fatty acid storage (69).

Toll-Like Receptors
Toll-like receptors (TLRs) are other essential components of
the innate immune response. TLRs are present either on the

cell surface or in endosomes, and are capable to interact
with microbial components, danger-associated self molecules or
non-self nucleic acids presenting well-defined patterns. Once
stimulated by such interactions, TLRs activate two possible
signaling pathway leading to downstream immunogenic gene
expression (70). One recent study has evidenced differential
expression of TLR genes in cachectic LLC-bearing mice
compared to non cachechtic controls (71). Moreover, results
from the same study suggested that increased expression of TLRs
mRNA may depend on factors secreted by tumor cells, and that
different tumors, such as LLC and C26, are likely to induce
distinct pattern of TLR expression.

Among TLRs, TLR4 belongs to the cell-surface group and
is well-known to possess high affinity for lipopolysaccharide
(70). TLR4 was initially shown to act as a master regulator
of inflammatory muscle catabolism, as its exposition to
lipopolysaccharide caused significant loss of myofibrillar proteins
and mitochondria in both cultured and in vivo murine muscle
cells (72). Later, this receptor was demonstrated to be directly
implicated in myotube atrophy in LLC-bearing mice, causing
cachexia. In this murine model, activation of TLR4 was caused
by cellular uptake of high levels of heat shock protein 70 (Hsp70)
and Hsp90, secreted by tumor cells through extracellular vesicles
(EVs) (73). In turn, activation of TLR4 correlated with evident
muscle wasting and increased levels of circulating TNFα and IL-
6 (73). TLR4 was also reported to be involved in remodeling
of AT in LLC-bearing mice. In fact, it was demonstrated that
either genetic ablation or pharmacological inhibition of TLR4 in
cachectic mice caused suppression of adipocytes atrophy and also
reduced macrophage infiltration into the AT (74).

TLR7/8 is mainly located at the endosomal level and
recognizes viral single-stranded RNA molecules (70). TLR7/8
was found to have a significant impact in experimental CC
after being activated by EV-derived cargo. Specifically, our group
demonstrated that murine TLR7 was capable to interact with
EV-derived miR-21-5p secreted by lung and pancreatic cancer
cells. Once activated, TLR7 induced muscle loss by promoting
apoptosis in cultured myocytes in a JNK-dependent manner.
On the contrary, myocytes from TLR7−/− LLC-bearing mice
showed significantly reduced cell death (66). Recent experiments
confirmed these results (75) and demonstrated that also tumor-
secreted miR-29a-3p was capable to interact with murine TLR7,
inducing cell death even with higher effectiveness than miR-21-
5p (75).

A role in development of cancer cachexia has been recently
suggested for TLR5 as well (76). In fact, activation of this receptor,
which is expressed on the plasmatic membrane of certain gastric
cancer cells, seemed to contribute to the onset of CC, possibly due
to TLR5-mediated overexpression of LIF (76).

Cytokines of the Transforming Growth
Factor β Superfamily
Besides pro-inflammatory cytokines and TLRs, regulatory
proteins belonging to the transforming growth factor β (TGFβ)
superfamily of cytokines have been identified as potential actors
exacerbating SM atrophy in cachexia. Among these, Myostatin
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(Mstn) and Activin A (ActA) present a partial overlap in their
signaling function, since both are capable to interact with either
of the Activin type II receptors (ActRIIA or ActRIIB), expressed
on the surface membrane of skeletal myocytes (77). Mstn (also
known as GDF8) is primary synthesized by SM cells and
functions as an autocrine factor causing a strong downregulation
ofmyogenesis (78, 79), while inhibition of its expression/function
leads to a dramatic increase in muscle mass (80, 81). Following
this line, later studies demonstrated that Mstn mRNA expression
levels increased up to ∼50% in experimental models of CC,
while expression levels of MyoD, a myogenic transcription
factor indispensable for myoblast fusion and SM development,
decreased of ∼45% in comparison with controls (82, 83). In
contrast, when synthetized antisense RNA oligonucleotides were
used to target the Mstn mRNA in vivo, expression levels of both
Mstn and MyoD tended to revert toward the normal phenotype,
and led to a significant increase in muscle mass (83).

Differently from Mstn, ActA is expressed by a variety of
cell types, has a wide range of regulatory functions and is
negatively modulated by several factors including Inhibin (Inhb)
and Follistatin (FS) (84). In the context of muscle wasting,
concentrations of circulating ActA seem to be particularly
increased during acute inflammation or in certain metastatic
cancers (85, 86). Since ActA can reproduce the biological
action of Mstn by binding to the ActRII receptors, knockdown
experiments for Inhb caused dramatic loss of both lean and fat
mass in mice, leading to death (87). Similarly, increase of local
or circulating concentrations of ActA induced by direct methods
caused muscle atrophy in treated mice (88). On the contrary,
the pharmacological blockade of ActRIIB or administration of its
soluble decoy forms (sActRIIB) in multiple rodent models of CC
reversed atrophy of skeletal and cardiac muscles and prolonged
survival of treated mice, albeit it had no effects on tumor growth
or loss of AT (87, 89).

Parathyroid Hormone-Related Peptide
Two recent works highlighted the role of parathyroid hormone-
related peptide (PTHrP) in WAT browning under cachectic
conditions (10, 90). Besides being expressed in kidney and bone
(91), PTHrP can be overexpressed by many tumor types and
acts as an endocrine effector capable to induce thermogenic
gene expression in adipocytes. Moreover, its presence in
the circulation correlates with a greater degree of wasting
in individuals with metastatic cancer (10). PTHrP induced
thermogenesis and hypermetabolism of the AT in a murine
model of LLC. The evidence was given by the fact that treatment
with PTHrP antibodies strongly prevented the tumor-induced
AT browning in comparison to the control group (10). In
addition, treatment with PTHrP antibodies also impaired LLC
tumor-induced muscle wasting, atrophy of muscle fibers, and
atrophy-related gene expression in treated mice (10). In a later
study, the same research group corroborated the previous results
demonstrating a key role for the PTHrP receptor (PTHR) in
triggering browning and thermogenesis following the binding to
its ligand (90). Mice knockout for PTHR in their fat tissue were
resistant to cachexia driven by the LLC tumor.

Adipokines
Zinc-α2-glycoprotein (ZAG) is an adipokine functioning as a
lipid mobilizing factor (LMF). ZAG is usually expressed by
differentiated adipocytes (92), albeit it was reported that other
tissues express it as well (93), including several cancer cells
(94). ZAG expression has been reported to be markedly elevated
in AT of mice transplanted with cachexia-inducing tumor
(93), whereby this phenomenon has been positively correlated
with increased lipolysis and subsequent fat loss (95, 96). As a
counterevidence, knockout of ZAG caused significant increases
in bodyweight of mice fed with standard or lipid-rich diet when
compared with wild-type controls. Similarly, the same group
of ZAG-deficient mice showed significant decrease in adipocyte
lipolysis in response to treatment with agents that increase
cAMP (97). One study carried out on cachectic patients with
gastrointestinal cancer showed that ZAG is primarily produced
and secreted by WAT, and correlates with nutritional status in
both malignant and nonmalignant conditions. However, it seems
that neither WAT nor tumor cells secretory activity lead to
significant increases of circulating levels of this adipokine. Thus,
ZAG should be considered as a lipolysis-promoting factor locally
produced (94).

PUTTING PIECES TOGETHER: PATHWAYS
UNDERLYING CC

Dysregulated Pathways in SM
From a systematic standpoint, all the aberrant metabolic features
characterizing CC are caused by activation of few distinct
signaling pathways, triggered by the interaction between the
aforementioned mediators and their cognate receptors.

Under normal conditions, myofibrils, the main structural
components of myocytes, physiologically undergo to a balanced
protein turnover. Under cachectic conditions, instead, excessive
rates of myofibril breakdown and low rates of protein synthesis
are typically observed in patients’ SM, resulting in muscle
weakness, fatigue, reduced tolerance to chemotherapy and low
quality of life (QoL) (1, 3). Here, the ubiquitin-proteasome
pathway, which takes part in breakdown of short-lived and
regulatory proteins, is known to play a relevant role (98).
As its name suggests, this proteolytic pathway is essentially
dependent on the presence of active enzymes involved in
protein ubiquitylation, which include the well-known family
of E3 ubiquitin ligases. Among these, muscle RING finger-
containing protein 1 (MURF1, also known as TRIM63) and
muscle atrophy F box protein (MAFbx, also known as Atrogin-
1) are defined as muscle-specific E3 ubiquitin ligases and are
the most widely studied in the case of cachexia-associated
muscle loss. Both these enzymes mediate myofibrillar protein
breakdown by acting on several components of the sarcomeric
thick filament, including myosin heavy chain (MHC), and are
thought to interfere with processes related to protein synthesis
(99). The proinflammatory cytokines TNFα, TWEAK and IL-1
have been shown to cause increased expression of both these E3
ubiquitin ligases via the nuclear transcription factor kappa B (NF-
kB) signaling and the p38/CCAAT/enhancer-binding protein β
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(p38/C/EBPβ) pathway, respectively (35, 41, 100). Activation
of the NF-kB signaling was reported to cause overexpression
of paired box 7 (PAX7) in myocytes (101). The latter is
a transcription factor playing an essential regulatory role in
myogenesis, being responsible for repression of MyoD and
myogenin transcriptional activity. In line with this, it has been
demonstrated that NF-κB–dependent upregulation of PAX7
impairs the regenerative ability of myogenic cells and drives
toward muscle wasting under tumor conditions (101).

