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Abstract

Background: Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1
(GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by
cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic
changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in
expression of hundreds of additional genes in adult rats in response to differences in maternal care.

Methodology/Principal Findings: We examine here using high-density oligonucleotide array the state of DNA methylation,
histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the
hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning
over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes
in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus
examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response.
Interestingly, the chromosomal region containing the protocadherin-a, -b, and -c (Pcdh) gene families implicated in
synaptogenesis show the highest differential response to maternal care.

Conclusions/Significance: The results suggest for the first time that the epigenetic response to maternal care is coordinated
in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only
single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly
from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set
exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding
regions across a chromosomal locus in the mammalian brain.
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Introduction

The quality of parental care has a broad impact on mental

health, including the risk for psychopathology [1,2,3,4,5]. Studies

in the rat directly link the maternal care environment to long-term

effects on neural systems that regulate stress [6,7] emotional

function[8,9], learning and memory [10,11,12] and neuroplasti-

city [10,13,14,15]. Naturally occurring variations in maternal care

in the first week of life in rats are associated with changes in brain

and behavior that persist until adulthood [16]. These effects are

reversed by cross-fostering, [7,9] demonstrating a causal link

between maternal care and gene expression programming.

In rats and humans, there is evidence that changes in gene

expression as a function of early care are at least partly regulated

by epigenetic mechanisms [6,17,18]. In rats, variations in maternal

care in the first week of life are associated with alterations in DNA

methylation and H3K9 acetylation of the NR3C1 promoter region,

and gene expression of the GR17 splice variant of the NR3C1 gene

in the hippocampus of adult offspring [6]. There is evidence that

the expression of hundreds of additional genes in adult rats

changes in response to differences in maternal care [19]. Some of

these changes in gene expression can be reversed by pharmaco-

logical alterations of chromatin structure by the histone deacety-

lase inhibitor Trichostatin A (TSA) and the methyl donor L-

methionine [19,20]. The fact that the methyl donor L-methionine

inhibits some of the genes influenced by maternal behavior

supports the involvement of either DNA or histone methylation.

The fact that a large number of genes are responsive to the effects
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of TSA and L-methionine implies that the epigenetic regulation of

gene expression as a function of maternal care may be extensive.

In the present study, we test this hypothesis by examining

epigenetic and transcriptional changes associated with naturally

occurring differences in maternal care.

We obtained hippocampal samples from the adult offspring of

rat mothers that differed in the frequency of pup licking/grooming

in the first week of life (i.e. High vs Low LG adult offspring) and

performed an analysis of DNA methylation, H3K9 acetylation and

gene expression of a contiguous 7 million base pair region of rat

chromosome 18 containing the NR3C1 gene at 100 bp spacing. To

our knowledge, these epigenetic and transcriptional profiles

constitute the first tiling microarray data set exploring the

relationship between epigenetic modifications and RNA expres-

sion in both protein coding and non-coding regions across a

chromosomal locus in the mammalian brain.

Results

Validation of microarray results
To validate signals observed on our microarray and differences

between High and Low LG offspring, we quantified changes in

H3K9 acetylation, DNA methylation, and transcription. H3K9

acetylation differences in 7 regions (Fig. 1a) and DNA

methylation differences in 12 regions (Fig. 1b) were validated

by quantitative PCR (qChIP – see Methods for details; [21]).

Levels of DNA methylation validated by qChIP correlated

significantly with levels of enrichment detected by microarray

(R = 0.38, P = 0.0029 by Pearson’s correlation; Fig. S1). DNA

methylation differences were further confirmed for four genes by

sequencing sodium bisulfite converted DNA (Fig. S2). False

positives due to DNA polymorphism rather than differential

methylation were ruled out for 12 regions (those validated by

qChIP above) via DNA sequencing (data not shown). Of nine

genes showing significant differences in gene expression between

High and Low LG offspring, all were significantly more expressed

among High LG offspring (Fig. 1c).

As a further method of validating our microarrays, we

compared our average observed levels of transcriptional and

epigenetic signals to previously described signals within specific

gene elements across the entire locus profiled. To do so, we

examined the absolute levels of transcription, histone acetylation

and DNA methylation for all subjects combined (Fig. S3), and

compared them to previously published relationships between

levels of gene expression, DNA methylation, and histone

acetylation across 59 regulatory regions, exons, and introns. First,

previous studies have indicated that much of the genome is

actively transcribed [22] but that levels of transcription are

generally higher within annotated exons relative to other regions.

As expected, inside exons we observed significantly higher

transcription than the overall levels of transcription throughout

all regions in the locus (P = 1.476102155 by Student’s T-test, P = 0

by Wilcoxon Rank Sum test). In contrast, we observed levels of

transcription just upstream of genes (21800 bp to transcription

start site) and in intronic regions that were indistinguishable from

the baseline. These data indicate that the signals observed by our

microarray accurately detect known transcribed regions. Second,

many previous studies in a variety of cell types have shown that

active transcription is associated with low levels of DNA

methylation in the 59 ends of genes [23]. CpG islands also show

lower than average levels of DNA methylation compared to other

genomic regions [24]. As expected, we observed lower DNA

methylation levels in 59 gene ends (P = 1.34610278 by Wilcoxon

Rank Sum test) and within CpG islands (P = 7.156102200 by

Wilcoxon Rank Sum test) than the overall levels of methylation

across the locus (Fig. S3b–c). Third, actively transcribed genes

have been associated with reduced nucleosome occupancy near

transcription start sites [25,26,27]. We similarly found lower

H3K9 acetylation levels in 59 gene ends (P = 9.22610247 by

Wilcoxon Rank Sum test; Fig. S3b). Computational prediction of

nucleosome density from DNA sequence [28] showed a significant

correlation between nucleosome position and H3K9 acetylation

levels observed by microarray (R = 0.2, P = 2.2610216 by

Pearson’s correlation; Fig. S4). These observations of lower

absolute levels of DNA methylation with CpG islands and higher

levels of transcription within exons associated with lower DNA

methylation and H3K9 acetylation levels in 59 gene ends indicate

that our epigenetic and transcription microarray results conform

to previously published data in other genomic loci.

