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Mapping landscape connectivity is important for controlling inva-
sive species and disease vectors. Current landscape genetics meth-
ods are often constrained by the subjectivity of creating resistance
surfaces and the difficulty of working with interacting and corre-
lated environmental variables. To overcome these constraints, we
combine the advantages of a machine-learning framework and an
iterative optimization process to develop a method for integrat-
ing genetic and environmental (e.g., climate, land cover, human
infrastructure) data. We validate and demonstrate this method
for the Aedes aegypti mosquito, an invasive species and the pri-
mary vector of dengue, yellow fever, chikungunya, and Zika. We
test two contrasting metrics to approximate genetic distance and
find Cavalli-Sforza–Edwards distance (CSE) performs better than
linearized FST. The correlation (R) between the model’s predicted
genetic distance and actual distance is 0.83. We produce a map
of genetic connectivity for Ae. aegypti’s range in North America
and discuss which environmental and anthropogenic variables are
most important for predicting gene flow, especially in the context
of vector control.
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Landscape genetics—explicitly quantifying the effects of a het-
erogenous landscape on gene flow—is an important tool for

both conservation biology and the control of invasive species
and disease vectors including the “yellow fever mosquito” (Aedes
aegypti) (1, 2). We demonstrate that current limitations in
landscape genetics can be addressed with a machine-learning
approach integrated into an iterative optimization process. Iso-
lation by distance (IBD) is a classical model in population
genetics that assumes dispersal is limited in proportion to geo-
graphic distance, resulting in increasing genetic differentiation
with increasing geographic distance between populations (3–5).
Although this pattern is commonly seen in nature, factors such
as history and dispersal limitations caused by the environment
(i.e., “isolation by resistance”) (6) can produce deviations from
IBD. Landscape resistance (alias friction) and its inverse, con-
nectivity, determine how organisms move through a landscape
(7). Modeling landscape connectivity can be used to identify the
environmental variables that affect the organisms’ gene flow and
genetic structure; predict how climate and land use change will
affect their gene flow and distribution in the future; and inform
conservation, vector control, and other management decisions
(1, 8–13). Our goals are to use environmental data (the predic-
tors) to build a model of genetic connectivity (the observed data)
that improves on IBD and to identify environmental drivers of
gene flow patterns.

We implement a machine-learning approach that offers a
number of advantages over classical methods in landscape genet-
ics: The machine-learning approach is more objective, it allows
the inclusion of correlated variables, and it is able to account for
different shapes and magnitudes of correlations between predic-
tor and response variables at different locations in the landscape

(14–17). In comparison, a common approach in landscape genet-
ics called resistance surface mapping involves the subjective
process of creating resistance surfaces for environmental vari-
ables, in which each pixel represents a hypothesized resistance to
the organism’s movement often based on expert opinion (6, 18).
Effective landscape distances through the resistance surfaces can
be found with least cost path or circuit theory analysis (19) and
then analyzed for associations with genetic distance (20).

One option to circumvent the subjectivity of creating resis-
tance surfaces is to model genetic connectivity directly from
environmental data. Bouyer et al. (7) took this approach
and used a maximum-likelihood method to integrate genetic
data and environmental data to map landscape resistance in
tsetse flies. Additionally, they introduced an iterative opti-
mization approach in which each subsequent iteration used
least cost path lines through the previously predicted resis-
tance surface—an improvement over modeling organism move-
ment as straight lines (16, 17). While this presented a major
advance, the maximum-likelihood methodology requires exclu-
sion of correlated data, establishing the relationship between
environmental variables and genetic distance before building the
model, and transforming or discretizing nonlinear relationships.
Additionally, this approach assumes one relationship between
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each environmental variable and the genetic data across the
whole landscape. To build on previous advances while overcom-
ing some of their limitations, we combine iterative optimization
with a machine-learning method called random forest (RF).