A different signaling pathway is instead activated by IL-
6. In particular, this interleukin signals via its membrane
receptor IL-6R, which in turn forms a heterodimer with its
transducing subunit (gp130). This leads to activation of the
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway, with subsequent translocation of activated
STAT3 into the nucleus. This event contributes to the regulation
of expression of the E3 ubiquitin ligases and autophagy
genes (102). STAT3 also induces expression of C/EBPδ, a
transcription factor that promotes expression of Mstn under
cachectic conditions (102). Indeed, a recent work revealed that,
at the same extent of IL-6, TNFα, and INFγ synergistically
activate STAT3 by promoting its JAK-mediated phosphorylation
independently from IL-6 (103). This demonstrates that NF-kB
and STAT3 both respond to the same upstream signaling, and
thus cooperate amplifying the signal and promoting expression
of pro-cachectic genes.

Although the precise mechanism have remained elusive, it
is known that proinflammatory cytokines also suppress activity
of the RAC serine/threonine-protein kinase (AKT), which is
downstream of insulin signaling and central to many cellular
processes. AKT negatively modulates the transcriptional activity
of forkhead box protein O1 (FoxO1) and FoxO3, which control
the expression of genes involved in metabolic homeostasis,
including that of MURF1 and MAFbx (104, 105). In particular,
under physiological conditions, AKT phosphorylates the FoxOs
proteins, preventing their nuclear translocation. Moreover, AKT
inhibits activity of tuberous sclerosis complex 2 (TSC2), a main
inhibitor of the mammalian target of rapamycin complex 1
(mTORC1), which is notoriously involved in functions like
protein synthesis, pentose anabolism and blockage of autophagy
(106). To the contrary, cytokine-mediated suppression of
AKT causes downregulation of mTORC1 activity and favors
FoxOs dephosphorylation and nuclear location, thus promoting
miofibrillar degradation (107, 108). Interestingly, it was recently
reported that FoxOs also induce expression of a third muscle-
specific E3 ubiquitin ligase, termed specific ofmuscle atrophy and
regulated by transcription (SMART) (108).

One further negative regulator of FoxO3 is the peroxisome
proliferator-activated receptor gamma coactivator 1-alpha
(PGC1α), a master regulator of mitochondrial biogenesis
and transcriptional coactivator regulating expression of genes
involved in energy metabolism (109). PGC1α was demonstrated
to be downregulated in muscles of cachectic tumor-bearing
mice, while its transgenic expression allowed muscle recovery in
vivo (109).

Aberrant activation of signaling pathways downstream of
TLRs is also known to contribute to cancer progression

and overproduction of proinflammatory cytokines underlying
cachexia (110). Some studies demonstrated that the notorious
TLR/myeloid differentiation factor 88 (TLR/MyD88) signaling
(70) mediates skeletal muscle wasting during CC (71, 111).
Previous studies suggested that the mechanism involved in
such phenomenon is the TLR/MyD88-mediated activation
of NF-kB signaling (112–114). Indeed, in vivo experiments
carried in a recent work partially confirmed such hypothesis
by demonstrating that ablation of MyD88 in LLC-bearing
mice inhibited tumor-induced activation of NF-kB in SMs
(71). However, the authors showed that most of muscle
mass loss in this murine model was due to activation of
the TLR4/MyD88/inositol-requiring protein 1α (IRE1α)/X-box-
binding protein 1 (XBP1) axis. Both IRE1α and XBP1 are linked
to the unfolded protein response signaling, which is activated
following accumulation of misfolded proteins or dysregulations
in calcium levels within the SM. In particular, the spliced form
of the transcription factor XBP1 was demonstrated to be a
potent promotor of expression of proinflammatory cytokines and
autophagy-related genes, while its ablation resulted in significant
attenuation of loss of lean mass both in vitro and in vivo.
Importantly, the authors showed that this mechanism is likely
to involve not only TLR4, but also some other TLRs, including
TLR7 (71).

Through their binding to ActRII receptors, TGFβ-family
members like Mstn and ActA promote protein degradation
via p38/JAK-mediated phosphorylations and activation of small
mother against decapentaplegic (SMAD) signaling (115). In
particular, it is known that, in the case of myoblasts and
myocytes, Mstn specifically interacts with the ActRIIB receptor,
subsequently inducing the assembly of type-I receptor ALK4.
This in turn leads to activation of the SMAD2/3/4 complex
(115, 116). Once assembled, the SMAD complex is translocated to
the nucleus and acts as a transcription factor favoring expression
of genes related to protein degradation and inhibiting that of
genes involved in protein synthesis and proliferation (115).

As previously stated, other important pathways are involved
in cachexia-associated muscle loss. Among these, pathways
of autophagy certainly represent other important and widely
activated mechanisms that underly protein breakdown in CC.
However, such pathways are far less characterized than those
related to ubiquitin-proteasome pathway. Some studies showed
that markers of autophagy like Beclin-1, (an indicator of
autophagy induction), p62 (a marker of lysosomal degradation)
and the two forms of microtubule-associated proteins 1A/1B
light chain 3B protein (LC3B-I and LC3B-II, used to measure
autophagosome abundance) are overexpressed in SM of tumor-
bearing animals and cancer patients (117–120). However, in
spite of the increased autophagic production and activity, the
findings gained so far showed impairment of autophagosome
clearance in the muscle of cancer hosts, suggesting that the
process of lysosomal degradation does not come to complete
cargo degradation (117, 119, 120). A further interesting finding
was the phosphorylation and subsequent activation of Unc-51
like autophagy activating kinase 1 (ULK1), a driver of autophagy,
in SMs of cachectic mice (121). Such an event was suggested to
be mediated by upstream activation of p38, which was previously
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FIGURE 1 | Notorious molecular mechanisms underlying skeletal muscle wasting during cancer cachexia. Atrophy of skeletal muscle in cancer cachexia is due to

aberrant activation of specific signaling pathways, consequent to the binding of factors secreted by the tumor, the stroma or the immune system to their cognate

receptors. Most of such signaling pathways converge toward activation of selective transcription factors, causing their nuclear translocation and binding to promoters

of cachexigenic genes. These include genes encoding cytokines [e.g., tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)], inflammation-related receptors [e.g.,

toll-like receptor 4 (TLR4) and TLR7], myokines [e.g., myostatin (Mstn)], muscle-specific E3 ubiquitin ligases and autophagy-related proteins. Such events potentiate

inflammatory processes at the local level and cause the breakdown of myofibrillar proteins, impairing the contractile function of skeletal muscles. Several

cachexia-inducing factors are known to exert their cachectigenic effect by acting synergistically, as in the case of TNFα and interferon gamma (INFγ). To the contrary,

downregulation occurring in the insulin (Ins) and insulin growth-like factor (IGF) signaling determines a decrease in mTOR-dependent protein synthesis, due to

upstream downregulation of RAC serine/threonine-protein kinase (AKT) activity. In normal conditions, AKT functions also as a negative regulator of forkhead box

protein O1 (FoxO1) and FoxO3 transcription factors, preventing their nuclear translocation. Thus, consequent to AKT downregulation under cachectic conditions, both

these FoxOs localize into the myonucleus and induce transcription of autophagy components and muscle-specific E3 ubiquitin ligases.