The pattern of the epigenetic and transcriptional
response to maternal care across the NR3C1 gene locus

A ‘‘large-scale’’ view of the entire locus as a whole revealed a

widespread but patterned response to maternal care among High

and Low LG adult offspring (High – Low; Fig. 2). We observed

peaks and valleys of H3K9 acetylation and DNA methylation

levels throughout a number of regions, suggesting a widespread

epigenomic response to variations in maternal care. The response

to maternal care is not evenly distributed, with many sequences

showing little or no response and clustered regions showing

enhanced responses. In total, we found significant differential

DNA methylation in 1413 probes and significant differences in

H3K9 acetylation in 713 probes out of 44000 probes covering the

region. Variations in epigenetic signaling across the locus appear

within annotated genic regions (e.g., Fig. 2 – see blue highlight),

and also in regions where no gene is annotated (e.g., Fig. 2 – see

orange highlight). Transcriptional differences are similarly wide-

spread (Fig. 2 – see expression track). These results suggest that

some but not all regions are associated with changes in epigenetic

signaling associated with differences in maternal care, with broad

epigenetic changes apparent within both genic and inter-genic

areas.

Localization of broad epigenetic changes to gene
regulatory and transcriptional elements

To index broad epigenetic changes observed across the locus,

we defined a Regional Difference in DNA methylation and a

Regional Difference H3K9 acetylation (RDme and RDac,

respectively) as a statistically significant difference between High

LG and Low LG offspring of at least 1000 bp containing at least

one statistically significant probe per 1000 bp (see Methods S1
for details). Across the entire locus, we identified 723 RDme of

which 373 are significantly hypermethylated and 350 are

hypomethylated in High relative to Low LG offspring. We

similarly identified 471 RDac of which 204 are hyperacetylated

and 267 are hypoacetylated. We found that these broad epigenetic

differences associated with maternal care are significantly co-

localized within the locus, and were positively correlated at

distances over 100 Kb (Fig. 3a). The data suggest that clustering

of differentially methylated and acetylated regions is not exclusive

to pathological responses under extreme selection as is the case in

cancer but includes epigenetic responses to natural variations in

maternal care, and may be characteristic of naturally occurring

epigenetic responses.

We next examined the localization of broad differences in

H3K9 acetylation, DNA methylation (i.e., RDac and RDme) and

transcription with respect to the physical anatomy of genes within
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the locus. Gene regulatory elements, including transcription start

sites, 59 and 39 gene ends, and CpG islands are typical regions of

interest in studies of gene regulation by epigenetic mechanisms.

We found no evidence of a relationship between CpG density and

the presence of RDme (P = 0.53 by Wilcoxon rank sum test),

indicating there is no difference between CpG islands and other

regions with respect to the presence of RDme. RDme/ac

overlapped the transcription start sites of some but not all genes,

indicating specificity in epigenetic signaling within the locus.

Seventy-seven transcription start sites in 69 genes contain RDme

while 127 transcript start sites in 94 genes do not contain RDme.

Similarly, 37 transcription start sites in 32 genes contain RDac

while 167 transcription start sites in 131 genes do not contain

RDac. There was a significant enrichment of hyperacetylated

RDac (regions in which the high maternal care group has higher

acetylation levels) inside exons, particularly the first and last exons

(P = 0.0014 and P = 0.0088, respectively; permutation test), and a

significant depletion of hypoacetylated RDac inside the first and

last exons (P = 0.0002 and P = 0.19, respectively; permutation test).

RDac are relatively depleted in the 59 and 39 ends of genes

(P = 0.02 by permutation test), likely reflecting the aforementioned

depletion of nucleosomes at these sites in actively transcribed

genes. In contrast, RDme co-localize in regulatory elements,

particularly in the 59 and 39 ends of genes (P = 0.0032 by

permutation test). Hypermethylated RDme (regions that are more

methylated in the high maternal group than in the low maternal

care group) are significantly enriched inside both the first and last

exons of genes (P = 0.0008 and P = 0.004, respectively; permuta-

tion test) whereas hypomethylated RDme are significantly

depleted inside the first exon (P = 0.0022; permutation test;

Fig. 3b – red for hypermethylated RDme and blue for

hypomethylated RDme). In addition, we observed an enrichment

of hypomethylated RDme upstream of the TSS (P = 0.02; Fig. 3b
– blue line). These data showing an enrichment of hyperacetylated

RDac and hypermethylated RDme within exons and an

enrichment of hypomethylated RDme in regulatory elements are

consistent with previous data in cancer cells showing high exonic

H3K9 acetylation [25,26,27] and DNA methylation [29] and low

promoter DNA methylation associated with actively transcribed

genes.