RF is a nonlinear classification and regression tree analysis
that can handle many inputs, including redundant or irrele-
vant variables, as well as continuous and categorical data types
(14, 15). RF creates many internal training/testing subdatasets
and aggregates the predictors, resulting in stable and consistent
results that generally do not overfit the data and can be evalu-
ated through validation processes (14). It is easier to tune and
less likely to overfit noisy data than another machine-learning
method we considered, gradient boosting (21). Additionally, RF
has been successfully incorporated into ecological studies (22)
and a small number of landscape genetics studies (16, 17, 23).
These studies considered only the environmental predictor val-
ues at the genetic collection sites (23) or along straight lines
between each pair of sites (16, 17), in contrast to the least cost
path analysis we implement here (7).

We demonstrate the efficacy of our method to map land-
scape connectivity for an important disease vector. Ae. aegypti
is highly invasive and the primary vector of yellow fever, Zika,
dengue, and chikungunya. Except for yellow fever, there are
no reliable, widely used vaccines for these diseases, so vec-
tor control is essential. Ae. aegypti originated in Africa and is
now found throughout the tropics and increasingly in temperate
regions (24–26). The species is temperature constrained, prefer-
ring warm, humid areas close to humans (the females’ preferred
source for bloodmeals outside their native African range) (27).
In the United States, it has a patchy distribution throughout
southern states, especially Texas, Florida, and California (28).
Although Ae. aegypti can disperse >1 km, its usual lifetime dis-
persal is only around 200 m (29–32). Passive “hitchhiking” via
human transportation networks is responsible for long-distance
invasions and worldwide spread of Ae. aegypti and its close rela-
tive (33–35). Climate change is also expanding the range of Aedes
species, which could expose nearly 1 billion additional people to
diseases carried by these mosquitoes for the first time (26).

Although IBD is common in nature and a helpful null model
in landscape genetics (20), geographic distance is often an inad-
equate sole predictor of genetic distance (as in the case of our
dataset; SI Appendix, Fig. S1). Therefore, a more complex model
is needed to explain and predict genetic distance and corre-
sponding landscape connectivity. In this paper we introduce an
iterative machine-learning approach to integrate environmen-
tal predictors and genetic observation data and apply it to map
landscape connectivity for the Ae. aegypti mosquito in North
America. We also find and examine the most important variables
for building the connectivity model and provide validation of our
proposed method.

Modeling Approach
The input data for the model are genetic distances (response
variable: Cavalli-Sforza–Edwards distance (CSE) or linearized
FST, Table 1) and environmental data (predictor variables: envi-
ronmental data). To generate genetic data, Ae. aegypti samples
from 38 sites (mean sample size = 35.6 individuals) across North
America (see Fig. 2 and SI Appendix, Table S1) were genotyped
at 12 highly variable microsatellite sites as in Brown et al. (36)
(Fig. 1A). For genetic distance, we calculated linearized FST (37)
and CSE (38, 39), resulting in 703 pairwise genetic distances
(Fig. 1C). FST is a common measure of population differentia-
tion based on genetic structure, and CSE is a purely geometric
measure of genetic differentiation which avoids some of the
assumptions of FST (7, 40). For environmental data, we used 29
environmental and anthropogenic datasets derived from satellite
imagery and freely available to download online (Fig. 1B and SI
Appendix, Table S2).

Table 1. Important terminology and acronyms

Abbreviation Explanation

IBD Isolation by distance: the expectation of increased
genetic distance with increased geographic
distance (3, 4)

CSE Cavalli-Sforza–Edwards distance (38)
Linearized FST Measure of genetic distance: FST/(1 − FST)
Full Complete dataset (38 sites, 703 pairwise genetic

distances)
Train Complete dataset excluding one point and its

affiliated pairs (37 sites, 666 pairwise genetic
distances)

Test One point and its affiliated pairs (1 site, 37 pairwise
genetic distances)

Rtrain Pearson correlation between predicted and observed
genetic distance for training dataset

Rtest Pearson correlation between predicted and observed
genetic distance for testing dataset

Rfull Pearson correlation between predicted and observed
genetic distance for full dataset

RMSEtrain Root-mean-square error of model using the training
dataset

RMSEtest Root-mean-square error of model using the testing
dataset

RMSEfull Root-mean-square error of model using the full
dataset

RF Random forest: a nonlinear classification and
regression tree analysis

RSQtrain Pseudo-R-squared (% variance explained by the
model) built with the training dataset

RSQfull Pseudo-R-squared (% variance explained by the
model) built with the full dataset

See SI Appendix, Table S3 for more details.