Peroxisome-proliferator-activated receptor-gamma co-activator 1-alpha (PGC1α), overexpressed during cancer cachexia, is known to inhibit FoxO3 binding to the

DNA and cause enhance expression of genes involved in energy metabolism and mitochondrial biogenesis. Upregulated nodes are colored in pink and connected

with other nodes through continuous edges. Downregulated nodes are colored in azure and connected with other nodes through dash-dot edges. Dashed edges

represent connections between transcriptional/co-transcriptional factors and gene expression. ActA, activin A; ActIIR, activin type 2 receptor; ALK4, activin receptor

type-1B; C/EBP, CCAAT/enhancer binding protein; c-Jun, proto-oncogene c-Jun; Gp130, glycoprotein 130; Hsp, heat shock protein; IL-1a, interleukin 1 alpha;

IL-1R1, interleukin 1 receptor 1; IL-6R, IL-6 receptor; INFGR, INFγ receptor; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; LIF, leukemia inhibitory factor; LIFR, LIF

receptor; miR, microRNA; mTORC1, mammalian target of rapamycin complex 1; MyD88, myeloid differentiation factor 88; NF-kB, nuclear transcription factor kappa

B; p38, p38 mitogen-activated protein kinase; PI3K, Phosphoinositide 3-kinase; SMAD, small mother against decapentaplegic; STAT3, signal transducer and

activator of transcription 3; sXBP1, spliced isoform X-box-binding protein 1; TNFR, tumor necrosis factor receptor; TNFRSF12A, TNF Receptor Superfamily Member

12A; TSC2, tuberous sclerosis complex 2; TWEAK, TNF-related weak inducer of apoptosis; UCP, uncoupling protein.

reported to cause activation of C/EBPβ. The molecular pathways
involved in SM atrophy are depicted in Figure 1.

Dysregulated Pathways in AT
To date, knowledge about pathways involved in loss of AT
under cachectic conditions is markedly less detailed than that
available for loss of SM. However, it is now widely recognized
that excessive degradation of fatty acids and energetic imbalance

in AT can contribute to the destructive impact of cachexia on
tumor hosts.

Under physiological conditions, AT lipolysis is an essential
catabolic process that provides lipids and energy to tissues and
organs following opportune stimulations. In particular, this
process occurs after interaction between certain molecules
(including β-adrenergic neurotransmitters) and their
cognate G-protein-coupled receptors (GPCRs) expressed in
adipocytes. Downstream of this event, a number of adenosine
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triphosphate (ATP) molecules are converted to cyclic adenosine
monophosphate (cAMP) by GPCRs-stimulated adenylyl
cyclases. Increased levels of cytosolic cAMP eventually lead to
activation of protein kinase A (PKA) by phosphorylation, which
in turn leads to phosphorylation of both HSL and perilipin-1, a
protein acting as a protective coat for lipid droplets. This implies
activation of HSL and its translocation to the surface of lipid
droplets, resulting in greater access to triglycerides and enhanced
lipolysis (12, 13). ATGL represents another key point of the
lipolytic process, since its enzyme kinetics determines the rate
limiting of triglycerides catabolism. Specifically, ATGL is mainly
responsible for the first step of triglycerides hydrolyzation, which
leads to the release of a single fatty acid and diacylglycerol
(DAG). The other two steps of lipolysis are then completed by
HSL and monoacylglycerol lipase (MGL), respectively (12).

Under conditions of chronic systemic inflammation, several
events are known to occur affecting the AT metabolism,
including suppression of appetite, enhancement of lipolysis
and inhibition of LPL (122). The latter, in particular, has a
dual function, being involved in receptor-mediated lipoprotein
uptake and degradation, and hydrolysis of serum triglycerides
in non-esterified fatty acids and 2-monoacylglycerol for tissue
utilization. LPL deficiency leads to hypertriglyceridemia, while its
upregulation causes insulin resistance and can promote obesity
(123). Nonetheless, results from some studies clearly indicate that
depletion of triglycerides in cachectic individuals is not due to
impairments in LPL activity nor in lipogenesis, but depends on an
increase in lipolysis, confirmed by high expression rates of HSL
(124, 125).

Among procachectic cytokines, TNFα was shown to
cause increased levels of phosphorylated HSL in adipocytes
through activation of ERK, downstream of the MAPK
signaling. Importantly, ERK-mediated activation occurred
by phosphorylation on Ser 600 of HSL, which corresponds
to the phosphosite targeted by cAMP-activated PKA (126).
Instead, TNFα was not reported to induce any change in
expression levels of HSL. Similarly, to TNFα, ZAG was
demonstrated to cause hyperactivation of HSL by leading
to increases in cAMP levels and subsequent activation of
adenylyl cyclase in a dose dependent manner (93, 127).
Moreover, differently from TNFα, ZAG was reported to induce
upregulation of expression of Gαs (a G-protein subunit involved
in activation of adenylate cyclase pathway) and HSL, and
downregulation of expression of Gαi (a G-protein subunit
involved in inhibition of adenylate cyclase pathway) (128).
Interestingly, some experimental data suggested that ZAG
expression in adipocytes might be negatively regulated by
TNFα (92).

Further evidence about involvement of procachectic cytokines
in fat loss during cachexia was found for IL-6. High levels of
this cytokine in the plasma of cachectic mice correlated with
enhanced AT lipolysis and increased levels of circulating free fatty
acids. These changes were shown to be associated with activation
of IL-6 signaling in WAT, which caused downstream activation
of STAT3 and p38 (11, 129). All the above mentioned pathways
are represented in Figure 2.

Enhanced Thermogenesis During CC
As outlined above, most of cachectic cancer patients experience
involuntary excessive energy expenditure. A considerable
fraction of this phenomenon has been attributed to aberrant
activation of thermogenesis, which, in general, involves the
interplay of two main actors, i.e., SM and the brown adipose
tissue (BAT) (130). In both cases, this event seems to depend
on expression of high amounts of uncoupling proteins (UCPs).
UCPs are located on the inner membrane of mitochondria and
redirect them toward heat generation instead of ATP synthesis
(130). In particular, UCP1 seems to be prevalent in BAT, while
UCP2 and UCP3 would be primarily expressed in SM (131, 132).

Browning of white adipocytes is the process by which
adipocytes of the WAT are transformed into beige adipocites,
consequently to endocrine, paracrine, or autocrine stimulation.
This phenotypic transition seems to occur during the initial
stages of CC, preceding SM atrophy (133). Several reports
have argued that WAT browning mainly relies on increased
expression of UCP1 in mitochondria of white adipocytes [e.g.,
(134)]. Nonetheless, some recent studies have remarked the non-
consistency of these results for certain models of experimental
cachexia and questioned the real importance of UCP1 in such a
context. A possible key role was suggested for the transcriptional
coactivator cell death inducing DFFA-like effector A (CIDEA),
which is highly expressed in WAT and has a role in lipid
metabolism (2). However, this topic has remained controversial.

Both PTHrP and IL-6 were reported to drive the expression
of thermogenic genes in vivo, including UCP1, CIDEA, and
PGC1α (10, 90). Consistent with this, neutralization of PTHrP
or IL-6 in cachectic mice prevented WAT browning, rescued
the cachectic phenotype and blocked the increased expression
of UCP1 in subcutaneous AT of C26-bearing mice (10, 11).
Moreover, silencing of IL-6 reversed the enhanced mitochondrial
respiration in WAT of tumor-bearing mice toward the normal
condition (11). However, it remained to understand whether
these two factors induced thermogenesis by direct or indirect
action on WAT/BAT.

Concerning PTHrP, the evidence that knockout of PTHR in
AT blocked adipose browning and wasting provided a strong
validation of direct action of PTHrP on bothWAT and BAT (90).
Surprisingly, the same study demonstrated that knockdown of
PTHR in AT also prevented lean mass depletion and improved
muscle strength. This raised the question whether PTHrP exerts
a direct action even toward SM or not. Indeed, besides the
well-known cross-talk between AT and SM (2, 135), a direct
effect of PTHrP on myocytes could be also speculated. In fact, a
previous report demonstrated that PTH1R expression is required
for myocyte differentiation and is highly expressed by CD34-
or PAX7-positive myosatellite cells in both mice and humans
(136). In the same study, it was shown that myotubes also
express PTH1R, albeit to a much lesser extent than differentiating
myoblasts (136).