Next, we performed an analysis of probe-level changes in

epigenetic and transcriptional signaling as an alternative method

to compare to previous studies in cancer. We compared probe-

level differences in H3K9 acetylation, DNA methylation, and

RNA transcription to (1) identify whether our data show a similar

correspondence between higher levels of transcription observed in

the High LG offspring and epigenetic changes we expect based on

studies in cancer cells and (2) examine whether the observed

patterns at the level of individual probes are indicative of our

analyses of RDme and RDac. Figure 3c shows differences in

H3K9 acetylation, DNA methylation, and RNA expression, with

non-zero values indicating significant differences between High

and Low LG offspring and line thickness denoting the standard

error of the mean. In agreement with previous studies in cancer

and the analyses of RDac/me above, H3K9 acetylation levels are

significantly higher inside exons of the High LG offspring

compared to the Low LG offspring, particularly the first and last

exons (Fig. 3c – left panel). DNA methylation differences between

the groups are, on average, significantly higher within exons

among High LG offspring compared to Low LG offspring (Fig. 3c
– middle panel). Expression differences inside exons indicate that

High LG offspring show, on average, significantly higher RNA

Figure 2. The pattern of H3K9 acetylation, DNA methylation, and gene expression among High and Low LG adult offspring across
,7MB of chromosome 18. Tracks show CpG Islands, differences in H3K9 acetylation, DNA methylation and gene expression between High (black)
and Low LG (grey) adult offspring (H–L) and the locations of known genes (red) across the chromosomal locus (see Methods S1). Highlighted
regions show the location of the NR3C1 gene (green), Protocadherin gene clusters (blue) and a large mainly intergenic region (orange).
doi:10.1371/journal.pone.0014739.g002

Figure 1. Microarray validation. (a) H3K9 acetylation differences between High (white bars) and Low LG (black bars) adult offspring validated by
qCHIP (see Methods). (b) (upper) DNA methylation differences between High and Low LG adult offspring detected by microarray analysis (H–L),
showing gene location, and region analyzed. (lower) DNA methylation differences validated in the same manner as for H3K9 acetylation. (c) Gene
expression differences between High LG and Low LG adult offspring (* = P,0.05). All real-time PCR reactions were performed in triplicate and results
are displayed as mean +/2 SEM.
doi:10.1371/journal.pone.0014739.g001

Epigenetic Maternal Signature

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e14739



expression within annotated genes among High LG offspring

compared to Low LG offspring (Fig. 3c – right panel). These data

confirm previously published observations in cancer cells showing

an association of actively transcribed genes with hyperacetylation

and high methylation within exons [25,26,27,29]. Taken together,

these analyses within the regulatory and transcriptional elements

of the genes in the locus are consistent with an observed

significantly higher overall transcriptional activity among High

LG adult offspring.

NR3C1 gene and identification of novel candidate genes
regulated by maternal care

We previously reported that NR3C1 gene expression and

H3K9 acetylation were increased and DNA methylation was

decreased in the promoter of the exon 17 splice variant among

High LG offspring compared to Low LG offspring [6,7]. Using

our comprehensive coverage of the entire NR3C1 locus we were

able to identify additional novel regions of differential transcrip-

tion, DNA methylation and histone acetylation in response to

maternal care. We observed a number of RDme and RDac co-

localized within intronic regions and upstream of the promoter

region within the NR3C1 gene (Fig. 4a). The NR3C1 gene is

known to contain at least 11 untranslated 59 exon 1 splice variants

that encode a common protein via a splice acceptor site on the

exon 2. In this way, tissue-specific expression of NR3C1 is

regulated by alternative splicing [30]. Our gene expression data

agrees with previous studies showing that the expression of the GR

exon 17 splice variant as well as that of exon 2 is increased in High

LG offspring ([6,7]; Fig. 4b). Furthermore, we also detected

increased transcription among High LG offspring in each of the

exon 1 splice variants known to be expressed in the hippocampus:

GR15, GR16, GR17, GR110, and GR111 ([30]; Fig. 4b). These

results suggest that broad epigenetic differences within the NR3C1

gene as well as the coordinated expression pattern of NR3C1

splice variants may be involved in the response to maternal care.

In addition to the NR3C1 gene, a number of other genes show a

significant number of RDme and are induced in response to

differences in maternal care. We observed a broad genomic region

Figure 3. Regional variations in differences in histone acetylation, DNA methyation and gene expression between High and Low LG
adult offspring. (a) The Pearson correlation of DNA methylation and H3K9 acetylation differences between the High and Low LG adult offspring for
pairs of probes located at varying distances from each other. Error bars show 95% confidence intervals for the correlation values. Grey highlight
shows the 95% confidence interval for correlations obtained from randomly selected probe pairs. (b) Enrichment of RDme (Regional Differences in
DNA methylation) between High and Low LG adult offspring across all genes from the 59 region to the 39 region. Enrichment is quantified as
increased frequency of RDme in a given gene region (number of RDme/bp). Significance is the quantile of this enrichment with respect to the
distribution of randomly positioned RDme. A quantile above 0.975 indicates significant enrichment, and a quantile below 0.025 indicates significant
depletion at the P = 0.05 level. Quantiles of hyperacetylated RDac/hypermethylated RDme in High compared to Low LG offspring (red) and quantiles
of hypoacetylated RDac/hypomethylated RDme (blue) are shown. (c) Mean differences across all probes in DNA methylation, H3K9 acetylation and
RNA expression levels between High LG and Low LG adult offspring are shown across all genes from the 59 region to the 39 region, with significant
differences indicated by non-zero values. Line thickness denotes SEM.
doi:10.1371/journal.pone.0014739.g003

Epigenetic Maternal Signature

PLoS ONE | www.plosone.org 5 February 2011 | Volume 6 | Issue 2 | e14739



that shows a cluster-wide response in DNA methylation and

expression and exhibits the highest number of RDme relative to

other regions in the locus: the -a, -b, and -c protocadherin (Pcdh)

gene clusters (82 of 696 RDme; P = 0.006, permutation test).

Among Low LG offspring, we observed a significant enrichment

for hypermethylated RDme across the entire Pcdh gene cluster (45

of a total of 350 RDme hypermethylated in Low LG offspring

were found within the Pcdh gene clusters; P = 0.01, permutation

test).