The model works by finding which predictor variables (envi-
ronmental data) best predict the observed variable (genetic
distance). Initially, straight lines are created connecting each
pair of sites, and the extracted mean values along these lines
through each environmental raster (Fig. 1D) are used in a RF
model to predict genetic distance at the pixel level, resulting in a
resistance surface. By taking the inverse of each pixel value, the
resistance surface is transformed into a connectivity surface (41).
In each iteration, least cost paths through the previous iteration’s
connectivity surface are used instead of the straight lines.

A leave-one-out cross-validation was performed, meaning the
model was run 38 times, with a different point (and its 37 affili-
ated pairs) withheld as the testing dataset each time, while the
remaining 37 points (and their 666 affiliated pairs) were used
as the training dataset (Fig. 1E). Each of the 38-folds was run
with 10 iterations (Fig. 1G) since we found this was a sufficient
number for performance metrics to be optimized. The iteration
with the lowest root-mean-square error using the testing dataset
(RMSEtest) was selected as the optimal iteration.

After concluding CSE outperformed linearized FST (Results),
the full CSE dataset (not withholding any data for the testing
dataset, Dataset S1) was used to create a “full dataset model”
(Fig. 1F). The results from the full dataset model (specifi-
cally RMSE, R, and the connectivity surfaces) were compared
to the results from the leave-one-out cross-validation to verify
that the full dataset model was an appropriate summary of the
cross-validation and that it was not overfitting the data (Fig. 1I).

Results
Genetic Diversity and Population Structure. Thirty-six of 2,509
(1.4%) locus pairs were in linkage disequilibrium and 12 of
476 (2.5%) locus–population pairs were out of Hardy–Weinberg
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Fig. 1. Pipeline of model workflow. Left side (leave-one-out cross-
validation) ensures internal model accuracy by highlighting potential over-
fitting; Right side (full dataset run) produces the full dataset model output
and overall variable importance.

equilibrium after a Bonferroni correction for multiple compar-
isons. This is consistent with previous analyses showing the loci
can be treated as independent, single-copy neutral markers. Pair-
wise CSE across the dataset ranges from 0.166 to 0.494, with a
mean of 0.336 (38). Pairwise linearized FST values range from
0.0124 to 0.254, with a mean of 0.0863. All FST values are greater
than zero according to a test of significance with 1,000 permu-
tations in Arlequin (P < 0.00001) (37). There is a significant
correlation between the log geographic distance and genetic dis-
tance across the geographic range using both CSE (Mantel R =
0.493, P < 0.0005) and linearized FST (Mantel R = 0.369, P <
0.0005) (SI Appendix, Fig. S1). To compare the null expectation
of IBD with the results of our landscape genetics model, we also
calculated R (the Pearson correlation) between log geographic
distance and genetic distance for CSE (R = 0.493) and linearized
FST (R = 0.361).

The effects of genetic structure and genetic drift were analyzed
to confirm that it was reasonable to include all populations in
one model. Principal component analysis and Bayesian cluster-
ing analysis do not show clearly defined population groups (SI
Appendix, Figs. S2 and S3), consistent with these populations
being derived from one relatively old colonization (39, 42–44).
Simulations and empirical tests indicate the effect of genetic
drift is negligible in our calculations of genetic distance (SI
Appendix).

Random Forest Iterative Model. Averaging across the best itera-
tions from each of the 38-folds of the cross-validation using CSE
as genetic distance, Rtest was 0.771± 0.169 (mean ± SD) (SI
Appendix, Table S4). The RMSEtest of these runs was 0.038 ±
0.016, and these values were varied across the geographic range
showing the model has largely taken spatial autocorrelation into
account (SI Appendix, Figs. S4A and S5). The most important
variables were maximum temperature, slope, altitude, and mean
temperature (SI Appendix, Figs. S6 and S7 and Table S5). Aver-
aging across the cross-validation folds using linearized FST as
genetic distance, Rtest was 0.722 ± 0.160 (SI Appendix, Table S6).
The corresponding RMSEtest of these runs was 0.029 ± 0.012,

and again these values showed variation across the geographic
range (SI Appendix, Fig. S4B). The top variables were maximum
temperature, accessibility to the nearest major city, slope, and
mean temperature (SI Appendix, Figs. S8 and S9 and Table S7).
Although there was some variation in most important vari-
ables among the 38-folds for both cross-validations, there were
consistent general patterns (SI Appendix, Figs. S7 and S9). Addi-
tionally, we showed that RMSE is robust to different size test-
ing datasets by performing a leave-two-out cross-validation (SI
Appendix).