Regarding the role of IL-6 in WAT browning, elegant
experiments carried on an in vitro model of pre-brown
adipocytes demonstrated a direct, though modest, effect of
IL-6 on UCP1 expression (11). Nonetheless, mechanistic
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FIGURE 2 | Molecular mechanisms driving adipose tissue loss and remodeling during cancer cachexia. Similarly to the case of skeletal muscle wasting, the

combination of abnormally activated pathways including β-adrenergic signaling, cytokine- and toll-like receptor (TLR)-mediated inflammation, and parathyroid-related

peptide (PTHrP) stimulation, leads to enhanced lipolysis and thermogenesis of the AT in cancer cachexia. In particular, binding of interleukin-6 (IL-6) and tumor

necrosis factor alpha (TNFα) to their respective membrane receptors induce high phosphorylation levels of enzymes involved in catabolism of triglycerides, i.e.,

adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), implying higher rates of their enzyme activity. Interaction between zinc-α2-glycoprotein (ZAG)

and beta-3 adrenergic receptor is known to induce even stronger lipolytic effects than those mediated by IL-6 and TNFα, partly due to induction of expression of

lipolytic genes (including G proteins of the type Gαs) and suppression of expression of Gαs, an inhibitor of β-adrenergic signaling. Moreover, ZAG promotes

phosphorylation of perilipin-1, which results in wider exposition of lipid droplets to the catabolic action of ATGL, HSL, and monoglyceride lipase (MGL). A role in

enhanced lipolysis during cancer cachexia has been demonstrated also for TLR4, although precise mechanisms remained largely elusive. Meanwhile, such pattern

recognition receptor seems to exert an important role during cachexia-driven white adipose tissue browning, along with IL-6 and PTHrP, promoting expression of

thermogenic genes, such as uncoupling protein 1 (UCP1), and favoring mitochondrial biogenesis. In the present illustration, the process of browning proceeds from

the left to the right side of the figure, with the left side presenting bigger lipid droplets and almost mitochondria, while the right side presenting a large number of small,

sparse lipid droplets and mitochondria. Upregulated nodes are colored in pink and connected with other nodes through continuous edges. Non-deregulated nodes

are represented as semi-transparent nodes. Dashed edges represent connections between transcriptional/co-transcriptional factors and gene expression. ADCY,

adenylate cyclases; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; DAG, diglyceride; FA, fatty acid; gp130, glycoprotein-130 IL-6R, IL-6

receptor; JAK, Janus kinase; MAG, monoglyceride; MAPK, mitogen-activated protein kinase; PTHR, parathyroid receptor; STAT, signal transducer and activator of

transcription; TAG, triglyceride; TNFR, tumor necrosis factor receptor.

insights regarding this aspect remained elusive. Indeed, IL-
6 was suggested to mediate thermogenic effects on BAT
through activation of p38, which is known to induce increased
mitochondrial biogenesis and expression of thermogenic genes
(137, 138). Another possible mechanism would involve the
IL-6-mediated activation of AMP-activated protein kinase
(AMPK), which in turn would cause an increase in hydrolase
activity of ATGL and inactivation of mTORC1 (129). However,
the dominant idea is that IL-6-mediated enhancement of
thermogenesis and lipolysis is the outcome of both direct and
indirect actions of this cytokine on BAT and WAT (139–142).

A role in increased lipolysis and WAT browning was recently
demonstrated for TLR4 as well (74). Precisely, LLC-bearing
mice showed enhanced lipogenic activity and AT remodeling,

while cachectic mice knockout for TLR4 showed reduced
thermogenic activity BAT, underexpression of UCP1, and lower
phosphorylation levels of p38 compared to the former group (74).
This may suggest a potential connection between TLR4, MAPK
signaling (70) and transcription of UCP1. Pathways related to
WAT browning are represented in Figure 2.

Discrepancies: From the Laboratory to the
Clinical Practice
In spite of the considerable knowledge we have lastly gained
regarding CC, the clinical practice still lacks standard diagnostic
criteria and treatment guidelines. One of the main reason for
such difficulties certainly reside in the multifactorial nature of
this syndrome, and thus in its intrinsic complexity. On the other
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hand, however, the scarceness of experimental models of CC
capable to accurately recapitulate the features of human CC in
various tumor types has represented amajor limitation in relation
to this issue.

Most preclinical studies conducted so far have been mainly
based on exploitation of few ascertained animal models of
cachexia-inducing tumors, including LLC, C26 and Yoshida
ascites hepatoma (YAH 130) (143). These were chosen and
maintained as general models of CC owing to the broad
documentation in their regard. However, a lot of skepticism have
been lastly raised about their actual potential to be employed
as reliable surrogates of human CC. In particular, it is now
becoming predominant the opinion that the failure of most anti-
cachexia therapeutics to reach primary endpoints during clinical
trials (see the next section) is at least in part attributable to the
limitations imposed by the use of inappropriate experimental
models (143). In line with this reasoning, a number of recent
studies have demonstrated the relative inconsistency of such
models, since their molecular characterization at the tissue level
revealed quite different patterns of gene expression between
animal models and human patients [e.g., (144, 145)].

In this context, genetically engineered mouse (GEM) models
of CC are being evaluated as a relevant solution to overcome such
restrictions. GEM models currently tested for preclinical studies
avail of the tamoxifen-inducible conditional genetic mutation
system Cre-ER (146). Adenovirus-containing Cre-ER encodes
for a fusion protein in which a mutated hormone-binding
domain of the estrogen receptor (ERT or ERT2) is fused to Cre, a
bacterial site-specific recombinases that catalyzes recombination
between well-defined “loxP” sites flanking the gene of interest
(146–148). As this system relies upon the presence of tamoxifen-
inducible promoters, it allows the spatio-temporal control of
Cre expression, with the subsequent deletion of genes flanked
by loxP sites. In contrast with tumors developed by traditional
CC models, tumors arising in GEM models closely mimic
the histopathological and molecular features of their human
counterparts and spontaneously progress toward metastases
and cachexia.

A valuable GEM model of CC is that engineered by Talbert
et al. (144), which was proved to closely resemble the typical
features reported for cachexia induced by pancreatic ductal
adenocarcinoma (PDA) in human patients. The mouse model,
named KPP (Kras+/G12D, Ptf1a+/ER−Cre, Ptenf/f), exhibited
progressive wasting of SM, heart and AT mass, similar to that
experienced by humans, and gene ontology of its SM-derived
mRNAs resembled that of PDA patients (144). By contrast,
this model displayed loss of normal pancreatic parenchyma,
which could significantly contribute to weight loss in KPP mice.
Furthermore, it is likely that such a model is selective for PDA,
and thus not suitable for studying cachexia associated to other
tumor types (144). In the same study, the GEM model KPC
(Kras+/LSL−G12D, Trp53+/R270H, Pdx1+/Cre) was reevaluated.
Indeed, KPC is a GEMmodel of PDA (149) that has been recently
considered a reliable model of cachexia by a number of studies
[e.g., (11, 150, 151)]. Nonetheless, Talbert et al. demonstrated that
changes in size and tissue mass of KPC mice did not correlate
with PDA progression, and that patterns of gene expression in

their SM did not resemble that of PDA patients (144). Thus,
the KPP genotype appears to be more robust for research
on CC compared with the KPC model. Further examples of
potentially useful GEM for research on CC are the KL model
(KRASG12D/+; LKB1f/f), recently used to study the metabolic
profile of advanced non-small cell lung cancer (NSCLC) (152),
and the lately developed KPC:APC model (APCf/f; KRAS+/f;
CDX2-Cre-ERT2), which aims to recapitulate features of human
colorectal carcinoma (CRC) with mutated KRAS and leads to
development of CC (153).

Orthotopic models of patient-derived cancer cells (PDCC)
may represent another valuable option for research on CC.
Here, tumor cells derived from human patients are seeded
into the corresponding tissue of immunocompromised animal
models. This has the obvious advantage of allowing the study of
organ-specific tumor microenvironment with increased accuracy
and higher genetic heterogeneity and stability compared to
the traditional xenograft models, similarly to GEM models.
In particular, this was demonstrated for both orthotopic and
subcutaneous engraftment of patient-derived pancreatic tumor
(154, 155). However, some data suggested that orthotopic
engraftment of pancreatic tumor cells within mice’s pancreas
could induce systemic inflammation distinct from that observed
in subcutaneous engraftments, leading toward more severe SM
wasting [e.g., (154)].

One limitation of orthotopic models of CC is that here
engrafted PDCC maintains their metastatic potential (154,
156), thus preventing researchers to study stages related to
development and progression of cachexia. Moreover, lean
mass loss in these models may be the result of post-
surgical inflammation instead of tumor-induced tissue loss. Yet,
the exploitation of immunocompromised mice for generating
orthotopic models may fail in reproducing the immune profile
of CC (144). The latter limitation, however, can be overcome
by employing syngeneic mouse models of GEM-derived tumors,
i.e., models in which immune-competent mice are implanted
with tumor cells derived from GEM presenting the same genetic
background [e.g., (157)].