Pcdh genes are predominantly expressed in neurons at synaptic

junctions, and the assembly of these cell surface proteins is

regulated by differential promoter activation and alternative pre-

mRNA splicing [31]. Although the mechanisms underlying

differential promoter activation are not well understood, promoter

DNA methylation and histone acetylation play a role in Pcdh gene

silencing [32,33]. Consistent with this hypothesis, Pcdh gene

expression induced in response to High LG maternal care is

accompanied by higher in exonic H3K9 acetylation and DNA

methylation (P,16102300 for both by Wilcoxon rank sum test)

and lower proximal promoter DNA methylation in a majority (17

of 23, or 74%) of Pcdh genes showing a significant increase in

expression among High LG compared to Low LG offspring

(Fig. 5). High LG offspring show a significant increase in

transcription in 20 Pcdh of 33 genes profiled within the Pcdh

gene clusters (Table S1). Taken together, these results showing a

transcriptional and epigenetic response to maternal care across the

Pcdh gene family suggest that the epigenomic response to

maternal care may act coordinately on a family of genes localized

in the same broad genomic region.

Discussion

The quality of maternal care in rodents has a widespread

impact on phenotype that persists into adulthood, providing a

model to study epigenetic mechanisms mediating the impact of the

early life social environment on health later in life [6]. In this

study, we asked whether our traditional approach examining the

regulatory elements of candidate genes reflects the totality of the

epigenetic response to naturally occurring environmental stimuli.

By extending our analysis beyond the predicted boundaries of the

NR3C1 gene using high-density coverage of megabases of

sequence, we investigated whether changes are limited to a small

Figure 4. Epigenomic neighborhood of the glucocorticoid receptor gene. (a) Track of the glucocorticoid receptor gene, NR3C1, showing
examples of large RDme/ac throughout the 59 end and intron of the gene. Individual tracks, from the top to the bottom, show locations of
hyperacetylated (blue) and hypoacetylated (yellow) RDac in High relative to Low LG adult offspring, RDme displayed in the same manner, mean gene
expression, and the location of the NR3C1 gene. (b) Schematic representation splice variant assembly of 59 untranslated elements as well as the first
coding exon (GR2) of the NR3C1 gene, along with gene expression differences between High and Low LG adult offspring (* = P,0.05). Each real-time
PCR reaction was performed in triplicate and results are displayed as mean +/2 SEM.
doi:10.1371/journal.pone.0014739.g004
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Figure 5. Epigenomic neighborhoods of the first exons in protocadherin gene clusters. Genes with hypomethylated 59 gene ends (blue),
hypermethylated and hyperacetylated exons (green) and significantly greater gene expression among High compared to Low LG adult offspring (H–
L) are shown for (a) protocadherin-a, (b) protocadherin-c gene clusters. Gene expression differences of genes surveyed by quantitative RT-PCR (filled
boxes; ** = P,0.01, * = P,0.05) are shown relative to the location of other nearby Pcdh genes within each cluster (unfilled boxes).
doi:10.1371/journal.pone.0014739.g005
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number of candidate genes, whether the changes are limited to 59

regulatory regions and whether they are exclusive to regions

encoding mRNAs.

We found non-random patterns of epigenetic and transcrip-

tional alterations in a number of genes in association with

differences in maternal care (Fig. 2). The specificity of this pattern

is further underscored by the fact that both increased and

decreased peaks of acetylation and DNA methylation are observed

throughout the region. However, the response is gene-specific, as

not all genes appear to respond to differences in maternal care

(Table S1). Differences in broad epigenetic marks co-cluster over

large distances (Fig. 3a), supporting previous work in cancer cells

and suggesting the possibility of widespread epigenetic effects on

multiple genes in the same genomic regions in response to

maternal care. Analysis of our data with respect to protein-coding

genes reveals expected relationships between epigenetic marks and

gene expression levels. Increased transcription is associated with

decreased 59 DNA methylation and increased exonic H3K9

acetylation and DNA methylation (Fig. 3b–c). Previous studies

have examined the relationships between differences in DNA

methylation and histone acetylation and gene expression in on/off

states of gene expression activity, as seen in cancer and cellular

differentiation paradigms[23,25,26,27,29]. Our data suggest that

the modulation of gene expression in response to environmental

stimuli follows the same rules.

Our approach using high-density tiling microarrays also

provided us with a ‘‘macroscopic’’ perspective of the epigenetic

and transcriptional responses to maternal care. By zooming out of

the specific suspected regions, we discovered differentially-

methylated and acetylated regions that span large domains of

sequence in the vicinity of the NR3C1 gene (Fig. 4a). Among adult

offspring of animals that had received relatively low levels of

maternal care, we identified several hypermethylated RDme and

hyperacetylated RDac upstream of the 59 NR3C1 exon variants as

well as in intronic regions, where transcription was also detected.

These results suggest the possible involvement of non-coding

RNAs and alternative splice variants in response to maternal care.

Future studies are required to determine whether these broad

regions that are differentially methylated in response to maternal

care regulate NR3C1 expression.

Although when examined individually, different regions exhibit

highly specific responses (Fig. 4b; Fig. 5a–b), large-scale patterns

emerge when we use a ‘‘macro’’ view of the entire chromosomal

region (Fig. 2). Both increased and decreased peaks of acetylation

and DNA methylation are observed throughout the region. In

addition, of the 29 transcripts showing statistically significant

differences in transcription, all are significantly more expressed

among High LG adult offspring (Table S1). These data indicate

specificity in transcriptional changes at the single gene level as well

as an overall common response at a ‘‘large-scale’’ level consisting

of many neighboring genes. The fact that the observed response is

a result of a naturally-occurring variation in maternal care rather

than average ‘‘static’’ levels of histone acetylation and DNA

methylation points to the possibility that a long-range coordinated

regulation of genome function may play a role in the long-term

programming of the genome.