The iterative optimization improved the results from both
cross-validations as shown by significant decreases in the values
of RMSEtest between the straight-lines iteration and the opti-
mized iteration for the CSE cross-validation (0.044 to 0.038) and
the linearized FST cross-validation (0.035 to 0.029) (paired t tests
both have P < 10−10). A large improvement occurred between
the straight-lines iteration and the first iteration, while the sub-
sequent iterations provided fine-tuning through small changes to
the least cost paths (SI Appendix, Fig. S10). Final connectivity
surfaces were created by taking the mean of the 38 optimized
connectivity surfaces for both measures of genetic distance (SI
Appendix, Fig. S11).

In comparing the performance of CSE and linearized FST,
we found pseudo-R-squared (RSQ) values for the CSE cross-
validation model were significantly higher than those for the
linearized FST model (Student’s t test, P < 1028). Rtest values
were also higher for the CSE model, although the difference
was not significant (Student’s t test, P = 0.20). Although the
RMSEtest values for the CSE model were higher than those for
the linearized FST model, they were smaller in proportion to
their respective genetic distance. Specifically, the mean RMSEtest
value from the CSE leave-one-out cross-validation model was
about 11% of the mean CSE genetic distance value from the
full dataset, whereas the mean RMSEtest value was about 33%
of the mean linearized FST value from the dataset. Together the
results suggest CSE performs better in our model than linearized
FST, although the final connectivity maps appear similar (SI
Appendix, Fig. S11).

After concluding CSE outperformed linearized FST, we ran
a full dataset model using CSE as genetic distance. The third
iteration had the highest correlation between expected and
observed genetic distance (Rfull = 0.83) and the lowest root-
mean-square error (RMSEfull = 0.035) (Table 2 and see Fig. 5
and SI Appendix, Table S8). The optimized resistance surface is
shown in Fig. 2. The most important variables for building the
optimized RF model were maximum temperature, slope, barren
land cover, and human density (Figs. 3 and 4 and SI Appendix,
Fig. S12). The root-mean-square errors of the full dataset model

Table 2. Result from CSE full dataset model

Iteration Rfull RMSEfull RSQfull

Straight 0.786 0.0388 0.606
1 0.825 0.0353 0.674
2 0.824 0.0356 0.669
3 0.832 0.0345 0.688
4 0.820 0.0357 0.667
5 0.830 0.0347 0.685
6 0.817 0.0360 0.661
7 0.817 0.0359 0.662
8 0.821 0.0356 0.669
9 0.818 0.0361 0.658
10 0.828 0.0349 0.680

Rfull, Pearson correlation between observed and expected CSE; RMSEfull,
root-mean-square error; RSQfull, percentage of variance explained. Iteration
3 (in bold) has the lowest RMSEfull and is therefore chosen as the optimal
iteration.
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Fig. 2. Optimized connectivity map using CSE full dataset. The black points show collection sites for Ae. aegypti (the genetic data).

(RMSEfull) and of the CSE cross-validation (mean RMSEtest)
were similar (0.035 and 0.038, respectively), indicating that the
full dataset model is not overfitting the data. Additionally, the
correlation between expected and observed genetic distance for
the full dataset model (Rfull) was 0.83 (Fig. 5), while the mean
correlation between expected and observed genetic distance for
the CSE cross-validation (Rtest ± SD) was 0.77 ± 0.17. Finally,
a Pearson correlation between the final resistance maps shows
77% correlation (SI Appendix, Fig. S13). For the sake of com-
parison, we showed that replacing RF with a standard linear
regression worsens the full dataset model (SI Appendix).