CURRENT UNIMODAL TREATMENT
OPTIONS FOR CC

There is a wide range of treatment options currently available
for CC. Nutritional support is very important in cancer patients,
as their food intake is often reduced due to symptoms like
anorexia caused by systemic inflammation, nausea, vomiting,
and mucositis (158). For these reasons, as soon as patients are
diagnosed with cancer, they should be nutritionally monitored
and receive both nutritional and metabolic support (159).
Meanwhile, since systemic inflammation is a hallmark of CC,
the pharmacological targeting of individual proinflammatory
cytokines or that of their cognate receptors has been considered
as a potential powerful approach. Also, several hormones and
hormone-derived compounds known to stimulate appetite and
to induce weight gain have been tested. Nonetheless, most of the
current trialed agents has not received the FDA (Food and Drug
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Administration) approval since either no substantial benefits or
manifestation of important side effects were observed throughout
Phase I/III of clinical trials (143, 160) (Table 1).

TNFα, IL-6, and IL-1 Inhibitors
Because of their widely recognized role in induction of
cachectigenic effects, TNFα, IL-6, and IL-1α had represented the
ideal target of several anti-cachectic compounds. However, in the
case of anti-TNFα therapy, neither the TNFα receptor–blocker
Etanercept (161) nor the chimeric IgG1 kappa monoclonal
antibody Infliximab (167) were able to prevent muscle atrophy
or improve appetite in two randomized controlled trials of
terminal cachectic patients. Moreover, Infliximab was found to
increase fatigue and treatment-related mortality in administrated
patients (167). Likewise, slight recovery of muscle mass
accompanied by worsening of life or no significant beneficial
effects were reported by five randomized clinical trials testing two
pharmacological agents capable to downregulate expression of
TNFα, namely Thalidomide (162–164) and Pentoxifylline (165,
166), respectively.

Anti-IL-6 and anti-IL-1α pharmacological agents showed
promising results over the course of clinical trials; nonetheless,
they were inconclusive in terms of clinical management of the
disease. Specifically, in a Phase I clinical trial involving patients
with advanced cancer, the humanized anti-IL-6 monoclonal
antibody Clazakizumab was well tolerated, increased hemoglobin
and albumin levels and reversed fatigue in treated patients
(168). During the subsequent Phase II randomized controlled
trial, administration of Clazakizumab to patients with NSCLC
resulted in a slight lower degree of lean mass depletion (169).
However, effects on SM mass were not considered satisfactory
according to the acceptance criteria and further studies were
required (188). Similarly, in Phase I and III clinical trials,
the IL-1α-specific humanized monoclonal antibody Xilonix was
found to prevent alteration of body composition and improve
control of thrombocytosis in refractory cancer patients (171) and
advanced CRC patients with cachexia (172), respectively. The
most common adverse events observed at the end of these studies
were proteinuria (171), anemia and increased concentration
of both alkaline phosphatase and aspartate aminotransferase
(172). A second phase III clinical trial attempting to further
demonstrate the efficacy of Xilonix in advanced CRC patients
(NCT01767857) was stopped at its early stage as the study crossed
the prospective futility boundary of primary endpoint.

Indirect blockage of IL-6 action by pharmacological inhibition
of the JAK/STAT3 signaling may represent another valid strategy
to be persued. In preclinical studies, the allosteric inhibitor of
MAPK/ERK kinase 1 (MEK1) and 2 (MEK2) Selumetinib was
proved to exert tumor suppressive activity and prevent cancer-
induced IL-6 production [e.g., (189)]. Yet, results from a Phase
II trial conducted in patients with metastatic biliary cancers
suggested that Selumetinib induced non-fluid weight gain in
administrated patients (170). Thus, this drug was tested in a
Phase II trial in patients with advanced cholangiocarcinoma,
aiming to study its potential as modulator of IL-6/JAK/STAT3
signaling and mediator of SM anabolism (22). Despite results
showed that Selumetinib effectively promoted SM gain in patients

with cholangiocarcinoma, its actual relevance for CC remained to
be demonstrated (22).

Similarly, the selective JAK1/2 inhibitor Ruxolitinib was
trialed on patients with myelofibrosis and was found to
reduce splenomegaly and disease-related symptoms, meanwhile
inducing a significant increase in body weight (190). An open-
label Phase II trial was then started in 2014 aiming to examine
both safety and efficacy of Ruxolitinib as well as its influence
on overall survival. However, enrollment of participants for this
study did not succeed and the trial was unsuccessfully terminated
at the beginning of 2019 due to poor recruiting (NCT02072057).

Non-steroidal Anti-inflammatory Drugs
Non-steroidal anti-inflammatory drugs (NSAID) have been
considered to counteract chronic inflammation in CC as well.
In particular, Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor,
significantly improved QoL and BMI in cachectic patients vs.
control (173). Another study reported significant increases of
lean mass and improvements in handgrip strength and QoL in
patients with advanced cancers administrated with Celecoxib
(174). In addition, a significant decrease in TNFα levels was
observed, and no particular toxic effects were reported (174).
More recently, several trials have evaluated the effects of
a combination of Celecoxib with other drugs on cachectic
patients, including combination with L-carnitine [a nutritional
supplement that improves the cachectic condition (191)] and
combination of these two compounds plus Megestrol acetate
(see below). These studies led to more effective improvements in
lean mass, total physical activity and decreased sense of fatigue,
without toxic effects (192).

Myostatin Inhibitors
In recent times, the treatment of cachexia has been focused on
myokines, which include cytokines and other proteins produced
and secreted by SM cells (193, 194). Among these, Mstn can act
as autocrine, paracrine or endocrine effector along with cytokines
like IL-6, IL-8, and IL-15, and is responsible for immune and
metabolic changes associated to exercise or stress (193–195).
Thus, Mstn inhibitors have been considered promising tools for
the treatment of cachexia. In 2012, two Phase I clinical trials
under the same study evaluated the safety and tolerability of
the humanized monoclonal antibody to myostatin LY2495655
in healthy subjects and patients with advanced cancer (175).
According to the results obtained, the efficacy of LY2495655 was
well demonstrated in the case of healthy volunteers, in which it
caused an increase in thigh muscle volume. Increases in muscle
volume were observed also in patients with advanced cancer,
though only when the drug was administrated at relatively low
doses (21 and 70-mg) without unusual safety concerns (175). In
2018, a Phase II trial was performed on a group of inoperable
patients or with metastatic pancreatic cancer, who suffered from
cachexia. Here, patients were treated with different doses of
LY2495655, and the authors reported that pre-cachectic patients
were more responsive to the treatment than cachectic patients
(176). These results may suggest that treatment with LY2495655
should be better considered for prevention muscle loss rather
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TABLE 1 | Table summarizing unimodal treatment options mentioned in this review.

Drug name Drug class Molecule type Disease Status Positive outcomes Adverse effects/

Difficulties

References

Etanercept Anti-TNFα

therapy

TNFα receptor-blocker Cancer (other than

brain cancer)

Phase III RCT

(placebo)

– Induced negligible weight

gain; did not improve median

survival; caused higher rates

of neurotoxicity.

NCT00046904

(161)

Thalidomide Anti-TNFα

therapy

Synthetic derivative of

glutamic acid

Pancreatic cancer RCT (placebo) Attenuated weight and

lean body mass losses

No significant improvements

of QoL

(162)

Thalidomide Anti-TNFα

therapy

Synthetic derivative of

glutamic acid

Cancer Phase III RCT Significant decrease in

levels of circulating IL-6;

did not cause

worsening of life

Lack of satisfactory

documentation

(163)

Thalidomide Anti-TNFα

therapy

Synthetic derivative of

glutamic acid

Cancer RCT (placebo) Slight decrease in levels

of circulating IL-6 and

TNFα

No significant benefits

compared with placebo;

possible risk of

treatment-related mortality

(164)

Pentoxifylline Anti-TNFα

therapy

Methylxanthine derivative Cancer (other than

brain cancer)

RCT (placebo) – No differences in QoL and

possible worsening of life

after 4 weeks of treatment

(165)

Pentoxifylline Anti-TNFα

therapy

Methylxanthine derivative Cancer RCT (placebo) No toxicity Did not improve appetite nor

significant weight gain

(166)

Infliximab Anti-TNFα

therapy

Chimeric IgG1k monoclonal

antibody

NSCLC Phase III RCT

(placebo)/

docetaxel

– Did not induced weight

gaining; caused increased

fatigue and inferior global

QoL

NCT00040885

(167)

Clazakizumab Anti-IL6

therapy

Humanized anti-IL-6

monoclonal antibody

Cancer Phase I CT No apparent toxicity;

increased hemoglobin

and albumin levels;

reduced fatigue

Lack of satisfactory

documentation

(168)

Clazakizumab Anti-IL6

therapy

Humanized anti-IL-6

monoclonal antibody

NSCLC Phase II RCT Generally well tolerated;

improved the lung

symptom score;

attenuated lean mass

loss; reversed fatigue

May cause rectal

hemorrhage or

treatment-related mortality in

a minority of patients;

inconclusive in terms of

clinical management

NCT00866970

(169)