One possible role for clustering of epigenetic responses across

wide areas is the coordinate regulation of a large group of

functionally related genes. We discovered that the expression of a

large cluster of the Pcdh genes is coordinately regulated with

respect to maternal care. Remarkably, the increase in gene

expression in the High maternal care group spans genes within

each of the Pcdh gene clusters (Fig. 1c; Fig. 5a–b). This family of

genes correspondingly contains a significant overrepresentation of

differentially methylated regions. It is interesting to speculate that

the Pcdh gene family may have evolved though gene duplication

as a class of functionally-related genes under coordinate epigenetic

regulation. Indeed, coordinated silencing of the Pcdh family of

genes was seen in cancer [34]. However, in cancer, processes

related to cell-selection might be involved in a progressive

spreading of DNA methylation [35,36,37].

We recognize that we do not yet know whether differences in

Pcdh gene expression play a role in the effects of maternal care on

brain function in offspring. Future studies are needed to examine

the consequences of the epigenetic regulation of Pcdh gene

expression for the regulation of Pcdh protein and downstream

functional effects. Pcdh genes are preferentially expressed in

neurons, including the hippocampus, and regulate synaptic

development and function [38]. Pcdh-a gene expression during

rodent neural development is highest in early postnatal life (until

PD21), when it is involved in specifying the innervation of

serotonergic neurons in the hippocampus [39]. Studies indicate

enduring influences of differences in maternal care on hippocam-

pal neuroplasticity, including effects on LTP [40,41] and synaptic

morphology [42,43]. Indeed, a rich literature suggests widespread

effects of the prenatal and postnatal environment on the

developing brain (for reviews see [44,45]). For example, whereas

other maternal factors such as maternal stress during pregnancy

induce long-term influences on behavior, including hippocam-

pally-mediated fear conditioning and spatial learning, adoption

studies show that postnatal maternal care can reverse these effects

[11,13,46]. Both hippocampal synaptic density and LTP as well as

contextual fear conditioning and spatial learning vary as a function

of maternal care in the rat [10,15]. It is interesting to speculate

that differences in Pcdh gene regulation may be functionally

relevant for hippocampal development.

The mechanisms responsible for this coordinated epigenomic

response and its maintenance into adulthood are unknown. We

observed a broad epigenomic response associated with an

extensive difference in gene expression. These broad epigenomic

and transcriptome changes occurred not in response to disease

(e.g. cancer) [34] or artificial interventions (e.g., gene knock-out or

exposure to toxins), but in the context of a natural variation in

maternal behavior. Although the changes are broad, not all genes

are affected. The specificity of the response and its pattern are

consistent with the hypothesis that the epigenetic response is

indeed a biological signal. Our data suggest that epigenetic

variations in the context of early life environment variations and

perhaps other environmental influences involve coordinate

changes in gene-networks rather than dramatic changes in a

single or few genes. Our data also suggest that this response may

involve more than protein coding mRNAs. Our traditional

approaches to examine relationships between epigenetic regula-

tion, gene function and phenotype were developed to examine

changes within genetic elements defined apriori (promoters, exons,

39 gene ends) in single or few candidate genes. If, in addition, the

response to an environmental stimulus such as maternal care

involves more widespread or coordinated changes across multiple

genomic regions, new experimental approaches are needed to

examine the contribution of these changes to the ultimate

phenotype. Our data suggest multiple levels of variations in

DNA methylation and H3K9 acetylation, from site-specific gene-

specific responses as previously reported [6,17] to the regional

responses shown in this study. Although future experiments are

needed to address the relative role of ‘‘micro’’ and ‘‘macro’’

epigenetic responses, these data suggest that the broad epigenetic

regulation of gene expression may form part of a coordinated

response to early maternal care.
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Materials and Methods

Ethics Statement
All procedures were performed according to guidelines

developed by the Canadian Council on Animal Care and the

protocol was approved by the McGill University Animal Care

Committee, permit number 3284.

Subjects and tissue preparation
Three to 4 animals per group were used in all microarray and

quantitative immunoprecipitation experiments. An additional

cohort of 8 animals per group was used for gene expression

analysis. A maximum of 2 animals from any one litter were used,

to control for possible effects attributable to variation between

litters rather than variation as a function of High and Low LG.

The animals were Long-Evans hooded rats born in our colony

originally obtained from Charles River Canada (St. Constant,

Québec). Maternal behavior was scored by using a version of the

procedure described elsewhere[16]. Hippocampal tissue was

dissected from 90-day-old (adult) male High and Low LG

offspring and stored at 280uC. Genomic DNA extraction

(DNeasy, Qiagen) and quantification (Nanodrop ND-1000

spectrophotometer, Thermo Scientific) as well as RNA extraction

(RNeasy plus, Qiagen) and quality assessment (Bioanalyzer 2100,

Agilent) were performed according to the manufacturer’s protocol

(see Methods S1 for details).

Chromatin/DNA immunoprecipitation and microarray
hybridization

The procedure for methylated DNA immunoprecipitation was

adapted from previously published work,[47,48,49] and H3K9

acetylation ChIP assays[50] were performed using the ChIP assay

kit protocol (06-599, Upstate Biotechnology), as previously

described[6]. The amplification (Whole Genome Amplification

kit, Sigma) and labeling reaction (CGH labeling kit, Invitrogen),

and all the steps of hybridization, washing and scanning were

performed following the Agilent protocol for chip-on-chip analysis

(see Methods S1 for details). Three animals per group were used

in the immunoprecipitation microarray experiments, and micro-

arrays were hybridized in triplicate for each sample.

cDNA microarray hybridization
RNA spike-in controls (Agilent) were added to RNA prior to

generating cDNA. The cDNA was amplified and labeled with Cy3

or Cy5 (GE Healthcare) according to manufacturer’s instructions

(Fairplay III, Agilent; See Methods S1 for details). Four animals

per group were used for the gene expression microarrays, and a

dye-swap experiment was performed for each subject in duplicate.