We also wanted to know whether spatial autocorrelation was
influencing the full dataset model. Geographic distance influ-
ences CSE up to 200 km, as shown by increasing semivariance up
until this distance in the semivariogram (SI Appendix, Fig. S14A).
However, in the full model, a plot of semivariance indicates that
geographic distance influences CSE only up until a very short
distance (<100 km), meaning that spatial autocorrelation has
largely been taken into account (SI Appendix, Fig. S14B).

Discussion
Mapping genetic connectivity and determining how landscape
and environmental variables affect gene flow in a species of inter-
est are primary goals in landscape genetics (8, 10). Here we have
proposed a modeling framework that uses RF and an iterative
optimization process to map landscape connectivity and identify
important landscape variables. We test and validate it with data
on the Ae. aegypti mosquito in North America.

While the leave-one-out cross-validations using CSE and lin-
earized FST both produced strong results that were improved
by the iterative optimization, CSE ultimately outperformed lin-
earized FST, producing a higher RSQ and a lower RMSEtest
in proportion to the genetic distance metric. Therefore, a full
dataset model was run with CSE, and it produced similar results
to the CSE cross-validation in terms of RMSE, R, and the final
resistance surfaces. Therefore, we feel confident it is not over-
fitting the data and thus is a good summary of the results. The
optimized iteration (producing lowest RMSEtest) for the full
dataset model was the third iteration (Table 2), and going for-
ward, we will refer to the results from this iteration as the full
dataset model or simply our model.

Our model explained genetic distance better than the null
expectation of IBD, which predicts that genetic distance
increases linearly with the log of geographic distance (5). Specif-
ically, our model’s correlation between observed and expected
genetic CSE was 0.83 (Fig. 5), while the correlation between
log geographic distance and CSE was only 0.49 (SI Appendix,
Fig. S1). Additionally, our model’s performance is on par or

higher than results from other landscape genetics papers using
RF (16, 17) or other statistical methods (45, 46). Work by Medley
et al. (45) is an especially important point of reference, as it deals

Fig. 3. Variable importance list for the CSE full dataset model. The x axis
shows the mean decrease in accuracy of the model when excluding each
variable computed from permuting out-of-bag data.
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Fig. 4. Important variables for the CSE full dataset model. (A) Maximum temperature (degrees Celsius × 100). (B) Slope (degree incline). (C) Barren land
cover (%). (D) Human density (density of buildings and structures, scaled to a maximum of 1).

with Aedes albopictus, a mosquito with many of the same eco-
logical properties as Ae. aegypti, and the studied region overlaps
with this study. Using resistance surface modeling, the authors
were able to account for 19 uncorrelated land cover types in
their analysis, and their most informative model had an R of 0.50
(45). In contrast, we were able to include 29 diverse environmen-
tal and anthropogenic variables, including some correlated ones,
and our model achieved an R of 0.83. Also important are two
landscape genetics studies on amphibians that also used RF but
modeled gene flow as straight lines and without the iterative opti-
mization. In these, the most informative model from Murphy et
al. had a R of 0.86 (16), and the median R from Hether et al.
was 0.69 (17).

We can compare the final connectivity surface from our model
(Fig. 2) to the environmental predictors that were most impor-
tant in building it: maximum temperature, slope, barren land
cover, and human density (Fig. 4). This comparison suggests
flat regions with high maximum temperature and high human
density are generally favorable to Ae. aegpyti gene flow. Bar-
ren land cover, which also includes areas of sparse vegetation
(47), generally indicates an area of high connectivity, but it is not
required for high connectivity. When we ran the model without
barren land cover as a spatial variable, accessibility to the near-
est major city rose in importance, suggesting the barren variable
may capture some information on human accessibility and trans-
portation. Overall, these findings are consistent with the biology
of a tropical, anthrophilic mosquito. However, it is important
to remember that RF is a nonlinear model which can account
for different relationships (e.g., negative/positive correlations)
between genetic distance and the environmental variables at
different locations.