Selumetinib Anti-IL6

therapy

MEK1/2 inhibitor Biliary cancer Phase II CT Overall acceptable

tolerability; induced

significant weight

gaining

Induced low-grade adverse

events including rush and

xerostomia; may worsen

fatigue in a minority of

patients

NCT00553332

(170)

Selumetinib Anti-IL6

therapy

MEK1/2 inhibitor Cholangiocarcinoma Phase II CT Induced significant

gaining of lean body

mass

Lack of satisfactory

documentation

(22)

Ruxolitinib Anti-IL6

therapy

JAK1/2 inhibitor Cancer Phase II CT – The study was terminated

due to poor recruiting

NCT02072057

Xilonix Anti-IL-1α

therapy

IL-1α-specific humanized

monoclonal antibody

Cancer Phase I CT Well tolerated by all

participants, no

dose-limiting toxicities

were reported

Caused proteinuria, anemia,

nausea and fatigue in a

minor fraction of patients

NCT01021072

(171)

Xilonix Anti-IL-1α

therapy

IL-1α-specific humanized

monoclonal antibody

CRC Phase III RCT

(placebo)

Prevented alteration of

body composition and

improved control of

thrombocytosis

Caused proteinuria, anemia,

increased concentration of

alkaline phosphatase and

aspartate aminotransferase

and fatigue in a minor

fraction of patients

NCT01767857

(172)

Xilonix Anti-IL-1α

therapy

IL-1α-specific humanized

monoclonal antibody

CRC Phase III CT – The study was stopped as it

crossed the prospective

futility boundary of primary

endpoint

NCT01767857

Celecoxib NSAID Cyclooxygenase-2 (COX-2)

inhibitor

Cancer Phase II RCT

(placebo)

Significantly improved

BMI and QoL; moderate

decrease of IL-6 levels

after 3 weeks of

treatment

– (173)

(Continued)
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TABLE 1 | Continued

Drug name Drug class Molecule type Disease Status Positive outcomes Adverse effects/

Difficulties

References

Celecoxib NSAID Cyclooxygenase-2 (COX-2)

inhibitor

Cancer Phase II CT Significantly improved

BMI and QoL; moderate

decrease of TNFα

levels; increased

handgrip strength and

improved performance

status

– (174)

LY2495655 Mstn

inhibition

Monoclonal antibody to

Mstn

(1) Cancer (2) Healthy (1) Phase I RCT

(placebo)

(2) Phase I CT

Well tolerated; no

dose-limiting toxicities

were reported; increase

in thigh muscle volume;

consistent increases in

handgrip strength

observed at doses

≥21mg; improvement

in functional measures

No clear trend in

dose-dependent efficacy

NCT01524224

(175)

LY2495655 Mstn

inhibition

Monoclonal antibody to

Mstn

Pancreatic cancer Phase II RCT

(placebo) +

standard

chemotherapy

– No significant improvements

in muscle volume;

pre-cachectic patients were

more responsive than

cachectic patients; trend

toward poorer overall survival

in treated patients vs.

placebo

NCT01505530

(176)

Bimagrumab Mstn

inhibition

Human monoclonal

anti-ActRII antibody

NSCLC and

Pancreatic

adenocarcinoma

Phase II RCT

(placebo)

Significant increase in

lean body mass and

thigh muscle volume

Significant decrease in total

body weight

NCT01433263

AMG 745 Mstn

inhibition

Fc fusion peptibody Prostate cancer Phase I RCT

(placebo)

Generally well tolerated;

increased lean body

mass

Slight decrease in fat mass;

may cause adverse events

including diarrhea and fatigue

NCT00975104

(177)

Megestrol

acetate (FDA

approved)

Appetite

stimulant

Progesteron derivative Several cancer types Summary of 35 CT Improvement of

appetite and increased

caloric intake, weight

gain and nutritional

status; improvement of

QoL; downregulation of

proinflammatory

cytokines or that of their

cognate receptors

More than 40 side effects

including edema,

thromboembolitic episodes

and treatment-related death

Summary of 35

clinical trials

(178)

Medroxyp

rogesterone

acetate (FDA

approved)

Appetite

stimulant

Progesteron derivative Several cancer types Summary of most

relevant CT

Improved anorexia and

QoL parameters;

impaired synthesis and

release of IL-6, IL-1, and

TNFα

Weight gain was due to

increased body fat mass

rather than lean body mass

Summary of

most relevant

clinical trials

(179)

Ghrelin Orexigenic

mediator

Hormone Esophageal cancer Phase II RCT

(placebo) +

cisplatin-based

neoadjuvant

chemotherapy

Increased food

consumption and

weight gain; reduced

nausea and anorexia

related to chemotherapy

– (180)

Anamorelin

HCl

Orexigenic

mediator

Ghrelin Receptor agonist NSCLC Phase III Generally well tolerated;

improved appetite;

increased food intake,

body weight and lean

body mass

Caused hyperglycemia,

nausea and gastrointestinal

disorders in a minority of

patients; no significant

improvement of handgrip

strength

NCT01387269

(181)

Anamorelin

HCl

Orexigenic

mediator

Ghrelin Receptor agonist NSCLC Phase III Generally well tolerated;

improved appetite;

increased food intake,

body weight and lean

body mass

Caused hyperglycemia,

nausea and gastrointestinal

disorders in a minority of

patients; no significant

improvement of handgrip

strength

NCT01387282

(181)

(Continued)
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TABLE 1 | Continued

Drug name Drug class Molecule type Disease Status Positive outcomes Adverse effects/

Difficulties

References

Anamorelin

HCl

Orexigenic

mediator

Ghrelin Receptor agonist NSCLC Phase III Generally well tolerated;

improved appetite;

increased food intake,

body weight and lean

body mass

Caused hyperglycemia,

nausea and gastrointestinal

disorders in a minority of

patients; no significant

improvement of handgrip

strength

NCT01395914

(182)

THC Appetite

stimulant

and

metabolism

modulator

Endogenous agonist of CB1

and CB2 receptors

Cancer Phase III CT Well tolerated, no

adverse effects

No significant improvements

in appetite or QoL

(183)

THC Appetite

stimulant

and

metabolism

modulator

Endogenous agonist of CB1

and CB2 receptors

Cancer Phase III CT Well tolerated, no

adverse effects;

significant increase in

appetite and caloric

intake; improved

chemosensory

perception and QoL

– NCT00316563

(184)

THC Appetite

stimulant

and

metabolism

modulator

Endogenous agonist of CB1

and CB2 receptors

Cancer Pilot study Well tolerated;

significant increase in

appetite and caloric

intake; improved QoL;

reversed fatigue

May induce dizziness or

anxiety in a small fraction of

patients

NCT02359123

(185)

Nabilone Appetite

stimulant

and

metabolism

modulator

Synthetic analog of THC NSCLC Phase II RCT

(placebo)

Increased appetite and

caloric intake;

improvement of QoL;

attenuated pain and

insomnia

– NCT02802540

(186)

Erythropoietin Anemia

reversal

Hormone Cancer Randomized study Reversed anemia;

improved exercise ability

and sense of well-being

No significant improvements

in QoL; discrepancies

between objective and

subjective self-reported

measures

(187)

CT, clinical trial; RCT, randomized clinical trial.

than for reverting the process, although deeper investigation and
additional functional readouts are required.

In 2014, one study described the properties of the human
anti-ActRII antibody Bimagrumab (BYM338) (196). BYM338
prevented the binding of ligands to the receptors and hence
the activation of signaling pathway downstream of ActRII. In
vivo, administration of bimagrumab resulted in significant SM
hypertrophy and increased muscle fiber diameter. Furthermore,
it protected muscles from glucocorticoid-induced atrophy and
weakness through the impairment of muscle and tetanic force
losses (196). Lastly, Novartis Pharmaceuticals completed a
randomized control trial of BYM338 for treatment of CC
associated with pancreatic adenocarcinoma and NSCLC. Patients
administrated with Bimagrumab displayed significant increases
in lean body mass and thigh muscle volume, yet also had
decrement in total body weight (NCT01433263).

Anothermyostatin inhibitor is AMG745, a peptibody resulted
from the fusion of a human N-terminal Fc region of an
immunoglobulin and the C-terminus of a myostatin-neutralizing
peptide. AMG 745 has been successfully tested in various murine
models including C26 tumor-bearing mice, where it increased
SM mass, body weight and strength with respect to the control
group (177). In patients undergoing androgen deprivation as a

consequence of non-metastatic prostate cancer, AMG 745 was
reported to improve the lower-extremity muscle mass (177).