Microarray design and analysis
Custom 44 K tiling arrays were designed using eArray (Agilent

technologies). Probes of approximately 55 bp were selected to tile

all unique regions within approximately 3.5 MB upstream and

downstream of the NR3C1 gene described in Ensembl (version 44)

at 100 bp-spacing. Probe intensities were extracted from hybrid-

ization images using Agilent’s Feature Extraction 9.5.3 Image

Analysis Software and analyzed using the R software environment

for statistical computing[51]. Log-ratios of the bound (Cy5) and

input (Cy3) microarray channel intensities were computed for each

microarray. Each microarray was normalized using quantile-

normalization[52] assuming an identical overall distribution of

measurement across all samples. Gene expression levels were

estimated as the mean probe values across exons. DNA

methylation and H3K9 acetylation levels at genomic locations

were estimated using a Bayesian convolution algorithm to

incorporate probe values from nearby probes[53]. Gene expres-

sion differences associated with maternal care were obtained using

RMA[54] applied to sample probe values inside exons. RDme/ac

were identified by computing a modified t-statistic for each probe

and then significant levels of agreement across 1000 bp regions.

Enrichment of RDac and RDme was determined by comparing

base-pair overlap of these regions with overlap of randomly

selected RDac/RDme (see Methods S1 for details). All

microarray data are MIAME compliant and the raw data have

been deposited in Gene Expression Omnibus (GEO) at NCBI

(www.ncbi.nlm.nih.gov/geo/), accession number pending.

Quantitative real-time PCR of immunoprecipitated
samples (qCHIP)

Gene-specific real-time PCR validation of microarray was

performed in an identical manner for H3K9 acetylation and DNA

methylation enrichment[21] for the same subjects used for

microarray experiments (n = 3/group; see Methods S1 for

details). Relative enrichment of triplicate reactions were deter-

mined as a ratio of the crossing point threshold (Ct) of the

amplified immunoprecipitated fraction (with either anti-histone

H3K9 acetylation or anti 5-meC antibody) over the Ct of the

amplified input genomic DNA fraction according to the formula:

IP(Ct)/IN(Ct). The calculated immunoprecipitation enrichment

was plotted and standard error bars were displayed.

Sodium bisulfite mapping of DNA methylation
Sodium bisulfite mapping was performed as previously

described[55]. After gene-specific PCR amplification (Table S2)

of sodium bisulfite treated DNA for each subject, a mix of 10 ng of

the gel-extracted PCR product from all of the subjects from each

High and Low LG group (n = 3/group) were used for subsequent

molecular cloning (Cequation 8800, Beckman-Coulter). We

obtained 20 clones for sequencing from 2–3 independent PCR

reactions for each subject.

Genotyping
The genes verified for differences in DNA methylation by

qCHIP analysis were further analyzed for genotyping using

identical primers (Table S2). The resulting PCR products for

each subject were sequenced bidirectionally using the forward and

the reverse primer by Genome Quebec (ABI 3100, Applied

Biosystems). Genetic variation was assessed throughout the PCR

amplicon used for qCHIP analysis by alignment of genomic DNA

with the published gene sequence (CLC Workbench, CLC bio).

Quantitative real-time RT-PCR analysis
The expression patterns of 45 transcripts examined by

microarray were quantified. For genes shown in Figure 1c (also

see Table S1) primer design (Table S2) and analysis were

performed by Genome Quebec (ABI lightcycler, ABI biosystems),

whereby the expression of an additional 7 housekeeping genes

(Actb, Gapdh, Gusb, Pum1, Rpl19, Rps18, Tubb5) was assessed

for the same subjects used for microarray hybridization. The gene

showing the least variance between High and Low LG adult

offspring was selected as the reference gene for all subjects (GusB),

and statistical significance, fold differences and standard errors of

the mean were calculated according to published methods using

the freely-available Relative Expression Software Tool pro-

gram[56]. For the quantification of gene expression differences

related to the NR3C1 gene shown in Figure 4b and the Pcdh gene
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clusters shown in Figure 5 (also see Table S1), a standard curve

was generated from 7 serial dilutions of a mixture of cDNA from

each High and Low LG offspring, and gene expression was

quantified relative to the tubulin housekeeping gene (480

lightcycler, Roche) for an additional cohort of 8 High LG and 8

Low LG offspring, according to previously published methods

(Table S2; [19,57]). All reactions for all genes were performed in

triplicate and statistical significance was determined as P,0.05

using one-tailed t-tests.

Supporting Information

Methods S1

Found at: doi:10.1371/journal.pone.0014739.s001 (0.08 MB

PDF)

Table S1 Genes with higher expression in High LG offspring.

Listed are the fold change for 44 transcripts selected for gene

expression profiling (High LG/Low LG). Expression is signifi-

cantly higher in the High LG offspring for 29 transcripts

(** = P,0.01, * = P,0.05). Also shown are distances to the nearest

RDme and RDac both before and after the transcription start site

of each gene, and whether they are hyper-methylated/acetylated

or hypo-methylated/acetylated in High relative to Low LG adult

offspring.

Found at: doi:10.1371/journal.pone.0014739.s002 (0.04 MB

XLS)

Table S2 Sequence information for primers used for H3K9

acetylation, DNA methylation, and gene expression validation of

microarrays.

Found at: doi:10.1371/journal.pone.0014739.s003 (0.04 MB

XLS)

Figure S1 Pearson correlation between DNA methylation levels

estimated from microarray data and levels estimated from qChIP

for each gene validated by quantitative real-time PCR (red circles).

Found at: doi:10.1371/journal.pone.0014739.s004 (0.07 MB TIF)

Figure S2 DNA methylation validated by sodium bisulfite

mapping showing expected enrichment of DNA methylation in

Low (black bars) compared to High LG (white bars) animals for

the majority of CpG sites examined. These data confirm the

enrichment in Low LG relative to High LG offspring estimated

from microarray and qChIP.