Different environmental factors are likely to be important
for predicting connectivity and predicting habitat suitability, and
both are important for understanding a species’ distribution (13).
For example, while high habitat suitability increases the likeli-
hood of dense Aedes populations (which could promote gene
flow via a stepping-stone model), it also decreases the incentive
for individuals to disperse in search of oviposition sites, blood-
meals, or a more hospitable habitat. Indeed, the most important
variables in our model (maximum temperature, slope, barren
land cover, and human density) are similar but distinct from the

most important variables in a recent habitat suitability model
conducted at a global scale (absolute humidity, accessibility to
the nearest major city, and minimum temperature) (27).

Since Ae. aegypti has a short active natural dispersal on aver-
age (29–31) and is well known for “hitchhiking” with humans
(33, 48–50), one might expect that all of the most important vari-
ables would be related to humans. However, our results suggest
that environmental variables are important too, especially tem-
perature and slope. There are several possible (and not mutually
exclusive) explanations: 1) Some minimum standard of habitat
suitability is required for gene flow, 2) the effects of natural
dispersal are not completely outweighed by human-mediated
dispersal, and 3) there is some correlation between these envi-
ronmental features and human activity and transportation that

Fig. 5. Observed versus predicted genetic distance for CSE full dataset
model. The red line is the best-fit linear regression, and the black line
is y = x.
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was not captured by our included anthropogenic variables. Our
results are also consistent with the finding that both anthro-
pogenic and environmental features affect gene flow in the
similar species, Ae. albopictus (45).

Spatial autocorrelation refers to systematic spatial variation
in a variable; in other words, proximal observations are more
correlated than more distant observations. We implemented sev-
eral strategies to incorporate spatial autocorrelation into our
model. We created a point kernel density surface (51) and used
this surface as a predictor variable to represent sampling den-
sity and genetic distance. The sampling density was also used
to weight the RF bootstrapping (following the methodology
described in ref. 52) so that lower-density points were sam-
pled more frequently. Semivariograms show that these strategies
effectively accounted for spatial autocorrelation in our model
(SI Appendix, Fig. S14). Additionally, the RMSEtest values asso-
ciated with each fold in the cross-validations show variation
across the geographic range (SI Appendix, Figs. S4 and S5).
However, the results for sites in areas of low sampling den-
sity tend to have higher and more variable values of RMSEtest,
indicating results in these areas should be interpreted with
some caution.

Our analysis also provides a comparison of two genetic dis-
tance metrics: CSE and linearized FST. Overall, we find CSE
performs better, although the final resistance maps are quite
similar (SI Appendix, Fig. S11). Our finding supports a general
trend in landscape genetics literature to avoid FST-based met-
rics (7, 17, 40). Although widely used in population genetics,
FST assumes constant population size and migration rate (40,
53). CSE, a geometric measure of genetic distance, avoids these
assumptions and may be more suitable for measuring relative
distances between pairs of populations (7, 40).

Landscape connectivity can inform the implementation of
vector control, especially the release of mosquitoes that are
genetically modified or infected with a bacterium called Wol-
bachia. Depending on the design of the release program, these
interventions are meant to crash the local Ae. aegypti population
(32, 54) or replace it with one that does not spread disease (55).
How and where such releases are made are crucial to attain the
intended goal, and our connectivity map can inform vector con-
trol by providing information on the likely movement of both
released and wild mosquitoes, assuming the released strain of
mosquito will exhibit similar physiology and behavior to the wild
strain and therefore respond similarly to geographic barriers. If
the goal is to widely spread the modified genes or bacterium, per-
forming releases in areas with high emigration is important. On
the other hand, if spatially limited modification is desirable (such
as for experiments to test whether modified mosquitoes have
unanticipated negative effects), habitats with low emigration
should be targeted. Similarly, rates of immigration are impor-
tant in predicting dilution that would reduce effectiveness of
releases.

Specifically, our model provides several regionally specific
insights for vector control. Our model shows high connectivity
in the southeast, especially Florida, and some high connectiv-
ity in Texas generally corresponding to Interstate 35 (Dallas,
Ellis, Travis, and Bexar). For example, cities like Houston and
Lubbock, which are surrounded with higher resistance land-
scape, may require fewer releases than the more connected cities
along Interstate 35, although the well-connected cities would
have an advantage if between-city spread is part of the vector
control design. Compared to the southeast, the western portion
of the map has more patchy landscape connectivity, consistent
with more mountainous, uninhabited areas in this part of the
country. This could be an advantage for establishing local-scale
release programs or preventing the introduction of new pesti-
cide resistance genes and reintroduction of Ae. aegypti after local
eradication.