Metabolism and Appetite Modulators
One of the first pharmacological options proposed for the
treatment of CC include Megestrol acetate, an appetite stimulant
derived from progesterone capable to improve caloric intake and
nutritional status. Albeit its precise mechanism of action still
remains undetermined, it has been proven that this hormone-
derivated drug exerts an anti-inflammatory action, as it has the
ability to downregulate proinflammatory cytokines levels or that
of their cognate receptors (197, 198).

After being tested in several trials, Megestrol acetate was
reported to improve cancer patients’ appetite, QoL and weight
gain compared to placebo group, but not when compared
to patients treated with other drugs (178). For this reason,
the FDA approved it in 1993 for the treatment of anorexia,
cachexia and unexplained weight loss in patients with AIDS
(178). Nonetheless, Megestrol acetate was found to be responsible
of more than 40 side effects, including odema, thromboembolic
episodes and death (178). Yet, a case study about a 65 year-old
man who suffered from metastatic renal cell carcinoma revealed
that Megestrol acetate can induce adrenal insufficiency (199).
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More recently, the efficacy of the combination of Megestrol
acetate plus Thalidomide was tested in cachectic cancer patients
compared to the treatment with Megestrol acetate alone (200).
At the end of the study, results revealed that the combination
of these two drugs was more effective than the treatment
with Megestrol acetate alone, as patients showed statistically
significant increase in body weight, appetite, QoL and grip
strength, as well as significant decrease of IL-6 and TNFα
levels (200).

Medroxyprogesterone acetate is another progesterone
derivative taken into consideration for the clinical treatment of
cancer-related anorexia/cachexia syndrome. At the same extent
of Megestrol acecate, Medroxyprogesterone has been shown to
impair the synthesis and release of several procachectic cytokines,
in particular IL-6, TNFα, and IL-1 (179, 197). In placebo-
controlled studies, it was reported that Medroxyprogesterone
generally improved anorexia, QoL and body weight gain,
although the latter was caused by an increase in AT rather than
lean mass.

Due to his orexigenic properties, ghrelin has been evaluated
as palliative remedy in CC. Ghrelin is mainly produced and
secreted by the stomach and, to a lesser extent, by other
organs such as pancreas, lung, liver, muscle, and AT (201).
Ghrelin mediates multiple pathways involved in the regulation
of body weight, body composition, energy storage and appetite,
and regulates energy expenditure (202). In particular, it has
been demonstrated that this hormone causes an increase in
food consumption in both rodents and human patients with
cancer, leading to significant weight gain [e.g., (180, 202)].
Moreover, patients who received ghrelin manifested less adverse
effects during chemotherapy in terms of nausea and anorexia in
respect to the control group (180). Thus, ghrelin is considered
a potential remedy for the management of CC. However,
an apparent contradictory observation was reported by some
studies. In fact, cachectic murine models and cancer patients
with cachexia both usually presented hyper-ghrelinemia, though
paradoxically showing loss of appetite. This is probably due
to grelin’s short half-life, which is nearly 30min (201, 203).
In order to solve this issue, more stable ghrelin analogs have
been developed as potential therapeutic agents. Among them,
Anamorelin HCl has a half-life corresponding to nearly 7 h
and is considered a valid agonist of the ghrelin receptor, as
it displays significant appetite-enhancing activity and increases
food intake and body weight in rats in a dose-dependent
manner (204).

Anamorelin was tested on a group of volunteers in a
randomized Phase I clinical trial. At the end of the trial, subjects
who underwent the treatment displayed a significant dose-
related weight gaining compared to the placebo group, with
no particular adverse effects (205). Anamorelin has also been
tested in several Phase II trials, with patients suffering from
different types of solid and blood tumors, showing safety and
efficacy (206). Notoriously, Anamorelin has beenwidely tested on
patients with NSCLC during the ROMANA international clinical
trials. ROMANA 1 and ROMANA 2 are two randomized Phase
III trials performed on cachectic patients with incurable stage
III/IV NSCLC for 12 weeks (181). In both studies, the Functional

Assessment of Anorexia/Cachexia Therapy (FAACT) and the
fatigue domain of the Functional Assessment of Chronic Illness
Therapy-Fatigue (FACIT-F) showed an improvement in patient
conditions, with an increase in body weight compared to the
placebo group (181). Across the groups, Anamorelin treatment
was well tolerated and caused general improvement of anorexia-
cachexia symptoms, with the exception of some low incidence
adverse events such as grade 1-2 hyperglycemia, nausea and
gastrointestinal disorders (181).

A subgroup of patients who completed both trials were
successively recruited for the ROMANA 3 study. Patients
continued to receive Anamorelin at 100mg a day or placebo
for additional 12 weeks (182). Overall, the treatment was
still well tolerated and improvement in body weight and
anorexia-cachexia symptoms were significantly increased from
baseline of original trials at all time points vs. placebo (182).
Nonetheless, the drug has not been approved by FDA since
the ROMANA trial did not demonstrated significant benefit
handgrip strength, which is one primary outcome required for
drug approval.

Further palliative care may be provided by endocannabinoids,
i.e., endogenous agonists of the cannabinoid receptors CB1 and
CB2. These two receptors are expressed at different levels in both
neuronal and non-neuronal tissues, including the gastrointestinal
system, SM andAT (207). To date, the endocannabinoid system is
known to regulate appetite by differential activation of two brain
sites, namely the limbic system and hypothalamus; moreover,
it exerts an influence on intestinal and AT functions (207).
Among endocannabinoids, 1-9-tetrahydrocannabinol (THC)
was tested as appetite stimulant in a Phase III clinical trial.
Although the drug was well tolerated throughout the study,
no significant differences were observed in terms of appetite
or improvement in QoL between treated patients and the
placebo group (183). However, more promising results were
obtained by a later trial (184) and a recent pilot study (185)
for the same drug. More recently, the synthetic analog of
THC nabilone was reported to significantly increase appetite in
cachectic NSCLC patients during a Phase II trial, with subsequent
increase in patients’ caloric intake. The same study reported
a significant improvement in patients’ QoL and no adverse
effects (186).

Erythropoietin
Anemia is an additional feature displayed by cancer patients who
suffer from cachexia, and contributes to weight loss and various
metabolic alterations (187, 208). Thus, erythropoietin was tested
in unselected cancer patients on palliative care. Patients treated
with erythropoietin manifested a number of clinical benefits
including improved exercise ability and sense of well-being
(187). In mouse models of CC, it was shown that treatment
with erythropoietin can counteract AT wasting and increase
the lipogenic rate through the activation of erythropoietin
receptor (EpoR) (208). Moreover, erythropoietin administration
improved the survival of cachectic mice along with their exercise
capacity, the latter being a consequence of increased erythrocyte
count (209).
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New Upcoming Potential Approaches
Results from latest experimental studies let emerge new potential
therapeutics for the clinical management of CC, relying on
different strategies than those previously followed (Table 2). For
instance, the targeting of endogenous AT and energy metabolism
modulators underlying CC may represent a valuable therapeutic
option, as in the case of anti-PTHrP antibody (10). Another
example is represented by the pharmacological inhibition of fatty
acid oxidation by Etoxomir, a carnitine palmitoyltransferase-
1-selective inhibitor. In a preclinical setting, Etoxomir was
shown to effectively rescue human myotubes in vitro as well
as muscle mass and body weight of cachectic mice (210). Yet,
Metformin was shown to prevent WAT browning by increasing
PP2A activity, with subsequent dephosphorylation of acetyl-CoA
carboxylase and HSL (211). Targeting of hepatic peroxisome
proliferator-activated receptor-α (PPARα) by PPARα agonists has
also show a considerable potential. In particular, administration
of the PPARα agonist fenofibrate prevented loss of SM mass
and body weight in KL mice (152). Moreover, this treatment
was capable to reduce elevated glucocorticoid levels in the
serum of KL mice, which result from IL-6-induced suppression
of hepatic ketogenesis and cause impairment of intratumoral
immunity (213).

Further potential drugs that have recently been considered
for clinical management of CC belong to the family of
histone deacetylase (HDAC) inhibitors. Experimental evidences
demonstrated that HDAC1, a class I HDACs family member,
is required for muscle atrophy and contractile dysfunction
caused by SM disuse and nutrient deprivation, although such
mechanism can occur also independently from loss of SM
(214). In line with this, a comprehensive study was performed
in 2015 showing that AR-42, a novel class I/IIB HDAC
inhibitor, displayed anti-cachectic activity in two independent
murine models of CC (212). In both models, AR-42 reduced
expression of Atrogin-1 and MuRF1 and production of certain
proinflammatory cytokines, while significantly improved typical
CC features such as body weight loss, reduced survival, muscle
and AT loss, reduction of muscle strength, and muscle fiber
size (212).