Found at: doi:10.1371/journal.pone.0014739.s005 (0.10 MB TIF)

Figure S3 DNA methylation, H3K9 acetylation and gene

expression levels. (a) Average levels of H3K9 acetylation and

DNA methylation across all regions, and gene expression levels

within protein coding exons only for all subjects are depicted

across the 7Mb region centered at the NR3C1 gene (see

Supporting Methods for calculation of levels). (b) Levels across

gene-associated regions for all genes are depicted. (c) Levels are

depicted across CpG islands (H3K9 acetylation levels are red,

DNA methylation levels are blue, and gene expression levels are

green). All data are mean values and line thickness denotes SEM.

Found at: doi:10.1371/journal.pone.0014739.s006 (0.30 MB TIF)

Figure S4 An example of predicted nucleosome occupancy and

actual H3K9 acetylation levels estimated from microarray data for

Protocadherin-a genes. Predictions were obtained in silico solely

from DNA sequence using a previously published tool [1].

Found at: doi:10.1371/journal.pone.0014739.s007 (0.32 MB TIF)

Author Contributions

Conceived and designed the experiments: POM MS AS MH MJM MS.

Performed the experiments: POM AS TCTH. Analyzed the data: POM

MS AS. Wrote the paper: POM MS AS MH MJM MS.

References

1. Kendler KS, Gardner CO, Prescott CA (2002) Toward a comprehensive

developmental model for major depression in women. Am J Psychiatry 159:

1133–1145.

2. McEwen BS (2003) Early life influences on life-long patterns of behavior and

health. Ment Retard Dev Disabil Res Rev 9: 149–154.

3. Nemeroff CB (2004) Neurobiological consequences of childhood trauma. J Clin
Psychiatry 65 Suppl 1: 18–28.

4. Nemeroff CC (2004) Early-Life Adversity, CRF Dysregulation, and Vulnera-

bility to Mood and Anxiety Disorders. Psychopharmacol Bull 38: 14–20.

5. Coldwell J, Pike A, Dunn J (2006) Household chaos—links with parenting and
child behaviour. J Child Psychol Psychiatry 47: 1116–1122.

6. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, et al. (2004)

Epigenetic programming by maternal behavior. Nat Neurosci 7: 847–854.

7. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across

generations of maternal behavior and stress responses in the rat. Science 286:

1155–1158.

8. Menard JL, Hakvoort RM (2007) Variations of maternal care alter offspring

levels of behavioural defensiveness in adulthood: evidence for a threshold model.

Behav Brain Res 176: 302–313.

9. Caldji C, Diorio J, Meaney MJ (2003) Variations in maternal care alter

GABA(A) receptor subunit expression in brain regions associated with fear.

Neuropsychopharmacology 28: 1950–1959.

10. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ (2000) Maternal care, hippocampal

synaptogenesis and cognitive development in rats. Nat Neurosci 3: 799–806.

11. Bredy TW, Humpartzoomian RA, Cain DP, Meaney MJ (2003) Partial reversal
of the effect of maternal care on cognitive function through environmental

enrichment. Neuroscience 118: 571–576.

12. Toki S, Morinobu S, Imanaka A, Yamamoto S, Yamawaki S, et al. (2007)
Importance of early lighting conditions in maternal care by dam as well as

anxiety and memory later in life of offspring. Eur J Neurosci 25: 815–829.

13. Bredy TW, Zhang TY, Grant RJ, Diorio J, Meaney MJ (2004) Peripubertal
environmental enrichment reverses the effects of maternal care on hippocampal

development and glutamate receptor subunit expression. Eur J Neurosci 20:

1355–1362.

14. Bredy TW, Grant RJ, Champagne DL, Meaney MJ (2003) Maternal care

influences neuronal survival in the hippocampus of the rat. Eur J Neurosci 18:
2903–2909.

15. Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, et al.

(2008) Maternal care and hippocampal plasticity: evidence for experience-

dependent structural plasticity, altered synaptic functioning, and differential

responsiveness to glucocorticoids and stress. J Neurosci 28: 6037–6045.

16. Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal

care in the rat as a mediating influence for the effects of environment on

development. Physiol Behav 79: 359–371.

17. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, et al. (2009)

Epigenetic regulation of the glucocorticoid receptor in human brain associates

with childhood abuse. Nat Neurosci 12: 342–348.

18. McGowan PO, Sasaki A, Huang TC, Unterberger A, Suderman M, et al. (2008)

Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the

suicide brain. PLoS ONE 3: e2085.

19. Weaver IC, Meaney MJ, Szyf M (2006) Maternal care effects on the

hippocampal transcriptome and anxiety-mediated behaviors in the offspring

that are reversible in adulthood. Proc Natl Acad Sci U S A 103: 3480–3485.

20. Weaver IC, Champagne FA, Brown SE, Dymov S, Sharma S, et al. (2005)

Reversal of maternal programming of stress responses in adult offspring through

methyl supplementation: altering epigenetic marking later in life. J Neurosci 25:

11045–11054.

21. Sadikovic B, Yoshimoto M, Al-Romaih K, Maire G, Zielenska M, et al. (2008) In

vitro analysis of integrated global high-resolution DNA methylation profiling with

genomic imbalance and gene expression in osteosarcoma. PLoS One 3: e2834.

22. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.

(2007) Identification and analysis of functional elements in 1% of the human

genome by the ENCODE pilot project. Nature 447: 799–816.

23. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights

from epigenomics. Nat Rev Genet 9: 465–476.

24. Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP (2009) A human B cell

methylome at 100-base pair resolution. Proc Natl Acad Sci U S A 106: 671–678.

25. Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25:

335–343.