In future work, additional advances in validation and model
development, as well as more explicit links to the mode and range
of mosquito dispersal, would be useful pursuits in mosquito land-
scape genetics. One future advance of interest is applying this
approach to Ae. aegypti in other regions, which could provide val-
idation of the method’s ability to predict mosquito movement.
Another advance is to incorporate circuit theory (19) into the
model, which has the benefit of considering multiple paths across
the landscape. Although potentially more realistic to mosquito
biology, this advancement would not be applicable to the iter-
ative framework we use in this version of the model. Finally,
exploring different machine-learning methods, creating a con-
nectivity surface that shows predicted dispersal distance, and
explicit modeling of mosquito movement by human transporta-
tion would all be useful pursuits to better understand the role
of landscape in mosquito movement, especially as it pertains to
vector control.

Materials and Methods
Mosquito Collections and Regions. We included 38 unique sites across North
America in our analyses (Fig. 2 and SI Appendix, Table S1), spanning from
Arizona to Florida. All have overwintering populations of Ae. aegypti. Data
from 28 of these sites were published previously, and the remainder were
genotyped for this study (SI Appendix, Table S1). The number of individuals
per site ranged from 8 to 51 (mean = 35.6), and 30 of the sites had more
than 30 individuals (SI Appendix, Table S1). The points are nonuniform but
closely aligned to where Ae. aegypti can be found, especially in the United
State (28). We particularly tried to acquire more samples from the south-
east, but local vector control agencies reported they have not been able
to find Ae. aegypti in these places (e.g., the Florida panhandle, Alabama,
and Mississippi) since Ae. albopictus replaced them in the 1980s. Although
Ae. aegypti is present in California and Las Vegas, we did not include these
because they are almost certainly the result of recent invasions, and the high
genetic distances associated with them are due to recent history and not
landscape (56, 57).

Genetic Data and Population Structure. Genomic DNA was extracted from
whole adult mosquitoes using the Qiagen DNeasy Blood and Tissue kit
according to manufacturer instructions, including the optional RNase A step.
All individuals were genotyped at 12 highly variable microsatellites, as in
Brown et al. (36) (Dataset S2). The microsatellite loci are trinucleotide (A1,
B2, B3, A9) and dinucleotide repeats (AC2, CT2, AG2, AC4, AC1, AC5, AG1,
and AG4) (36, 58). Previous work shows the ability of these loci to dis-
tinguish Ae. aegypti populations from around the world, including North
America (36, 59).

All microsatellite loci were tested for within-population deviations from
Hardy–Weinberg equilibrium and for linkage disequilibrium among loci
pairs using 10,000 dememorizations, 1,000 batches, and 10,000 iterations
per batch for both tests in the R package Genepop version 1.0.5 (60, 61). To
correct for multiple testing, a Bonferroni correction was applied at the 0.05
level of significance.

Including individuals from distinct ancestral groups could confound our
landscape genetics model, so we used a number of methods to explore
genetic structure in advance. We ran a principal component analysis using
the R package Adegenet v. 2.1.1 (39). Additionally, we ran 20 independent
runs of STRUCTURE (v. 2.3.4) (43) for K = 1 to 12; we used 600,000 gen-
erations, and the first 100,000 were discarded as burn-in. The results were
visualized using the program DISTRUCT v.1.1 (62). We used the guidelines
from Pritchard et al. (43) and the Delta K method (42, 44) to infer the
optimal value of K (number of clusters).