Finally, results obtained from preclinical studies investigating
the effects of TLR inhibitors in CC experimental models
have raised expectations for the future employment
of these drugs in clinical trials (see below), although
further investigations on more reliable models of CC are
certainly required.

TLR Inhibitors: Novel Therapeutics for
Efficient CC Management?
Involvement of TLRs in muscle atrophy (TLR4 and TLR7/8)
and AT remodeling (TLR4) has been highlighted by several in
vitro and in vivo studies. These findings led to the development
of efficient TLR inhibitors and antagonists, which are currently
being considered as part of a new therapeutic strategy against
CC. Nonetheless, to date, only a small number of such
pharmacological agents is available for clinical use (215).

3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase
inhibitor, also known as atorvastatin, is a pharmacological
inhibitor of TLR4 (74). Atorvastatin impairs the inflammatory
pathways through the inhibition of NF-κB activation and
downregulation of TLR4 and MyD88 gene expression (215, 216).
This drug resulted to be a good candidate as potential anti-
cachectic tool since in LLC-bearing mice it significantly
prolonged animal survival, increased body weight, impaired AT
atrophy and browning and tumor mass compared to untreated
animals. Moreover, atorvastatin administration resulted in a
decreased concentration of pro-inflammatory cytokines at the
plasma level (74).

Several oligonucleotide-based antagonists have been
developed to prevent endosomal TLR overactivation in
patients with autoimmune diseases (215). Among these, IRS-954
and DV-1179 represent the first two oligonucleotide-based
TLR antagonists tested throughout preclinical studies and
Phase I/II clinical trials, respectively. However, in spite of
the safety shown by these two drugs, none of them were
approved for the clinical use due to the lack of adequate
documentation (IRS-954) or failure to comply with primary
endpoints (215). Few years later, other immune modulatory
oligonucleotide (IMO) were developed by Idera Pharmaceuticals
with the same goal. Among these, IMO-9200 and IMO-
8400, two TLR7, 8 and 9-specific antagonists, were tested
in clinical trials and the outcomes were more successful
than those obtained for DV-1179 (215). However, none of
these drugs had yet been considered for clinical management
of CC.

In 2018, our group carried out an in vitro and in vivo study
in order to test the ability of IMO-8503 to impair miR-21-5p-
induced myoblast cell death (75). Results were very encouraging
as IMO-8503 significantly inhibited apoptosis induced by lung
and pancreatic cell-secreted miR-21-5p and miR-29a-3p on
both immortalized and primary myocytes. The same results
were obtained with myocytes exposed to cancer patients-derived
microvesicles. In vivo, IMO-8503 strongly impaired several
cachexia features, including the loss of lean mass in tumor-
bearing mice (75).

Despite the potential of TLR inhibitors in the management
of CC, it should be recalled that also TLR7 agonists have
been explored as antitumor agents for treatment of advanced
cancers, alone or as vaccine adjuvants. In particular, Imiquimod
(R837), a topical TLR7 agonist, was approved by FDA for
the treatment of patients with basal cell carcinoma and skin
metastases [e.g., (217)]. Imiquimod is generally well-tolerated,
with only a minority of patients reporting grade I or II side
effects, and lead to significant increases in the activity of both
CD8+ and CD4+ T cells. INFα levels weremarkedly increased in
tumor samples from treated patients, while only slight increases
were reported for INFγ levels (217). Similarly, recent studies have
suggested that Resiquimod (R848), a more potent counterpart
of Imiquimod, may be beneficial for cancer patients suffering of
cachexia (157). R848 is a TLR7 agonist that was proved to cause
lower expression of programmed cell death protein 1 (PD-1) on
T cells and enhancement of CD8+ T-cell cytotoxic response in
cancer through an IL-12-mediated mechanism (218). R848 was
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TABLE 2 | Table summarizing emergent unimodal treatment options for CC recently tested in preclinical studies.

Drug name Drug class Molecule type Disease Status Positive outcomes Adverse effects/

Difficulties

References

anti-PTHrP PTHrP inhibitor Monoclonal neutralizing

antibody against PTHrP

LLC murine model Preclinical study Prevented weight loss, AT

browning and preserved

lean body mass; improved

physical activity;

suppressed thermogenic

gene expression

– (10)

Etoxomir Fatty acid oxidation

blocker

Carnitine

palmitoyltransferase-1-

selective

inhibitor

Stable murine

models of human

cancer-induced CC

(by injection)

Preclinical study Rescued muscle mass and

body weight of cachectic

mice

– (210)

Metformin Inhibitor of

complex I of the

electron transport

chain

Biguanide compound Murine burn model Preclinical study Prevented WAT browning

by increasing PP2A activity

– (211)

Fenofibrate PPARα agonist Fibric acid derivative GEM model of

NSCLC

Preclinical study Prevented loss of SM mass

and body weight; reduced

glucocorticoid levels in

mice serum

– (152)

AR-42 Epigenetic

modulator of gene

expression

I/IIB HDAC inhibitor LLC and C26 murine

model

Preclinical study Preserved muscle and fat

mass; prolonged survival,

reduced splenomegaly,

reduced levels of

Atrogin-1, MuRF1 and

pro-inflammatory cytokines

The treatment showed

distinct efficacy between

the two models of CC

(212)

Atorvastatin TLR inhibitor HMG-CoA reductase

enzyme inhibitor

LLC murine model Preclinical study Increased body weight;

decreased tumor mass;

attenuated AT remodeling;

decreased levels of

pro-inflammatory

cytokines; prolonged

survival

– (74)

IMO-8503 TLR inhibitor Immune modulatory

oligonucleotide

LLC murine model Preclinical study Attenuated loss of lean

mass; decreased levels of

Pax7; prevented

caspase-3 and PARP

cleavage in SM

Caused toxic effects when

administered at a

concentration ≥15 mmol/L

(75)

Resiquimod

(R848)

Topical TLR7/8

agonist

Imidazoquinoline

compound

KPC-derived PDA

syngeneic murine

model

Preclinical study Impaired expression of

PD-1 on T cells;

enhancement of CD8+

T-cell cytotoxic response;

decreased tumor burden

and to improvement of CC

features

Initial or prolonged

hypophagia and weight

loss; may cause initial

treatment-related

decreases in locomotion

(157)

reported to be able to lower tumor burden and improve cachexia
manifestations in experimental models of pancreatic ductal
adenocarcinoma (157).

CONCLUSIONS

Over the last two decades, the study of CC has provided new
insights that allowed a better understanding of the multiple
mechanisms regulating the onset and progression of this
metabolic disorder, and paved the way to the development of
novel therapeutic strategies. Nonetheless, CC still remains a
poorly defined syndrome, especially from the clinical standpoint.
The main limitation probably lies in the fact that the precise
role of individual CC mediators has remained undefined or
controversial in several circumstances, thus complicating the
process of establishing their clinical relevance. For instance,
not all murine models of CC have shown involvement of the

same set of signaling molecules during the disease development.
For this reason, the idea of defining distinctive diagnostic
and prognostic signatures of CC represents a considerable
challenge for researchers and clinicians. In this scenario, the
role of miRNAs as cell-to-cell mediators between the tumor
cells and the surrounding microenvironment represents an
interesting topic that deserves deeper investigation. Overall,
these considerations highlight the urgent need to generate and
validate new experimental models of CC, capable to accurately
recapitulate molecular and histopathological aspects of human
CC in a tumor type-dependent manner.

As systemic chronic inflammation and alternate metabolism
are hallmarks of CC, the pharmacological targeting of individual
underlying biomolecules has been considered as one possible
effective approach to clinically manage this syndrome. Thus,
several unimodal treatments have been developed in the attempt
to properly manage this metabolic syndrome. Nonetheless, to
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date scarce or no effectiveness/safety has been reported for
each of them. Given the complexity of CC, and considering
the different patients’ response to treatments through the many
different clinical trials, it appears clear the impossibility to
develop a general, universal therapy. On the contrary, it is crucial
to define the cachectic patient’s profile at both the molecular and
clinical levels in order to reach a point where it is possible to
provide the best customized nutritional support and treatment.
Meanwhile, the emergence of further mediators of CC such as
TLRs, PTHrP, and glucocorticoids, suggests the possibility to
develop further safety pharmacological agents capable to prevent,
or at least limit, the excessive triggering of catabolic processes and
inflammation-related signaling.

Considering the multiplicity of metabolic and molecular
aberrations, an important goal would be the development

of appropriate multimodal approaches—intended as a
balanced combination of pharmacological and non-
pharmacological interventions—as recently suggested by
several influential authors.
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