26. Smith DT, Hosken DJ, Ffrench-Constant RH, Wedell N (2009) Variation in sex

peptide expression in D. melanogaster. Genet Res 91: 237–242.

27. Nishida H, Suzuki T, Kondo S, Miura H, Fujimura Y, et al. (2006) Histone H3

acetylated at lysine 9 in promoter is associated with low nucleosome density in

Epigenetic Maternal Signature

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e14739



the vicinity of transcription start site in human cell. Chromosome Res 14:

203–211.

28. Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, et al. (2009)

The DNA-encoded nucleosome organization of a eukaryotic genome. Nature

458: 362–366.

29. Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, et al. (2009)

Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral

breast cancer patients. Hum Mol Genet 18: 1332–1342.

30. McCormick JA, Lyons V, Jacobson MD, Noble J, Diorio J, et al. (2000) 5’-

heterogeneity of glucocorticoid receptor messenger RNA is tissue specific:

differential regulation of variant transcripts by early-life events. Mol Endocrinol

14: 506–517.

31. Yagi T (2008) Clustered protocadherin family. Dev Growth Differ 50 Suppl 1:

S131–140.

32. Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, et al. (2002)

Promoter choice determines splice site selection in protocadherin alpha and

gamma pre-mRNA splicing. Mol Cell 10: 21–33.

33. Kawaguchi M, Toyama T, Kaneko R, Hirayama T, Kawamura Y, et al. (2008)

Relationship between DNA methylation states and transcription of individual

isoforms encoded by the protocadherin-alpha gene cluster. J Biol Chem 283:

12064–12075.

34. Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ, et al. (2008) Agglomerative

epigenetic aberrations are a common event in human breast cancer. Cancer Res

68: 8616–8625.

35. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, et al. Consolidation

of the cancer genome into domains of repressive chromatin by long-range

epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 12:

235–246.

36. Rideout WM, 3rd, Eversole-Cire P, Spruck CH, 3rd, Hustad CM, Coetzee GA,

et al. (1994) Progressive increases in the methylation status and heterochroma-

tinization of the myoD CpG island during oncogenic transformation. Mol Cell

Biol 14: 6143–6152.

37. Wong DJ, Foster SA, Galloway DA, Reid BJ (1999) Progressive region-specific

de novo methylation of the p16 CpG island in primary human mammary

epithelial cell strains during escape from M(0) growth arrest. Mol Cell Biol 19:

5642–5651.

38. Junghans D, Haas IG, Kemler R (2005) Mammalian cadherins and

protocadherins: about cell death, synapses and processing. Curr Opin Cell Biol

17: 446–452.

39. Katori S, Hamada S, Noguchi Y, Fukuda E, Yamamoto T, et al. (2009)

Protocadherin-alpha family is required for serotonergic projections to appropri-

ately innervate target brain areas. J Neurosci 29: 9137–9147.

40. Wilson DA, Willner J, Kurz EM, Nadel L (1986) Early handling increases

hippocampal long-term potentiation in young rats. Behav Brain Res 21:

223–227.

41. Tang AC, Zou B (2002) Neonatal exposure to novelty enhances long-term

potentiation in CA1 of the rat hippocampus. Hippocampus 12: 398–404.
42. Poeggel G, Helmeke C, Abraham A, Schwabe T, Friedrich P, et al. (2003)

Juvenile emotional experience alters synaptic composition in the rodent cortex,

hippocampus, and lateral amygdala. Proc Natl Acad Sci U S A 100:
16137–16142.

43. Ovtscharoff W, Jr., Helmeke C, Braun K (2006) Lack of paternal care affects
synaptic development in the anterior cingulate cortex. Brain Res 1116: 58–63.

44. Korosi A, Baram TZ () Plasticity of the stress response early in life: Mechanisms

and significance. Dev Psychobiol 52: 661–670.
45. Meaney MJ (2001) Maternal care, gene expression, and the transmission of

individual differences in stress reactivity across generations. Annu Rev Neurosci
24: 1161–1192.

46. Wakshlak A, Weinstock M (1990) Neonatal handling reverses behavioral
abnormalities induced in rats by prenatal stress. Physiol Behav 48: 289–292.

47. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, et al. (2005)

Chromosome-wide and promoter-specific analyses identify sites of differential
DNA methylation in normal and transformed human cells. Nat Genet 37:

853–862.
48. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, et al. (2006) Evidence for

an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:

149–153.
49. Brown SE, Szyf M (2008) Dynamic epigenetic states of ribosomal RNA

promoters during the cell cycle. Cell Cycle 7: 382–390.
50. Crane-Robinson C, Myers FA, Hebbes TR, Clayton AL, Thorne AW (1999)

Chromatin immunoprecipitation assays in acetylation mapping of higher
eukaryotes. Methods Enzymol 304: 533–547.

51. R Development Core Team (2007) R: A language and environment for

statistical computing. ViennaAustria: R Foundation for Statistical Computing.
52. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on
variance and bias. Bioinformatics 19: 185–193.

53. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, et al. (2008) A Bayesian

deconvolution strategy for immunoprecipitation-based DNA methylome anal-
ysis. Nat Biotechnol 26: 779–785.

54. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003)
Exploration, normalization, and summaries of high density oligonucleotide array

probe level data. Biostatistics 4: 249–264.
55. Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of

methylated cytosines. Nucleic Acids Res 22: 2990–2997.

56. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool
(REST) for group-wise comparison and statistical analysis of relative expression

results in real-time PCR. Nucleic Acids Res 30: e36.
57. Zou C, Huang W, Ying G, Wu Q (2007) Sequence analysis and expression

mapping of the rat clustered protocadherin gene repertoires. Neuroscience 144:

579–603.

Epigenetic Maternal Signature

PLoS ONE | www.plosone.org 11 February 2011 | Volume 6 | Issue 2 | e14739