We tested for correlations between the log of geographic distance and
genetic distance (CSE and linearized FST) using Mantel tests with 9,999 per-
mutations and by calculating the Pearson correlations. FST was calculated
in Arlequin, and 1,000 permutations were used to test for significance (37).
Linearized FST was calculated as FST/(1 − FST). We explored other measures of
genetic differentiation including Nei’s distance (calculated in Genodive) (63),
Reynold’s distance, and CSE (38) (the last two calculated in Adegenet) (39).
We ultimately did not pursue Reynold’s distance and Nei’s distance as they
were >95% correlated with FST (Pearson correlation). We used CSE as the
second measure of genetic distance since it is a purely geometric distance
measure with shown success in measuring relative distance between pairs
of populations especially in cases of missing data (7, 40), and its correlation
with FST was only 87% for the North America dataset.
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Spatial Data. Spatial data were downloaded from open-source repositories
and were edited and cropped using Geospatial Data Abstraction Library (64)
under the Bash environment. Most datasets were available at 1-km resolu-
tion, and when not, we resampled the data to a pixel size of 1 km2 (see SI
Appendix, Table S2 for full list of datasets and sources).
Environmental data. Mean annual temperature, mean annual precipita-
tion, annual temperature range, daily temperature range, coldest temper-
ature of the coldest month, hottest temperature of the hottest month,
precipitation of the wettest month, and precipitation of the driest month
were derived from CHELSA (climatologies at high resolution for the earth’s
land surface areas) climate data (65). We also included gross primary produc-
tion, a measure of vegetation photosynthesis (66). Elevation and slope were
obtained from MERIT DEM (Multi-Error-Removed Improved-Terrain Digital
Terrain Model) (67), and slope was downloaded from the Geomorpho90m
dataset (68). To capture humidity, we used the Global Aridity Index and
monthly potential evapotranspiration from CGIAR CSI (Consultative Group
for International Agricultural Research—Consortium for Spatial Informa-
tion) (69, 70). To address spatial autocorrelation and geographic distance,
we included a kernel density raster (bandwidth 100 km) created using the
R package “KernSmooth.” We tried several other bandwidths (50, 150,
and 200 km) using one run of the model and linearized FST as genetic
distance; they all performed similarly, and we selected the bandwidth
that was highest in the list of most important variables to include going
forward (100 km).
Anthropogenic and land cover data. University of Oxford Malaria Atlas
Project (MAP), Google, the European Union Joint Research Center (JRC), and
the University of Twente, The Netherlands collaborated to create a friction
map in which each pixel represents the speed of human travel in that area
(71). Based on this map, another one was created showing the travel time
to the nearest city of 50,000 inhabitants (71). We used the first of these
two maps as a measure of human friction and the second as a measure of
accessibility. For human population density, we used the Global Human Set-
tlement Layer created by the European Commission (72, 73). Land cover was
derived from a global dataset containing 12 land cover metrics (47). For each
land cover type, each 1-km2 pixel has a value from 0 to 1 representing what
percent of the area has the land cover type.

Landscape Genetics: Iterative Random Forest Model. See Modeling Approach
and Fig. 1 for a description of how the model works. We include addi-
tional technical details here. To handle the computational demands, the
code integrates R (74) (for the modeling part) and Geographic Resources
Analysis Support System Geographic Information System (75) (for the least
cost path delineation) within a Bash environment and uses sophisticated
parallelization. The model uses the “randomforestSRC” package in R, with
tuning for the forest average terminal node size (“nodesize”) and the
number of variables randomly selected as candidates for splitting a node
(“mtry”). RF bootstrapping was weighted by the inverse of the minimum
kernel value for each pair of points to ensure points from low-density areas
were sampled more often (SI Appendix, Fig. S5).

During the straight-line computation at the beginning of the modeling
procedure, values from the ocean are not used to compute the mean val-
ues of each predictor since the ocean is masked (labeled as NoData). After
the straight-line computation, least cost path lines are drawn on the land
surface, and predictors are calculated from those values. We use least cost
paths to determine a mean estimate of the environmental conditions that
are a reasonable approximation of the landscape between each pair of
sampling sites.

As a basis of comparison, we also performed a full model run with CSE
in which we used a standard linear regression rather than random for-
est. Additionally, we performed a leave-two-out cross-validation to ensure
that decreasing the training dataset size did not decrease the model’s
performance, as evaluated by RMSEtrain and RMSEtest.

Data Availability. Code and microsatellite call data have been deposited in
GitHub; VectorBase (https://github.com/evlynpless/MOSQLAND/tree/master/
ModelingConnectivity) (ID no. VBP0000715) (76). Microsatellite calls are also
provided in Dataset S2. All spatial data are freely available online.
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